Elena Schatz
Высший разум
(140343)
13 лет назад
Решение:
Для нахождения длин сторон треугольника воспользуемся формулой нахождения расстояния между двумя данными точками
s = ((x2 – x1)^2+(y2-y1)^2)^(1/2)
где (x1,y1) и (x2, y2) – это координаты начала и конца отрезка.
Елена Гужвенко
Гений
(53581)
13 лет назад
Найти координаты векторов, образующих каждую сторону:
АВ=(х2-х1; у2-у1)
АС и АД аналогично.
Найти длины векторов |AB|=корень из суммы квадратов соответствующих координат векторов
Удачи!
Дядя ВаняПрофи (959)
13 лет назад
Спасибо большое… но не могли бы Вы немного по подробнее…
я не совсем понял… пожалуйста )))
Нахождение длины вектора, примеры и решения
Длина вектора – основные формулы
Длину вектора a → будем обозначать a → . Данное обозначение аналогично модулю числа, поэтому длину вектора также называют модулем вектора.
Для нахождения длины вектора на плоскости по его координатам, требуется рассмотреть прямоугольную декартову систему координат O x y . Пусть в ней задан некоторый вектор a → с координатами a x ; a y . Введем формулу для нахождения длины (модуля) вектора a → через координаты a x и a y .
От начала координат отложим вектор O A → = a → . Определим соответственные проекции точки A на координатные оси как A x и A y . Теперь рассмотрим прямоугольник O A x A A y с диагональю O A .
Из теоремы Пифагора следует равенство O A 2 = O A x 2 + O A y 2 , откуда O A = O A x 2 + O A y 2 . Из уже известного определения координат вектора в прямоугольной декартовой системе координат получаем, что O A x 2 = a x 2 и O A y 2 = a y 2 , а по построению длина O A равна длине вектора O A → , значит, O A → = O A x 2 + O A y 2 .
Отсюда получается, что формула для нахождения длины вектора a → = a x ; a y имеет соответствующий вид: a → = a x 2 + a y 2 .
Если вектор a → дан в виде разложения по координатным векторам a → = a x · i → + a y · j → , то вычислить его длину можно по той же формуле a → = a x 2 + a y 2 , в данном случае коэффициенты a x и a y выступают в роли координат вектора a → в заданной системе координат.
Вычислить длину вектора a → = 7 ; e , заданного в прямоугольной системе координат.
Чтобы найти длину вектора, будем использовать формулу нахождения длины вектора по координатам a → = a x 2 + a y 2 : a → = 7 2 + e 2 = 49 + e
Формула для нахождения длины вектора a → = a x ; a y ; a z по его координатам в декартовой системе координат Oxyz в пространстве, выводится аналогично формуле для случая на плоскости (см. рисунок ниже)
В данном случае O A 2 = O A x 2 + O A y 2 + O A z 2 (так как ОА – диагональ прямоугольного параллелепипеда), отсюда O A = O A x 2 + O A y 2 + O A z 2 . Из определения координат вектора можем записать следующие равенства O A x = a x ; O A y = a y ; O A z = a z ; , а длина ОА равна длине вектора, которую мы ищем, следовательно, O A → = O A x 2 + O A y 2 + O A z 2 .
Отсюда следует, что длина вектора a → = a x ; a y ; a z равна a → = a x 2 + a y 2 + a z 2 .
Вычислить длину вектора a → = 4 · i → – 3 · j → + 5 · k → , где i → , j → , k → – орты прямоугольной системы координат.
Дано разложение вектора a → = 4 · i → – 3 · j → + 5 · k → , его координаты равны a → = 4 , – 3 , 5 . Используя выше выведенную формулу получим a → = a x 2 + a y 2 + a z 2 = 4 2 + ( – 3 ) 2 + 5 2 = 5 2 .
Длина вектора через координаты точек его начала и конца
Выше были выведены формулы, позволяющие находить длины вектора по его координатам. Мы рассмотрели случаи на плоскости и в трехмерном пространстве. Воспользуемся ими для нахождения координат вектора по координатам точек его начала и конца.
Итак, даны точки с заданными координатами A ( a x ; a y ) и B ( b x ; b y ) , отсюда вектор A B → имеет координаты ( b x – a x ; b y – a y ) значит, его длина может быть определена по формуле: A B → = ( b x – a x ) 2 + ( b y – a y ) 2
А если даны точки с заданными координатами A ( a x ; a y ; a z ) и B ( b x ; b y ; b z ) в трехмерном пространстве, то длину вектора A B → можно вычислить по формуле
A B → = ( b x – a x ) 2 + ( b y – a y ) 2 + ( b z – a z ) 2
Найти длину вектора A B → , если в прямоугольной системе координат A 1 , 3 , B – 3 , 1 .
