Как найти длину вектора диагонали ромба

Векторы. Действия с векторами. Задание 4 (2015)

Векторы. Действия с векторами. В этой статье мы поговорим о том, что такое вектор, как находить его длину, и как умножать вектор на число, а также как находить сумму, разность и скалярное произведение двух векторов.

Как обычно, немного самой необходимой теории.

Вектор – это направленный отрезок, то есть такой отрезок, у которого есть начало и конец:

Здесь точка А – начало вектора, а точка В – его конец.

У вектора есть два параметра: его длина и направление.

Длина вектора – это длина отрезка, соединяющего начало и конец вектора. Длина вектора обозначается

Два вектора называются равными , если они имеют одинаковую длину и сонаправлены.

Два вектора называются сонаправленными , если они лежат на параллельных прямых и направлены в одну сторону: вектора и сонаправлены:

Два вектора называются противоположно направленными, если они лежат на параллельных прямых и направлены в противоположные стороны: вектора и , а также и направлены в противоположные стороны:

Вектора, лежащие на параллельных прямых называются коллинеарными : вектора , и – коллинеарны.

Произведением вектора на число называется вектор, сонаправленный вектору , если 0″ title=”k>0″/>, и направленный в противоположную сторону, если , и длина которого равна длине вектора , умноженной на :

=k:

Чтобы сложить два вектора и , нужно начало вектора соединить с концом вектора . Вектор суммы соединяет начало вектора с концом вектора :

Это правило сложения векторов называется правилом треугольника .

Чтобы сложить два вектора по правилу параллелограмма , нужно отложить вектора от одной точки и достроить до параллелограмма. Вектор суммы соединяет точку начала векторов с противоположным углом параллелограмма:

Разность двух векторов определяется через сумму: разностью векторов и называется такой вектор , который в сумме с вектором даст вектор :

:

Отсюда вытекает правило нахождения разности двух векторов : чтобы из вектора вычесть вектор , нужно отложить эти вектора от одной точки. Вектор разности соединяет конец вектора с концом вектора ( то есть конец вычитаемого с концом уменьшаемого):

Чтобы найти угол между вектором и вектором , нужно отложить эти вектора от одной точки. Угол, образованный лучами, на которых лежат вектора, называется углом между векторами:

Скалярным произведением двух векторов называется число, равное произведению длин этих векторов на косинус угла между ними:

Предлагаю вам решить задачи из Открытого банка заданий для подготовки к ЕГЭ по математике , а затем сверить све решение с ВИДЕОУРОКАМИ:

1 . Задание 4 (№ 27709)

Две стороны прямоугольника ABCD равны 6 и 8. Найдите длину разности векторов и .

2 . Задание 4 (№ 27710)

Две стороны прямоугольника ABCD равны 6 и 8. Найдите скалярное произведение векторов и . (чертеж из предыдущей задачи).

3 . Задание 4 (№ 27711)

Две стороны прямоугольника ABCD равны 6 и 8. Диагонали пересекаются в точке O. Найдите длину суммы векторов и .

4 . Задание 4 (№ 27712)

Две стороны прямоугольника ABCD равны 6 и 8. Диагонали пересекаются в точке O. Найдите длину разности векторов и . (чертеж из предыдущей задачи).

5 . Задание 4 (№ 27713)

Диагонали ромба ABCD равны 12 и 16. Найдите длину вектора .

6 . Задание 4 (№ 27714)

Диагонали ромба ABCD равны 12 и 16. Найдите длину вектора + .

7 .Задание 4 (№ 27715)

Диагонали ромба ABCD равны 12 и 16. Найдите длину вектора – .(чертеж из предыдущей задачи).

8 .Задание 4 (№ 27716)

Диагонали ромба ABCD равны 12 и 16. Найдите длину вектора – .

9 . Задание 4 (№ 27717)

Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите длину вектора + .

10 . Задание 4 (№ 27718)

Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите длину вектора – .(чертеж из предыдущей задачи).

11 .Задание 4 (№ 27719)

Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите скалярное произведение векторов и .(чертеж из предыдущей задачи).

12 . Задание 4 (№ 27720)

Стороны правильного треугольника ABC равны Найдите длину вектора +.

13 . Задание 4 (№ 27721)

Стороны правильного треугольника ABC равны 3. Найдите длину вектора -.(чертеж из предыдущей задачи).

