Как найти длину вектора в прямоугольном треугольнике

Длина вектора – основные формулы

Длину вектора a→ будем обозначать a→. Данное обозначение аналогично модулю числа, поэтому длину вектора также называют модулем вектора.

Для нахождения длины вектора на плоскости по его координатам, требуется рассмотреть прямоугольную декартову систему координат Oxy. Пусть в ней задан некоторый вектор a→ с координатами ax;ay. Введем формулу для нахождения длины (модуля) вектора a→ через координаты ax и ay.

От начала координат отложим вектор OA→=a→. Определим соответственные проекции точки A на координатные оси как Ax и Ay . Теперь рассмотрим прямоугольник OAxAAy с диагональю OA.

Длина вектора - основные формулы

Из теоремы Пифагора следует равенство OA2=OAx2+OAy2, откуда OA=OAx2+OAy2. Из уже известного определения координат вектора в прямоугольной декартовой системе координат получаем, что OAx2=ax2 и OAy2=ay2, а по построению длина OA равна длине вектора OA→, значит, OA→=OAx2+OAy2.

Отсюда получается, что формула для нахождения длины вектора a→=ax;ay имеет соответствующий вид: a→=ax2+ay2.

Если вектор a→ дан в виде разложения по координатным векторам a→=ax·i→+ay·j→, то вычислить его длину можно по той же формуле a→=ax2+ay2, в данном случае коэффициенты ax и ay выступают в роли координат вектора a→ в заданной системе координат.

Пример 1

Вычислить длину вектора a→=7;e, заданного в прямоугольной системе координат.

Решение

Чтобы найти длину вектора, будем использовать формулу нахождения длины вектора по координатамa→=ax2+ay2: a→=72+e2=49+e

Ответ: a→=49+e.

Формула для нахождения длины вектора a→=ax;ay;az по его координатам в декартовой системе координат Oxyz в пространстве, выводится аналогично формуле для случая на плоскости (см. рисунок ниже)

Длина вектора - основные формулы

В данном случае OA2=OAx2+OAy2+OAz2 (так как ОА – диагональ прямоугольного параллелепипеда), отсюда OA=OAx2+OAy2+OAz2. Из определения координат вектора можем записать следующие равенства OAx=ax; OAy=ay; OAz=az; , а длина ОА равна длине вектора, которую мы ищем, следовательно, OA→=OAx2+OAy2+OAz2.

Отсюда следует, что длина вектора a→=ax;ay;az равна a→=ax2+ay2+az2.

Пример 2

Вычислить длину вектора a→=4·i→-3·j→+5·k→, где i→,j→,k→ – орты прямоугольной системы координат.

Решение

Дано разложение вектора a→=4·i→-3·j→+5·k→, его координаты равны a→=4,-3,5. Используя выше выведенную формулу получим a→=ax2+ay2+az2=42+(-3)2+52=52.

Ответ:a→=52.

Длина вектора через координаты точек его начала и конца

Выше были выведены формулы, позволяющие находить длины вектора по его координатам. Мы рассмотрели случаи на плоскости и в трехмерном пространстве. Воспользуемся ими для нахождения координат вектора по координатам точек его начала и конца.

Итак, даны точки с заданными координатами A(ax;ay) и B(bx;by), отсюда вектор AB→ имеет координаты (bx-ax; by-ay)значит, его длина может быть определена по формуле: AB→=(bx-ax)2+(by-ay)2

А если даны точки с заданными координатами A(ax;ay;az) и B(bx;by;bz) в трехмерном пространстве, то длину вектора AB→ можно вычислить по формуле

AB→=(bx-ax)2+(by-ay)2+(bz-az)2

Пример 3

Найти длину вектора AB→, если в прямоугольной системе координат A1, 3, B-3, 1.

Решение

Используя формулу нахождения длины вектора по координатам точек начала и конца на плоскости, получим AB→=(bx-ax)2+(by-ay)2: AB→=(-3-1)2+(1-3)2=20-23.

Второй вариант решения подразумевает под собой применение данных формул по очереди: AB→=(-3-1; 1-3)=(-4; 1-3); AB→=(-4)2+(1-3)2=20-23.-

Ответ: AB→=20-23.

Пример 4

Определить, при каких значениях  длина вектора AB→ равна 30, еслиA(0, 1, 2); B(5, 2, λ2) .