Используя формулу нахождения длины вектора по координатам точек начала и конца на плоскости, получим A B → = ( b x – a x ) 2 + ( b y – a y ) 2 : A B → = ( – 3 – 1 ) 2 + ( 1 – 3 ) 2 = 20 – 2 3 .
Второй вариант решения подразумевает под собой применение данных формул по очереди: A B → = ( – 3 – 1 ; 1 – 3 ) = ( – 4 ; 1 – 3 ) ; A B → = ( – 4 ) 2 + ( 1 – 3 ) 2 = 20 – 2 3 . –
Ответ: A B → = 20 – 2 3 .
Определить, при каких значениях длина вектора A B → равна 30 , если A ( 0 , 1 , 2 ) ; B ( 5 , 2 , λ 2 ) .
Для начала распишем длину вектора A B → по формуле: A B → = ( b x – a x ) 2 + ( b y – a y ) 2 + ( b z – a z ) 2 = ( 5 – 0 ) 2 + ( 2 – 1 ) 2 + ( λ 2 – 2 ) 2 = 26 + ( λ 2 – 2 ) 2
Затем полученное выражение приравняем к 30 , отсюда найдем искомые λ :
26 + ( λ 2 – 2 ) 2 = 30 26 + ( λ 2 – 2 ) 2 = 30 ( λ 2 – 2 ) 2 = 4 λ 2 – 2 = 2 и л и λ 2 – 2 = – 2 λ 1 = – 2 , λ 2 = 2 , λ 3 = 0 .
Ответ: λ 1 = – 2 , λ 2 = 2 , λ 3 = 0 .
Нахождение длины вектора по теореме косинусов
Увы, но в задачах не всегда бывают известны координаты вектора, поэтому рассмотрим другие способы нахождения длины вектора.
Пусть заданы длины двух векторов A B → , A C → и угол между ними (или косинус угла), а требуется найти длину вектора B C → или C B → . В таком случае, следует воспользоваться теоремой косинусов в треугольнике △ A B C , вычислить длину стороны B C , которая и равна искомой длине вектора.
Рассмотрим такой случай на следующем примере.
Длины векторов A B → и A C → равны 3 и 7 соответственно, а угол между ними равен π 3 . Вычислить длину вектора B C → .
Длина вектора B C → в данном случае равна длине стороны B C треугольника △ A B C . Длины сторон A B и A C треугольника известны из условия (они равны длинам соответствующих векторов), также известен угол между ними, поэтому мы можем воспользоваться теоремой косинусов: B C 2 = A B 2 + A C 2 – 2 · A B · A C · cos ∠ ( A B , → A C → ) = 3 2 + 7 2 – 2 · 3 · 7 · cos π 3 = 37 ⇒ B C = 37 Таким образом, B C → = 37 .
Итак, для нахождения длины вектора по координатам существуют следующие формулы a → = a x 2 + a y 2 или a → = a x 2 + a y 2 + a z 2 , по координатам точек начала и конца вектора A B → = ( b x – a x ) 2 + ( b y – a y ) 2 или A B → = ( b x – a x ) 2 + ( b y – a y ) 2 + ( b z – a z ) 2 , в некоторых случаях следует использовать теорему косинусов.
Решить треугольник Онлайн по координатам
1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;
2) система линейных неравенств, определяющих треугольник;
2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;
3) внутренние углы по теореме косинусов;
4) площадь треугольника;
5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами;
10) параметры вписанной и описанной окружностей и их уравнения.
Внимание! Этот сервис не работает в браузере IE (Internet Explorer).
Запишите координаты вершин треугольника и нажмите кнопку.
A ( ; ), B ( ; ), C ( ; ) |
Примечание: дробные числа записывайте Округлять до -го знака после запятой. Расчет треугольника по координатам вершинЭтот онлайн калькулятор по введенным координатам вершин вычисляет параметры треугольника: длины сторон, углы, периметр и площадь. Этот онлайн калькулятор предназначен для быстрого вычисления ряда характеристик треугольника по координатам его вершин. Вы вводите координаты вершин A, B и C. Калькулятор рассчитывает по координатам следующие величины: Обозначения треугольника
Если нужно что-то еще, пишите в комментариях, добавим. Формулы расчета значений треугольника описаны под калькулятором. [spoiler title=”источники:”] http://mathhelpplanet.com/static.php?p=onlain-reshit-treugolnik http://planetcalc.ru/9423/ [/spoiler] |
На чтение 5 мин Просмотров 8к. Опубликовано 31.07.2020
Ответ
Проверено экспертом
1)периметр треугольника равен AB + BC + AC. Нам надо найти длину каждой стороны по координатам их концов. Длина отрезка по координатам его концов рассчитывается по формуле
d = √((x2-x1)²+(y2-y1)²), где d — расчитываемый отрезок, x1,x2 — абсциссы начала и конца отрезка, y1,y2 — ординаты начала и конца отрезка.