14 . Задание 4 (№ 27722)

Стороны правильного треугольника ABC равны 3. Найдите скалярное произведение векторов и . (чертеж из предыдущей задачи).

Длина вектора — основные формулы

Время чтения: 16 минут

Основные понятия вектора

Для того чтобы приступить к разбору формул нахождения длины вектора, необходимо разобраться в основных понятиях и определениях векторов.

Понятие вектора получило широкое распространение в 19 веке, в математических науках, особенно в таком её разделе, как «Комплексные числа».

Вектор — это отрезок с определённой длиной и направлением.

Графическое изображение вектора – отрезок который имеет указание направления в виде стрелки.

Вектор, который будет иметь начальную точку Х и конец в точке А, правильно обозначать ХА, с верхним подчёркиванием или стрелочкой, а также допустимо прописывать одной прописной буквой.

Длину вектора (модуль), определяет числовое значение длины отрезка, имеющего направление. Обозначается длинна двумя вертикальными отрезками |ХА|.

  • Понятие нулевого вектора. Такое название получил вектор, у которого и начало, и конец находятся в одной точке. Обозначение он имеет в виде цифры ноль с верхним подчёркивание, а длина равна нулю.
  • Коллинеарные вектора. Одна прямая может содержать несколько векторов, такие векторы получили название коллинеарных. Также коллинеарными считаются векторы на параллельных прямых.
  • Сонаправленные. Два коллинеарных вектора считаются сонаправленными, если имеют одно направление.
  • Противоположно направленные. Вектора, с направлениями в разные стороны, и являются коллинеарными, называют противоположно направленными.
  • Компланарные вектора. Такими векторами называют, те что лежат в одной плоскости
    Так как, всегда можно отыскать плоскость, которая будет параллельной двум векторам, то любые два вектора всегда копланарные.

Так как, всегда можно отыскать плоскость, которая будет параллельной двум векторам, то любые два вектора всегда копланарные.

Вектора могут находится не только на плоскости, но и в пространстве, от этого расположения будет зависеть какую формулу необходимо использовать для нахождения их длины или модуля. Стоит также отметить, что вектора могут быть равными, при этом они должны иметь одно направление, одинаковые длины и быть коллинеарными. Существует понятие единичного вектора, таким он будет являться если равен единице измерения.

Как найти длину вектора

Модуль вектора а будем обозначать .

Для того чтобы найти модуль вектора или его длину, на плоскости по координатам, необходимо рассмотреть вектор используя прямоугольную декартову систему координат Оxy. Допустим в данной системе будет задан, так вектор имеющий координаты (aₓ ; aᵧ). Получим формулу, которая поможет найти длину вектора , через известные нам координаты aₓ и aᵧ.

На взятой системе координат, от её начала отложим вектор
В соответствии с проекцией точки А возьмём и определим Aₓ и Aᵧ на оси координат. Рассмотрим полученный прямоугольник ОAₓ и АAᵧ с диагональю ОА.

Далее используя теорему Пифагора мы получим равенство АО² = ОAₓ² и OAᵧ², отсюда следует

Теперь в соответствии с определением вектора относительно прямоугольной оси координат выходит, что ОAₓ² = aₓ² и также для OAᵧ² = aᵧ² , а так как на построенном прямоугольнике мы видим, что ОА равна длине вектора получаем

Из вышесказанного выходит, что для того чтобы найти длину вектора с точками (aₓ ; aᵧ), выводим следующую формулу:

Когда вектор дан в формате разложения по координатным векторам , то вычислить его можно по той же формуле , в таком варианте коэффициент aₓ и aᵧ будут выражать в роли координат , в данной системе координат.

Чтобы рассчитать длину = (3, √x), расположенного в прямоугольной системе координат.

Чтобы найти модуль вектора используем ранее приведённую формулу

Ответ:

Существуют также формулы вычисления длины вектора в пространстве, они выводятся аналогично тем, что в системе координат на плоскости. Если взять вектор =(aₓ ; aᵧ ; a )

В таком случае ( AO^2=OA_x^2+OA_y^2+OA_z^2 ) (из рисунка видно, что АО – диагональ прямоугольного параллелепипеда), поэтому

из определения получаются равенства ОAₓ=aₓ; OAᵧ=aᵧ; OA=a , а значение длины ОА совпадает с длиной вектора, которую необходимо найти. Из этого следует:

Ответ:

Длина вектора через координаты точек начала и конца

Ранее мы рассмотрели формулы, которые позволят находить длину вектора используя при этом координаты. Рассматривались примеры в трёхмерном пространстве на плоскости. Используя данные формулы можно найти длину вектора, если известны координаты точек его начала и конца.