Решение

Для начала распишем длину вектора AB→ по формуле: AB→=(bx-ax)2+(by-ay)2+(bz-az)2=(5-0)2+(2-1)2+(λ2-2)2=26+(λ2-2)2

Затем полученное выражение приравняем к 30, отсюда найдем искомые λ:

 26+(λ2-2)2=3026+(λ2-2)2=30(λ2-2)2=4λ2-2=2 или λ2-2=-2  λ1=-2, λ2=2, λ3=0.

Ответ: λ1=-2, λ2=2, λ3=0.

Нахождение длины вектора по теореме косинусов

Увы, но в задачах не всегда бывают известны координаты вектора, поэтому рассмотрим другие способы нахождения длины вектора.

Пусть заданы длины двух векторов AB→, AC→ и угол между ними (или косинус угла), а требуется найти длину вектора BC→ или CB→. В таком случае, следует воспользоваться теоремой косинусов в треугольнике △ABC, вычислить длину стороны BC, которая и равна искомой длине вектора.

Рассмотрим такой случай на следующем примере.

Пример 5

Длины векторов AB→ и AC→ равны 3 и 7 соответственно, а угол между ними равен π3. Вычислить длину вектора BC→.

Решение

Длина вектора BC→ в данном случае равна длине стороны BC треугольника △ABC. Длины сторон AB и AC треугольника известны из условия (они равны длинам соответствующих векторов), также известен угол между ними, поэтому мы можем воспользоваться теоремой косинусов:BC2=AB2+AC2-2·AB·AC·cos∠(AB,→AC→)=32+72-2·3·7·cosπ3=37 ⇒BC=37 Таким образом, BC→=37.

Ответ:BC→=37.

Итак, для нахождения длины вектора по координатам существуют следующие формулы a→=ax2+ay2 или a→=ax2+ay2+az2, по координатам точек начала и конца вектора AB→=(bx-ax)2+(by-ay)2 или AB→=(bx-ax)2+(by-ay)2+(bz-az)2, в некоторых случаях следует использовать теорему косинусов.

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Длина вектора — основные формулы

Время чтения: 16 минут

Основные понятия вектора

Для того чтобы приступить к разбору формул нахождения длины вектора, необходимо разобраться в основных понятиях и определениях векторов.

Понятие вектора получило широкое распространение в 19 веке, в математических науках, особенно в таком её разделе, как «Комплексные числа».

Вектор — это отрезок с определённой длиной и направлением.

Графическое изображение вектора – отрезок который имеет указание направления в виде стрелки.

Вектор, который будет иметь начальную точку Х и конец в точке А, правильно обозначать ХА, с верхним подчёркиванием или стрелочкой, а также допустимо прописывать одной прописной буквой.

Длину вектора (модуль), определяет числовое значение длины отрезка, имеющего направление. Обозначается длинна двумя вертикальными отрезками |ХА|.

  • Понятие нулевого вектора. Такое название получил вектор, у которого и начало, и конец находятся в одной точке. Обозначение он имеет в виде цифры ноль с верхним подчёркивание, а длина равна нулю.
  • Коллинеарные вектора. Одна прямая может содержать несколько векторов, такие векторы получили название коллинеарных. Также коллинеарными считаются векторы на параллельных прямых.

  • Сонаправленные. Два коллинеарных вектора считаются сонаправленными, если имеют одно направление.
  • Противоположно направленные. Вектора, с направлениями в разные стороны, и являются коллинеарными, называют противоположно направленными.
  • Компланарные вектора. Такими векторами называют, те что лежат в одной плоскости
    Так как, всегда можно отыскать плоскость, которая будет параллельной двум векторам, то любые два вектора всегда копланарные.

Так как, всегда можно отыскать плоскость, которая будет параллельной двум векторам, то любые два вектора всегда копланарные.

Вектора могут находится не только на плоскости, но и в пространстве, от этого расположения будет зависеть какую формулу необходимо использовать для нахождения их длины или модуля. Стоит также отметить, что вектора могут быть равными, при этом они должны иметь одно направление, одинаковые длины и быть коллинеарными. Существует понятие единичного вектора, таким он будет являться если равен единице измерения.

Как найти длину вектора

Модуль вектора а будем обозначать .

Для того чтобы найти модуль вектора или его длину, на плоскости по координатам, необходимо рассмотреть вектор используя прямоугольную декартову систему координат Оxy. Допустим в данной системе будет задан, так вектор имеющий координаты (aₓ ; aᵧ). Получим формулу, которая поможет найти длину вектора , через известные нам координаты aₓ и aᵧ.