Подставляя в эту формулу абсциисы и ординаты точек из условия, последовательно нахожу каждую сторону:
Тогда периметр равен √5 + √17 + √10
2)Далее, найду медиану AM. Можно пойти разными путями, но найду её длину методом координат.
Мы знаем, что в этом случае M — середина BC. Нам надо найти координаты точки M, иначе говоря, нам надо найти координаты середины отрезка. Далее, координаты точки A нам известны, значит, можно под первую формулу подогнать. Итак, как же вычислить координаты середины отрезка? Это можно сделать по формуле
x = (x1+x2)/2; y = (y1+y2)/2, где x,y — координаты середины отрезка, x1,x2 — абсциссы концов отрезка, y1,y2 — ординаты концов отрезка. Подставляем исходные координаты в формулу и получаем
x = (3-1)/2 = 2/2 = 1; y = (3+4)/2 = 7/2 = 3.5
Значит, M(1;3.5), A(2;5)
Теперь найдём длину AM по нашей старой формуле:
AM = √(1-2)²+(3.5 — 5)² = √1+2.25 = √3.25
3)Теперь вычислю углы треугольника. Давайте подумаем, как их найти. Я вижу, что нам даны три стороны треугольника(точнее, мы их нашли). Так что, вполне вероятно, что здесь надо воспользоваться теоремой косинусов.(квадрат одной стороны треугольника равен сумме квадратов двух других сторон без их удвоенного произведения на косинус угла между ними). математически её можно записать так:
Рассмотрим первый пример. Пусть в плоскости координат задан двумя точками некий отрезок. В данном случае его длину мы можем найти, применяя теорему Пифагора.
Итак, в системе координат начертим отрезок с заданными координатами его концов (x1; y1) и (x2; y2) . На оси X и Y из концов отрезка опустим перпендикуляры. Отметим красным цветом отрезки, которые являются на оси координат проекциями от исходного отрезка. После этого перенесем параллельно к концам отрезков отрезки-проекции. Получаем треугольник (прямоугольный). Гипотенузой у данного треугольника станет сам отрезок АВ, а его катетами являются перенесенные проекции.
Вычислим длину данных проекций. Итак, на ось Y длина проекции равна y2-y1, а на ось Х длина проекции равна x2-x1. Применим теорему Пифагора: |AB|² = (y2 — y1)² + (x2 — x1)². В данном случае |AB| является длиной отрезка.
Если использовать данную схему для вычисления длины отрезка, то можно даже отрезок и не строить. Теперь высчитаем, какова длина отрезка с координатами (1;3) и (2;5). Применяя теорему Пифагора, получаем: |AB|² = (2 — 1)² + (5 — 3)² = 1 + 4 = 5. А это значит, что длина нашего отрезка равна 5:1/2.
Рассмотрим следующий способ нахождения длины отрезка. Для этого нам необходимо знать координаты двух точек в какой-либо системе. Рассмотрим данный вариант, применяя двухмерную Декартову систему координат.
Итак, в двухмерной системе координат даны координаты крайних точек отрезка. Если проведем прямые лини через эти точки, они должны быть перпендикулярными к оси координат, то получим прямоугольный треугольник. Исходный отрезок будет гипотенузой полученного треугольника. Катеты треугольника образуют отрезки, их длина равна проекции гипотенузы на оси координат. Исходя из теоремы Пифагора, делаем вывод: для того чтобы найти длину данного отрезка, нужно найти длины проекций на две оси координат.
Найдем длины проекций (X и Y) исходного отрезка на координатные оси. Их вычислим путем нахождения разницы координат точек по отдельной оси: X = X2-X1, Y = Y2-Y1.
Рассчитаем длину отрезка А, для этого найдем квадратный корень:
Если наш отрезок расположен между точками, координаты которых 2;4 и 4;1, то его длина, соответственно, равна √((4-2)²+(1-4)²) = √13 ≈ 3,61.
Даны координаты вершин треугольника .
1) Вычислить длину стороны .
2) Составить уравнение линии .
3) Составить уравнение высоты, проведенной из вершины А, и найти ее длину.
4) Найти точку пересечения медиан.
5) Найти косинус внутреннего угла при вершине В.