Возьмём точки с обозначенными координатами начала A(aₓ ; aᵧ) и конца В(bₓ ; bᵧ), из чего следует, что вектор имеет координаты (bₓ-aₓ ; bᵧ-aᵧ), поэтому его длину мы выразим в формуле

При этом формула вычисления длины вектора для трёхмерного пространства, с координатами и ), будет следующей:

Для прямой системы координат, найти длину вектора ( overrightarrow) , где A(1,√3) B(-3,1)

Решение
Применив формулу, для нахождения длины вектора, с известными координатами точек начала и конца, в плоской системе координат, выходит:

Существует второй вариант решения, где формулы применяются по очереди:

Ответ:

Найти, решения, при подстановке которых, длина вектора будет равна корню из тридцати, при координатах точек А (0,1,2) и В (5,2,(λ^2))

В первую очередь представим длину вектора в виде формулы.
( left|vecright|=sqrt<left ( b_x-a_x right )^2+ left ( b_y-a_y right )^2 + left ( b_z-a_z right )^2>)
(=sqrt <left ( 5-0 right )^2+ left ( 2-1 right )^2 + left ( lambda^2 -2right )^2>= sqrt<26 + left ( lambda^2 -2right )^2>)
Теперь приравняем полученное выражение к корню из тридцати и найдём неизвестное значение, решив полученное уравнение.
( sqrt<26+left(lambda^2-2right)^2>=sqrt <30>)
( 26+left(lambda^2-2right)^2=30 )
( left(lambda^2-2right)^2=4 )
( lambda^2-2=2 ) или ( lambda^2-2=-2 ) ( lambda_1=-2, lambda_2=2, lambda_3=0. )
Ответ: ( lambda_1=-2, lambda_2=2, lambda_3=0. )

Длина вектора по теореме косинусов

Так как бывают случаи, когда не известны координаты точек вектора, необходимо искать другие варианты, при помощи которых можно найти длину вектора. Таким способов может стать применение теоремы косинусов.

К примеру, нам известны длины двух векторов (overrightarrow) и (overrightarrow) , а также угол между ними, или его косинус. При этом необходимо найти длину вектора ( overrightarrow ) , в таком варианте задания необходимо воспользоваться теоремой косинусов, представив треугольник АВС. В данном треугольнике мы будем искать сторону ВС, она и будет равна длине искомого вектора. Подробнее рассмотрим на примере.

Даны длины двух векторов ( overrightarrow) и ( overrightarrow) 2 и 4 соответственно, а угол между ними равен ( frac<pi> <3>) . необходимо найти длину ( overrightarrow).

В нашем примере длины векторов и длины сторон треугольника АМК совпадают. Две из сторон нам известны это АК и АМ, а также известен угол треугольника, находящийся между этими сторонами. Используя теорему косинусов получим:
( KM^2=AK^2+AM^2-2cdot AKcdot AMcdotcosfrac<pi><3>)
(=2^2+4^2-2cdot2cdot4cdotcosfrac<pi><3>)
(=4+16-16cosfrac<pi><3>)
(=20-8=12 )
Получается (KM=sqrt <12>)
Ответ: ( left|overrightarrowright|=sqrt <12>)

Теперь мы видим, что для нахождения длины вектора существует несколько формул, которыми можно воспользоваться в зависимости от известных параметров.

длина вектора формула для трёхмерного пространства;

длина вектора формула по известным координатам начала и конца вектора находящегося пространстве; ( left|vecright|=sqrt<left ( b_z-a_z right )^2+ left ( b_y-a_y right )^2>) если известны координаты начала и конца вектора на плоскости.

Существует также формула длины вектора перемещения: ( left|vecright|=sqrt< s_x^2+s_y^2>) чаще такая формула применима в физике, для того чтобы узнать длину пути материальной точки.