На взятой системе координат, от её начала отложим вектор
В соответствии с проекцией точки А возьмём и определим Aₓ и Aᵧ на оси координат. Рассмотрим полученный прямоугольник ОAₓ и АAᵧ с диагональю ОА.

Далее используя теорему Пифагора мы получим равенство АО² = ОAₓ² и OAᵧ², отсюда следует

Теперь в соответствии с определением вектора относительно прямоугольной оси координат выходит, что ОAₓ² = aₓ² и также для OAᵧ² = aᵧ² , а так как на построенном прямоугольнике мы видим, что ОА равна длине вектора получаем

Из вышесказанного выходит, что для того чтобы найти длину вектора с точками (aₓ ; aᵧ), выводим следующую формулу:

Когда вектор дан в формате разложения по координатным векторам , то вычислить его можно по той же формуле , в таком варианте коэффициент aₓ и aᵧ будут выражать в роли координат , в данной системе координат.

Чтобы рассчитать длину = (3, √x), расположенного в прямоугольной системе координат.

Чтобы найти модуль вектора используем ранее приведённую формулу

Ответ:

Существуют также формулы вычисления длины вектора в пространстве, они выводятся аналогично тем, что в системе координат на плоскости. Если взять вектор =(aₓ ; aᵧ ; a )

В таком случае ( AO^2=OA_x^2+OA_y^2+OA_z^2 ) (из рисунка видно, что АО – диагональ прямоугольного параллелепипеда), поэтому

из определения получаются равенства ОAₓ=aₓ; OAᵧ=aᵧ; OA=a , а значение длины ОА совпадает с длиной вектора, которую необходимо найти. Из этого следует:

Ответ:

Длина вектора через координаты точек начала и конца

Ранее мы рассмотрели формулы, которые позволят находить длину вектора используя при этом координаты. Рассматривались примеры в трёхмерном пространстве на плоскости. Используя данные формулы можно найти длину вектора, если известны координаты точек его начала и конца.

Возьмём точки с обозначенными координатами начала A(aₓ ; aᵧ) и конца В(bₓ ; bᵧ), из чего следует, что вектор имеет координаты (bₓ-aₓ ; bᵧ-aᵧ), поэтому его длину мы выразим в формуле

При этом формула вычисления длины вектора для трёхмерного пространства, с координатами и ), будет следующей:

Для прямой системы координат, найти длину вектора ( overrightarrow) , где A(1,√3) B(-3,1)

Решение
Применив формулу, для нахождения длины вектора, с известными координатами точек начала и конца, в плоской системе координат, выходит:


Существует второй вариант решения, где формулы применяются по очереди:


Ответ:

Найти, решения, при подстановке которых, длина вектора будет равна корню из тридцати, при координатах точек А (0,1,2) и В (5,2,(λ^2))

В первую очередь представим длину вектора в виде формулы.
( left|vecright|=sqrt<left ( b_x-a_x right )^2+ left ( b_y-a_y right )^2 + left ( b_z-a_z right )^2>)
(=sqrt <left ( 5-0 right )^2+ left ( 2-1 right )^2 + left ( lambda^2 -2right )^2>= sqrt<26 + left ( lambda^2 -2right )^2>)
Теперь приравняем полученное выражение к корню из тридцати и найдём неизвестное значение, решив полученное уравнение.
( sqrt<26+left(lambda^2-2right)^2>=sqrt <30>)
( 26+left(lambda^2-2right)^2=30 )
( left(lambda^2-2right)^2=4 )
( lambda^2-2=2 ) или ( lambda^2-2=-2 ) ( lambda_1=-2, lambda_2=2, lambda_3=0. )
Ответ: ( lambda_1=-2, lambda_2=2, lambda_3=0. )

Длина вектора по теореме косинусов

Так как бывают случаи, когда не известны координаты точек вектора, необходимо искать другие варианты, при помощи которых можно найти длину вектора. Таким способов может стать применение теоремы косинусов.

К примеру, нам известны длины двух векторов (overrightarrow) и (overrightarrow) , а также угол между ними, или его косинус. При этом необходимо найти длину вектора ( overrightarrow ) , в таком варианте задания необходимо воспользоваться теоремой косинусов, представив треугольник АВС. В данном треугольнике мы будем искать сторону ВС, она и будет равна длине искомого вектора. Подробнее рассмотрим на примере.