6) Найти координаты точки М, расположенной симметрично точке А, относительно прямой ВС.
А
1. Длина стороны ВС равна модулю вектора .
; .
2. Уравнение прямой ВС: ; ; .
3. Уравнение высоты АК запишем как уравнение прямой, проходящей через точку перпендикулярно вектору :
. Длину высоты АК можно найти как расстояние от точки А до прямой ВС: .
4. Найдем координаты точки N – середины стороны ВС:
; ; .
Точка пересечения медиан О делит каждую медиану на отрезки в отношении .
Используем формулы деления отрезка в данном отношении :
.
5. Косинус угла при вершине В найдем как косинус угла между векторами и ;
.
6. Точка М, симметричная точке А относительно прямой ВС, расположена на прямой АК, перпендикулярной к прямой ВС, на таком же расстоянии от прямой, как и точка А. Координаты точки К найдем как решения системы Систему решим по формулам Крамера:
.
Точка К является серединой отрезка АМ.
.
Контрольные варианты к задаче 2
Даны координаты вершин треугольника АВС. Требуется:
1) вычислить длину стороны ВС;
2) составить уравнение линии ВС;
3) составить уравнение высоты, проведенной из вершины А;
4) вычислить длину высоты, проведенной из вершины А;
5) найти точку пересечения медиан;
6) вычислить внутренний угол при вершине В;
7) найти координаты точки М, расположенной симметрично точке А относительно прямой ВС.
1. | . | 2. | . |
3. | . | 4. | . |
5. | . | 6. | . |
7. | . | 8. | . |
9. | . | 10. | . |
11. | . | 12. | . |
13. | . | 14. | . |
15. | . | 16. | . |
17. | . | 18. | . |
19. | . | 20. | . |
21. | . | 22. | . |
23. | . | 24. | . |
25. | . | 26. | . |
27. | . | 28. | . |
29. | . | 30. | . |
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8447 — | 7339 — или читать все.
Как найти длину стороны треугольника по координатам
Геометрические задачи любого уровня высокого уровня сложности предполагают наличия у человека умения решать элементарные задачи. В противном случае возможность получения требуемого результата значительно снижается. Помимо процесса практически интуитивного нащупывания правильного способа, ведущего к нужному вам итогу, вы с необходимостью должны уметь рассчитывать площади, знать большое количество вспомогательных теорем, свободно проводить вычисления в координатной плоскости.
Воспользуйтесь формулой для вычисления длины отрезка, если в вашей задаче в явном виде заданы координаты вершин . Для этого проделайте ряд простых шагов. Сперва вычислите разницу между координатами соответствующих точек по оси абсцисс и оси ординат. Полученные результаты возведите в квадрат и суммируйте. Квадратный корень из результирующей величины и будет искомой длиной отрезка.
Проанализируйте все данные задачи, если отсутствуют данные для простого решения задачи. Выпишите отдельно все, что перечислено в условии. Обратите внимание на тип описываемого треугольника. Если он прямоугольный, то вам достаточно знать координаты двух вершин: длину третьей стороны вы сможете найти, воспользовавшись формулой Пифагора. Также упрощается ситуация при работе с равнобедренным или равносторонним треугольниками.
Обращайте внимание на некоторые характерные элементы условия, которые содержат в себе подсказку. К примеру, в тексте может быть упомянуто, что вершина треугольника лежит на одной из осей (что уже дает вам информацию об одной из координат), проходит через начало координат. Все это важно выписать, чтобы обладать полной информацией.
Не забывайте о формулах, позволяющих выразить стороны треугольника через другие его элементы, а также о существующих пропорциональных отношениях. К числу минимальных вспомогательных уравнений, которые вам пригодятся, относятся формулы для нахождения высоты, медианы и биссектрисы треугольников. Кроме того, запомните, что две стороны треугольника находятся в таком же отношении друг к другу, как и отрезки, на которые разбивает биссектриса, проведенная к третьей его стороне.
Будьте готовы к тому, что если вы используете в решении те или иные формулы или теоремы, вас могут попросить доказать их или описать процедуру вывода.
Решить треугольник Онлайн по координатам
Данный онлайн-сервис вычисляет (показываются промежуточные расчёты) следующие параметры треугольника:
1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;
2) система линейных неравенств, определяющих треугольник;
2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;
3) внутренние углы по теореме косинусов;
4) площадь треугольника;
5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами;
10) параметры вписанной и описанной окружностей и их уравнения.
Внимание! Этот сервис не работает в браузере IE (Internet Explorer).
Запишите координаты вершин треугольника и нажмите кнопку.
Математический форум (помощь с решением задач, обсуждение вопросов по математике).
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.