В случае если известен угол, между двумя векторами, можно использовать теорему Пифагора.

Применение векторов в других сферах

Понятие и вычисление вектора важно не только в математике, но и других науках:

  • в физике. Для визуального изображения таких понятий как скорость, сила, ускорение и т.д. А также векторы помогают моделировать физические процессы;
  • в химии. Для изображения химических процессор. При помощи векторов изображают движение электронов и других частиц;
  • в биологии. Биологические процессы, также имеют графическое изображение при помощи векторов. К примеру перенос паразитов;
  • географии. Вектором обозначается движение воздушных масс, или течение реки;

Векторы используются не только в науках, но и различных отраслях и профессиях. В судоходстве и аэрофлоте, архитектуре и конструировании, а также многих других областях. Для того чтобы найти длину вектора, мы можем использовать одну из формул, в зависимости от того, что нам о нём известно, и в каком пространстве или плоскости находится неизвестный вектор.

Все формулы длины диагоналей ромба

1. Ромб – частный случай параллелограмма

2. Противоположные стороны – параллельны

3. Все четыре стороны – равны

4. Диагонали пересекаются под прямым углом (90°)

5. Диагонали являются биссектрисами

a – сторона ромба

D – большая диагональ

d – меньшая диагональ

α – острый угол

β – тупой угол

Формулы диагоналей через сторону и угол, ( D d ):

Формулы диагоналей через сторону и половинный угол, ( D d ):

Формулы диагоналей через сторону и другую диагональ, ( D d ):

Формулы диагоналей через угол и другую диагональ, ( D d ):

Формулы диагоналей через площадь ( D d ):

[spoiler title=”источники:”]

http://www.napishem.ru/spravochnik/matematika/dlina-vektora-osnovnye-formuly.html

http://www-formula.ru/2011-11-25-03-17-33

[/spoiler]

Маркер СМИ

© 2007 – 2023 Сообщество учителей-предметников “Учительский портал”
Свидетельство о регистрации СМИ: Эл № ФС77-64383 выдано 31.12.2015 г. Роскомнадзором.
Территория распространения: Российская Федерация, зарубежные страны.
Учредитель / главный редактор: Никитенко Е.И.


Сайт является информационным посредником и предоставляет возможность пользователям размещать свои материалы на его страницах.
Публикуя материалы на сайте, пользователи берут на себя всю ответственность за содержание этих материалов и разрешение любых спорных вопросов с третьими лицами.
При этом администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта.
Если вы обнаружили, что на сайте незаконно используются материалы, сообщите администратору через форму обратной связи — материалы будут удалены.

Все материалы, размещенные на сайте, созданы пользователями сайта и представлены исключительно в ознакомительных целях. Использование материалов сайта возможно только с разрешения администрации портала.


Фотографии предоставлены

    Сумма векторов. Длина вектора. Дорогие друзья, в составе типов задний экзамена присутствует группа задач с векторами. Задания довольно широкого спектра (важно знать теоретические основы). Большинство решается устно. Вопросы связаны с нахождением длины вектора, суммы (разности) векторов, скалярного произведения. Так же много заданий, при решении которых необходимо осуществить действия с координатами векторов.

Теория касающаяся темы векторов несложная, и её необходимо хорошо усвоить. В этой статье разберём задачи связанные с нахождением длины вектора, также суммы (разности) векторов. Некоторые теоретические моменты:

Понятие вектора

Вектор — это направленный отрезок.

Вектор

Все векторы, имеющие одинаковое направление и равные по длине являются равными.

*Все представленные выше четыре вектора равны!  

То есть, если мы будем при помощи параллельного переноса перемещать данный нам вектор, то всегда получим вектор равный исходному. Таким  образом, равных векторов может быть бесчисленное множество.

Обозначение векторов

Вектор может быть обозначен латинскими заглавными буквами, например:

При данной форме записи сначала записывается буква обозначающая начало вектора, затем буква обозначающая конец вектора.

Ещё вектор обозначается одной буквой латинского алфавита (прописной):

Возможно также обозначение без стрелок:

Сумма векторов

1

Суммой двух векторов АВ и ВС будет являться вектор АС.

Записывается как АВ+ВС=АС.

Это правило называется – правилом треугольника.