Даны длины двух векторов ( overrightarrow) и ( overrightarrow) 2 и 4 соответственно, а угол между ними равен ( frac<pi> <3>) . необходимо найти длину ( overrightarrow).

В нашем примере длины векторов и длины сторон треугольника АМК совпадают. Две из сторон нам известны это АК и АМ, а также известен угол треугольника, находящийся между этими сторонами. Используя теорему косинусов получим:
( KM^2=AK^2+AM^2-2cdot AKcdot AMcdotcosfrac<pi><3>)
(=2^2+4^2-2cdot2cdot4cdotcosfrac<pi><3>)
(=4+16-16cosfrac<pi><3>)
(=20-8=12 )
Получается (KM=sqrt <12>)
Ответ: ( left|overrightarrowright|=sqrt <12>)

Теперь мы видим, что для нахождения длины вектора существует несколько формул, которыми можно воспользоваться в зависимости от известных параметров.

длина вектора формула для трёхмерного пространства;

длина вектора формула по известным координатам начала и конца вектора находящегося пространстве; ( left|vecright|=sqrt<left ( b_z-a_z right )^2+ left ( b_y-a_y right )^2>) если известны координаты начала и конца вектора на плоскости.

Существует также формула длины вектора перемещения: ( left|vecright|=sqrt< s_x^2+s_y^2>) чаще такая формула применима в физике, для того чтобы узнать длину пути материальной точки.

В случае если известен угол, между двумя векторами, можно использовать теорему Пифагора.

Применение векторов в других сферах

Понятие и вычисление вектора важно не только в математике, но и других науках:

  • в физике. Для визуального изображения таких понятий как скорость, сила, ускорение и т.д. А также векторы помогают моделировать физические процессы;
  • в химии. Для изображения химических процессор. При помощи векторов изображают движение электронов и других частиц;
  • в биологии. Биологические процессы, также имеют графическое изображение при помощи векторов. К примеру перенос паразитов;
  • географии. Вектором обозначается движение воздушных масс, или течение реки;

Векторы используются не только в науках, но и различных отраслях и профессиях. В судоходстве и аэрофлоте, архитектуре и конструировании, а также многих других областях. Для того чтобы найти длину вектора, мы можем использовать одну из формул, в зависимости от того, что нам о нём известно, и в каком пространстве или плоскости находится неизвестный вектор.

Нахождение длины вектора, примеры и решения

Длина вектора – основные формулы

Длину вектора a → будем обозначать a → . Данное обозначение аналогично модулю числа, поэтому длину вектора также называют модулем вектора.

Для нахождения длины вектора на плоскости по его координатам, требуется рассмотреть прямоугольную декартову систему координат O x y . Пусть в ней задан некоторый вектор a → с координатами a x ; a y . Введем формулу для нахождения длины (модуля) вектора a → через координаты a x и a y .

От начала координат отложим вектор O A → = a → . Определим соответственные проекции точки A на координатные оси как A x и A y . Теперь рассмотрим прямоугольник O A x A A y с диагональю O A .

Из теоремы Пифагора следует равенство O A 2 = O A x 2 + O A y 2 , откуда O A = O A x 2 + O A y 2 . Из уже известного определения координат вектора в прямоугольной декартовой системе координат получаем, что O A x 2 = a x 2 и O A y 2 = a y 2 , а по построению длина O A равна длине вектора O A → , значит, O A → = O A x 2 + O A y 2 .

Отсюда получается, что формула для нахождения длины вектора a → = a x ; a y имеет соответствующий вид: a → = a x 2 + a y 2 .

Если вектор a → дан в виде разложения по координатным векторам a → = a x · i → + a y · j → , то вычислить его длину можно по той же формуле a → = a x 2 + a y 2 , в данном случае коэффициенты a x и a y выступают в роли координат вектора a → в заданной системе координат.

Вычислить длину вектора a → = 7 ; e , заданного в прямоугольной системе координат.

Чтобы найти длину вектора, будем использовать формулу нахождения длины вектора по координатам a → = a x 2 + a y 2 : a → = 7 2 + e 2 = 49 + e

Формула для нахождения длины вектора a → = a x ; a y ; a z по его координатам в декартовой системе координат Oxyz в пространстве, выводится аналогично формуле для случая на плоскости (см. рисунок ниже)

В данном случае O A 2 = O A x 2 + O A y 2 + O A z 2 (так как ОА – диагональ прямоугольного параллелепипеда), отсюда O A = O A x 2 + O A y 2 + O A z 2 . Из определения координат вектора можем записать следующие равенства O A x = a x ; O A y = a y ; O A z = a z ; , а длина ОА равна длине вектора, которую мы ищем, следовательно, O A → = O A x 2 + O A y 2 + O A z 2 .

Отсюда следует, что длина вектора a → = a x ; a y ; a z равна a → = a x 2 + a y 2 + a z 2 .

Вычислить длину вектора a → = 4 · i → – 3 · j → + 5 · k → , где i → , j → , k → – орты прямоугольной системы координат.

Дано разложение вектора a → = 4 · i → – 3 · j → + 5 · k → , его координаты равны a → = 4 , – 3 , 5 . Используя выше выведенную формулу получим a → = a x 2 + a y 2 + a z 2 = 4 2 + ( – 3 ) 2 + 5 2 = 5 2 .

Длина вектора через координаты точек его начала и конца

Выше были выведены формулы, позволяющие находить длины вектора по его координатам. Мы рассмотрели случаи на плоскости и в трехмерном пространстве. Воспользуемся ими для нахождения координат вектора по координатам точек его начала и конца.

Итак, даны точки с заданными координатами A ( a x ; a y ) и B ( b x ; b y ) , отсюда вектор A B → имеет координаты ( b x – a x ; b y – a y ) значит, его длина может быть определена по формуле: A B → = ( b x – a x ) 2 + ( b y – a y ) 2

А если даны точки с заданными координатами A ( a x ; a y ; a z ) и B ( b x ; b y ; b z ) в трехмерном пространстве, то длину вектора A B → можно вычислить по формуле

A B → = ( b x – a x ) 2 + ( b y – a y ) 2 + ( b z – a z ) 2

Найти длину вектора A B → , если в прямоугольной системе координат A 1 , 3 , B – 3 , 1 .

Используя формулу нахождения длины вектора по координатам точек начала и конца на плоскости, получим A B → = ( b x – a x ) 2 + ( b y – a y ) 2 : A B → = ( – 3 – 1 ) 2 + ( 1 – 3 ) 2 = 20 – 2 3 .

Второй вариант решения подразумевает под собой применение данных формул по очереди: A B → = ( – 3 – 1 ; 1 – 3 ) = ( – 4 ; 1 – 3 ) ; A B → = ( – 4 ) 2 + ( 1 – 3 ) 2 = 20 – 2 3 . –

Ответ: A B → = 20 – 2 3 .

Определить, при каких значениях длина вектора A B → равна 30 , если A ( 0 , 1 , 2 ) ; B ( 5 , 2 , λ 2 ) .

Для начала распишем длину вектора A B → по формуле: A B → = ( b x – a x ) 2 + ( b y – a y ) 2 + ( b z – a z ) 2 = ( 5 – 0 ) 2 + ( 2 – 1 ) 2 + ( λ 2 – 2 ) 2 = 26 + ( λ 2 – 2 ) 2

Затем полученное выражение приравняем к 30 , отсюда найдем искомые λ :

26 + ( λ 2 – 2 ) 2 = 30 26 + ( λ 2 – 2 ) 2 = 30 ( λ 2 – 2 ) 2 = 4 λ 2 – 2 = 2 и л и λ 2 – 2 = – 2 λ 1 = – 2 , λ 2 = 2 , λ 3 = 0 .

Ответ: λ 1 = – 2 , λ 2 = 2 , λ 3 = 0 .

Нахождение длины вектора по теореме косинусов

Увы, но в задачах не всегда бывают известны координаты вектора, поэтому рассмотрим другие способы нахождения длины вектора.

Пусть заданы длины двух векторов A B → , A C → и угол между ними (или косинус угла), а требуется найти длину вектора B C → или C B → . В таком случае, следует воспользоваться теоремой косинусов в треугольнике △ A B C , вычислить длину стороны B C , которая и равна искомой длине вектора.

Рассмотрим такой случай на следующем примере.

Длины векторов A B → и A C → равны 3 и 7 соответственно, а угол между ними равен π 3 . Вычислить длину вектора B C → .

Длина вектора B C → в данном случае равна длине стороны B C треугольника △ A B C . Длины сторон A B и A C треугольника известны из условия (они равны длинам соответствующих векторов), также известен угол между ними, поэтому мы можем воспользоваться теоремой косинусов: B C 2 = A B 2 + A C 2 – 2 · A B · A C · cos ∠ ( A B , → A C → ) = 3 2 + 7 2 – 2 · 3 · 7 · cos π 3 = 37 ⇒ B C = 37 Таким образом, B C → = 37 .