То есть, если мы имеем два вектора – назовём их условно (1) и (2), и конец вектора (1) совпадает с началом вектора (2), то  суммой этих векторов будет вектор, начало которого совпадает с началом вектора (1), а конец совпадает с концом вектора (2).

Вывод: если мы имеем на плоскости два вектора, то всегда сможем найти их сумму. При помощи параллельного переноса можно переместить любой из данных векторов и соединить его начало с концом другого. Например:

Перенесём вектор b, или по-другому – построим равный ему:

Как находится сумма нескольких векторов? По тому же принципу:

Сумма векторов

* * *

Правило параллелограмма

Это правило является следствием изложенного выше.

Для векторов с общим началом их сумма изображается диагональю параллелограмма, построенного на этих векторах.

Построим вектор равный вектору b так, чтобы его начало совпадало с концом вектора a, и мы можем построить вектор, который будет являться их суммой:

Ещё немного важной информации, необходимой для решения задач.

Вектор, равный по длине исходному, но противоположно направленный, обозначается также но имеет противоположный знак:

Эта информация крайне полезна для решения задач, в которых стоит вопрос о нахождении разности векторов. Как видите, разность векторов это та же сумма  в изменнёном виде.

Пусть даны два вектора, найдём их разность:

Мы построили  вектор противоположный вектору b, и нашли  разность.

Координаты вектора

Чтобы найти координаты вектора, нужно из координат конца вычесть соответствующие координаты начала:

То есть,  координаты вектора представляют собой пару чисел.

Если

И координаты векторов имеют вид:

То   c1= a1+ b1     c2= a2+ b2

Если

То   c1= a1– b1      c2= a2– b2

Модуль вектора

Модулем вектора называется его длина, определяется по формуле:

Формула для определения длины вектора, если известны координаты его начала и конца:

Длина вектора

Рассмотрим задачи:

Две стороны прямоугольника ABCD равны 6 и 8. Диагонали пересекаются в точке О. Найдите длину разности векторов АО и ВО.

2

Найдём вектор, который будет являться результатом АОВО:

АОВО=АО+(–ВО)=АВ

То есть разность векторов  АО и ВО будет являться вектор АВ. А его длина равна восьми.

Ответ: 8

Диагонали ромба ABCD равны 12 и 16. Найдите длину вектора АВ+AD.

100

Найдём вектор, который будет являться суммой векторов AD и AB. Вектор BC равен вектору AD. Значит AB+AD=AB+BC=AC

Длина вектора AC это длина диагонали ромба АС, она равна 16.

Ответ: 16

Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите длину вектора АО+ВО.

101

Найдём вектор, который будет являться суммой векторов АО и ВО. Вектор ВО равен вектору OD, значит

102

Длина вектора AD это длина стороны ромба. Задача сводится к нахождению гипотенузы в прямоугольном треугольнике AOD. Вычислим катеты:

103

По теореме Пифагора:

104

Ответ: 10

Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите длину вектора АОВО.

101

Найдём вектор, который будет являться результатом АОВО:

110

Длина вектора АВ это длина стороны ромба. Задача сводится к нахождению гипотенузы АВ в прямоугольном  треугольнике AOB. вычислим катеты:

111

По теореме Пифагора:

112

Ответ: 10

Стороны правильного треугольника ABC равны 3.

Найдите длину вектора АВАС.

120

Найдём результат разности векторов:

121

Длина вектора СВ равна трём, так как в условии сказано, что треугольник равносторонний и его стороны равны 3.

Ответ: 3

27663. Найдите длину вектора а(6;8).

131

Посмотреть решение

27664. Найдите квадрат длины вектора АВ.

132

Посмотреть решение

27707. Две стороны прямоугольника ABCD равны 6 и 8. Найдите длину вектора АС.

133

Посмотреть решение

27708. Две стороны прямоугольника ABCD равны 6 и 8. Найдите длину суммы векторов AB и AD.

134

Посмотреть решение

27709. Две стороны прямоугольника ABCD равны 6 и 8. Найдите длину разности векторов AB и AD.

134

Посмотреть решение

27711. Две стороны прямоугольника ABCD равны 6 и 8. Диагонали пересекаются в точке O. Найдите длину суммы векторов АО и ВО.

135

Посмотреть решение

27713. Диагонали ромба ABCD равны 12 и 16. Найдите длину вектора АВ.