Итак, для нахождения длины вектора по координатам существуют следующие формулы a → = a x 2 + a y 2 или a → = a x 2 + a y 2 + a z 2 , по координатам точек начала и конца вектора A B → = ( b x – a x ) 2 + ( b y – a y ) 2 или A B → = ( b x – a x ) 2 + ( b y – a y ) 2 + ( b z – a z ) 2 , в некоторых случаях следует использовать теорему косинусов.

Сумма и разность векторов

В данной публикации мы рассмотрим, как найти сумму и разность векторов, приведем геометрическую интерпретацию, а также формулы, свойства и примеры этих действий.

Сумма векторов

Сложение векторов выполняется по правилу треугольника.

Геометрическая интерпретация:

Суммой a и b является вектор c , начало которого совпадает с началом a , а конец – с концом b . При этом конец вектора a должен совпадать с началом вектора b .

Для сложения векторов также используется правило параллелограмма.

Два неколлинеарных вектора a и b можно привести к общему началу, и в этом случае их суммой является вектор c , совпадающий с диагональю параллелограмма и берущий начало в той же точке, что и исходные векторы.

Формула сложения векторов

Элементы вектора c равняются попарной сумме соответствующих элементов a и b .

” data-lang=”default” data-override=”<“emptyTable”:””,”info”:””,”infoEmpty”:””,”infoFiltered”:””,”lengthMenu”:””,”search”:””,”zeroRecords”:””,”exportLabel”:””,”file”:”default”>” data-merged=”[]” data-responsive-mode=”2″ data-from-history=”0″>

Для плоских задач a + b = x + bx; ay + by>
Для трехмерных задач a + b = x + bx; ay + by; az + bz>
Для n-мерных векторов a + b = 1 + b1; a2 + b2; . an + bn>

Свойства сложения векторов

1. Коммутативность: a + b = b + a

2. Ассоциативность: ( a + b ) + c = a + ( b + c )

3. Прибавление к нулю: a + 0 = a

4. Сумма противоположных векторов: a + (- a ) = 0

Примечание: Вектор – a коллинеарен и равен по длине a , но имеет противоположное направление, из-за чего называется противоположным.

Разность векторов

Для вычитания векторов также применяется правило треугольника.

Если из вектора a вычесть b , то получится c , причем должно соблюдаться условие:

Формула вычитания векторов

Элементы вектора c равны попарной разности соответствующих элементов a и b .

” data-lang=”default” data-override=”<“emptyTable”:””,”info”:””,”infoEmpty”:””,”infoFiltered”:””,”lengthMenu”:””,”search”:””,”zeroRecords”:””,”exportLabel”:””,”file”:”default”>” data-merged=”[]” data-responsive-mode=”2″ data-from-history=”0″>

Для плоских задач a – b = x – bx; ay – by>
Для трехмерных задач a – b = x – bx; ay – by; az – bz>
Для n-мерных векторов a – b = 1 – b1; a2 – b2; . an – bn>

Примеры задач

Задание 1
Вычислим сумму векторов и .

Задание 2
Найдем разность векторов и .

[spoiler title=”источники:”]

http://zaochnik.com/spravochnik/matematika/vektory/dlina_vectora/

[/spoiler]

План урока:

Понятие вектора

Равенство векторов

Сложение векторов

Свойства сложения

Вычитание векторов

Умножение вектора на число

Решение задач с помощью векторов

Понятие вектора

Рассмотрим простейшую задачу. Корабль, двигатель которого развивает скорость 20 км/ч, плывет по течению реки, при этом скорость течения составляет 2 км/ч. Какова скорость корабля относительно берега? Очевидно, в данном случае надо сложить скорость течения и собственную скорость корабля:

20 км/ч + 2 км/ч = 22 км/ч

Теперь посмотрим на почти такую же задачу, которая отличается лишь тем, что корабль плывет уже против течения. Для ее решения скорости уже придется вычитать:

20 км/ч – 2 км/ч = 18 км/ч

Получается, что ответ задачи во многом зависит не только от величин скоростей, но и от их направления. Возможны и более сложные случаи, когда корабль двигается на воде перпендикулярно течению или, например, под углом в 60°. Величины, при операции с которыми необходимо учитывать их направление, называют векторными величинами, или просто векторами.

Помимо скорости к ним относят ускорение, силу, импульс, напряженность магнитного и электрического поля и многие другие величины. Те же величины, для которых нельзя указать направление, называют скалярными величинами. Это масса, температура, плотность и т. п. Для выполнения действий с векторами необходимо разработать общие правила их сложения, вычитания, умножения, которые будут справедливы независимо от физической природы векторных величин. И разработать эти правила помогает как раз геометрия.

Для начала введем понятие вектора. Любой отрезок имеет два конца, которые обычно не отличают друг от друга. Однако если одну из этих точек считать началом отрезка, а другую – собственно концом, то у отрезка появится направление. В таком случае его можно считать вектором.

1 vectory

Часто вектора называют направленными отрезками. Обозначают их с помощью стрелок.

2 vectory

На этом рисунке показан вектор, начало которого находится в точке А, а конец – в точке В. При записи в формулах сначала пишут букву, означающую начало вектора, потом обозначение его конца, а над этими двумя буквами ставят стрелочку:

3 vectory

С практической точки зрения приходится вводить в рассмотрение особый нулевой вектор. У него начало и конец совпадают, то есть он представляет собой всего лишь одну точку:

4 vectory

Нулевой вектор необходим, так как нам необходимо научиться выполнять действия над векторами. Мы знаем, что в обычной алгебре используется число ноль. В векторной же алгебре аналогом нуля является как раз нулевой вектор.

Каждый вектор имеет свою длину, которая равна расстоянию между его началом и концом. То есть, если его начало находится в точке А, а конец в точке В, то длина вектора будет совпадать с длиной отрезка АВ. Обозначают длину с помощью вертикальных скобок:

5 vectory

Естественно, что длина нулевого вектора равна нулю.

Задание. Найдите модуль вектора, изображенного на рисунке:

6 vectory

Решение. Легко выполнить построение, при котором вектор окажется гипотенузой в прямоугольном треугольнике

7 vectory

Тогда длину вектора можно найти по теореме Пифагора:

8 vectory

Равенство векторов

Через начало и конец векторов можно провести прямую. В связи с этим можно ввести понятие коллинеарных векторов.

9 vectory

На рисунке коллинеарны вектора а и b, так как они лежат на одной прямой. Также коллинеарны с и d, так как они лежат на параллельных прямых. А вот вектора и неколлинеарны, так как они лежат на пересекающихся прямых.

Для пары коллинеарных векторов можно определить, являются ли они сонаправленными или противоположно направленными.

10 vectory

Для обозначения сонаправленных векторов используется символ «⇈», а для противоположно направленных «⇅». Можно сформулировать две очевидных теоремы о коллинеарных векторах.

11 vectory

Проиллюстрируем эти правила с помощью рисунка:

12 vectory

Особняком стоит нулевой вектор. Он представляет собой точку, а потому не имеет определенного направления. Поэтому условно его считают сонаправленным с любым другим вектором.

Теперь мы можем дать определение равенству векторов.

13 vectory

Задание. Найдите на картинке равные вектора.

14 vectory

Решение. Здесь равны вектора а, и e. Они сонаправлены и имеют длину 6. Вектор с сонаправлен с ними, но его длина составляет только 5 клеток. Длина вектора d составляет 6 клеток, но он не сонаправлен с другими векторами. Наконец, вектор m также не сонаправлен с другими векторами и даже не коллинеарен им.

Ответ: a, и e.

Если началом вектора является некоторая точка А, то можно сказать, что вектор отложен от точки А. Докажем важное утверждение:

15 vectory

Доказать его можно построением. Пусть есть вектор а и точка М. Проведем через М прямую p, параллельную вектору а. Такая прямая будет единственной. Если точка М и вектор лежат на одной прямой, то в качестве прямой p возьмем именно эту прямую. Далее от точки М можно отложить отрезки МN и МN’, длина которых будет совпадать с длиной вектора а. В результате получится два вектора,MN и MN’, один из которых будет сонаправлен с а, а другой – противоположно направленный.

16 vectory

Часто равные вектора, отложенные от разных точек, обозначают одной буквой. Можно считать, что это один и тот же вектор, просто приложенный к разным точкам.

17 vectory

Задание. АВСD – параллелограмм, диагонали которого пересекаются в точке О. Определите, равны ли вектора:

18 vectory

Решение.

а) Отрезки АВ и DC равны, ведь это противоположные стороны параллелограмма, по той же причине эти отрезки параллельны. Видно, что они сонаправлены, значит, вектора равны.