136

Посмотреть решение

27715. Диагонали ромба ABCD равны 12 и 16.

Найдите длину вектора АВAD.

137

Посмотреть решение

27716. Диагонали ромба ABCD равны 12 и 16.

Найдите длину вектора АВАС.

139

Посмотреть решение

Стороны правильного треугольника ABC равны 2√3. Найдите длину вектора АВ+АС.

120

Посмотреть решение

В будущем мы продолжим рассматривать задачи с векторами, не пропустите!  Задания будут связаны с координатами векторов, скалярным произведением.

На этом всё. Успеха вам!

С уважением, Александр

Вступительный экзамен по математике. Преподаватели приглашают первого абитуриента:
— Сколько будет два плюс два?
— Три! — Нет! — Пять! — Нет! — Шесть!
— Неправильно! Да… дурак, но ищущий… берем!
Заходит второй абитуриент:
— Сколько будет два плюс два?
— Три! — Нет! — Три! — Нет! — Три!
— Неправильно! Да… дурак, но настырный… берем!
Заходит третий абитуриент:
— Сколько будет два плюс два?
— Четыре, конечно!
— Да… умный. Но мест уже нет!

P.S: Буду благодарен, если расскажете о статье в социальных сетях.

В ромбе АВСD АС =12; ВD = 5. Найдите длину вектора 

overline{AD}-overline{BD} .

Следует вспомнить правила сложения и вычитания векторов.

Суммой двух векторов a⃗  и b⃗  называется третий вектор c⃗ , проведенный из начала a⃗  к концу b⃗ , если начало вектора b⃗  совпадает с концом вектора a⃗ . Сложение векторов выполняется по правилу треугольника или по правилу параллелограмма. 

Разность векторов a⃗  и b⃗  равна сумме вектора a⃗  и противоположного вектора −b⃗ . Это самый лучший и понятный способ.

Здесь на рисунке векторы AD и BD

возьмем вектор DB=-BD чтобы можно было сложить вектора

И тогда мы получим, что разность векторов

AD‾−BD‾=AD‾+DB‾=AВ‾overline{AD}-overline{BD} = overline{AD}+overline{DB} = overline{AВ},

В данном случае смысл задачи заключается в том, что нужно найти сторону ромба AB .

Рассмотрим треугольник AOB.  Точка O точка пересечения диагоналей.  Треугольник прямоугольный, поскольку диагонали ромаба пересекаются под прямым углом. Диагонали ромба в точке пересечения делятся пополам.  Это свойства ромба. Значит у нас

AC=12AC= 12,

 AO=AC2=6displaystyle { AO = frac{AC}{2} = 6 }

 BD=5BD = 5,

 OB=BD2=2,5displaystyle { OB = frac{BD}{2} = 2,5 } 

По теореме Пифагора: (AB)2=(AO)2+(OB)2(AB)^2 = (AO)^2 + (OB)^2  

(AB)2=62+(2,5)2(AB)^2 = 6^2 + (2,5)^2  

(AB)2=36+6,25(AB)^2 = 36+ 6,25  

(AB)2=42,25(AB)^2= 42,25 

AB=42,25AB=sqrt {42,25}

Тут возникает вопрос, а как такой корень вычислить вручную без калькулятора. Во-первых задания подбираются, чтобы ответы были круглыми. Во-вторых 7*7=49, 6*6=36. Ответ где-то между ними.  0,5*0,5=0,25 Поэтому надо попробовать в столбик умножить 6,5*6,5 и посмотреть получится ли 42,25? Получится. 

AB=6,5AB = 6,5 

Ответ: 6,5



Знаток

(416),
закрыт



10 лет назад

Иван Григорьев

Профи

(946)


11 лет назад

Пусть для определенность AC = 12; BD = 16. Это не повлияет на ответ.
O – точка пересечения диагоналей;
В ромбе диагонали пересекаются под прямым углом и точкой пересечения делятся пополам, то есть AO = OC = 6;
BO = OD = 8;
Рассмотрим прямоугольный треугольник AOB с прямым углом AOB. По теореме Пифагора AB^2 = AO^2 + OB^2;
AB^2 = 8^2 + 6^2 = 64 + 36 = 100;
AB^2 = 100 следовательно |AB| = 10;
Ответ: 10.

Добавить комментарий