б) Отрезки ВС и DA параллельны и равны, но эти вектора противоположно направлены, поэтому вектора НЕ равны друг другу.

в) Точка пересечения диагоналей параллелограмма делит их пополам, поэтому длины отрезков АО и ОС одинаковы. Вектора АО и ОС лежат на одной прямой, то есть они коллинеарны. При этом они ещё и сонаправлены, поэтому АО и ОС – равные векторы.

г) Вектора АС и BD лежат на пересекающихся прямых, то есть они не коллинеарны. Этого уже достаточно, чтобы считать их НЕ равными друг другу.

Ответ: а) д; б) нет; в) да; г) нет.

Сложение векторов

Пусть некоторый объект сначала находился в точке А, а потом переместился в точку В. Тогда его перемещение удобно обозначить с помощью вектора АВ. Далее пусть этот объект из точки В переместился в другую точку С.

19 vectory

С одной точки зрения, объект совершил сразу два перемещения, из А в В и из В в С, которые можно представить векторами:

20 vectory

Этот пример подсказывает нам универсальное правило, с помощью которого можно складывать вектора. Его называют правилом треугольника.

21 vectory

С помощью правила треугольника удобно складывать вектора, если конец одного из них совпадает с началом другого. Но что делать, если это не так? В этом случае достаточно от конца одного вектора отложить вектор, равный второму:

22 vectory

Задание. На рисунке показаны два вектора. Постройте в тетради их сумму и найдите длину получившегося вектора.

23 vectory

Решение. Перенесем вектор b к концу вектора а. Далее по правилу треугольника на удастся найти их сумму (обозначим этот вектор буквой с):

24 vectory

Теперь найдем длину получившегося вектора. Он является гипотенузой в прямоугольном треугольнике, причем длины катетов в этом треугольнике можно определить по рисунку, они составляют 4 и 6. Тогда длину гипотенузы можно найти по теореме Пифагора:

25 vectory

Отдельно рассмотрим случаи, когда складываются коллинеарные вектора. В этом случае получающаяся сумма окажется коллинеарной каждому слагаемому. Если вектора сонаправлены, то их длина итогового вектора окажется равной сумме длин складываемых векторов:

26 vectory

Если складываются противоположно направленные вектора, то длина их суммы окажется разностью длин складываемых векторов.

27 vectory

Именно по этой причине при решении простейших задач на движение корабля по реке скорость корабля и скорость течения либо складывают, либо вычитают. Дело в том, что в этих задачах складываются вектора скоростей корабля и течения. Когда судно плывет по течению, эти векторы сонаправлены, а когда плавание идет против течения, векторы оказываются противоположно направленными.

Задание. Корабль развивает в неподвижной воде скорость 12 км/ч. Он плывет по реке, скорость воды в которой составляет 5 км/ч. Найдите скорость корабля относительно берега, если:

а) судно плывет по течению;

б) судно плывет против течения;

в) судно плывет перпендикулярно течению.

Решение. Во всех случаях итоговая скорость судна является векторной суммой собственной скорости судна и течения реки:

28 vectory

Однако направления этих векторов различны. Найдем решение графически, с помощью построений. В первом случае вектора по условию сонаправлены:

29 vectory

Приложив другу к другу отрезки длиной 12 и 5, получим отрезок длиной 17. Это значит, что в первом случае скорость корабля относительно берега составит 17 км/ч.

Во втором случае вектора уже окажутся противоположно направленными:

30 vectory

Отрезок, соответствующий итоговой скорости, здесь уже равен 7 клеткам, значит, итоговая скорость составляет 7 км/ч.

В третьем случае вектора скоростей перпендикулярны:

31 vectory

При построении получился прямоугольный треугольник, вектор итоговой скорости в нем оказался в роли гипотенузы. Найти его длину можно по теореме Пифагора, ведь катеты нам известны:

32 vectory

Свойства сложения

Действия с векторами во многом подобны действиям с обычными числами. Напомним, что в алгебре при прибавлении к числу нуля оно не менялось:

a + 0 = a

Аналогично и при прибавлении к вектору нулевого вектора он не изменится:

33 vectory

Работает ли это правило с векторами? Оказывается, что да. Убедиться в этом можно, построив параллелограмм, сторонами которого являются складываемые векторы:

34 vectory

Видно, что диагональ параллелограмма является суммой векторов, которые соответствуют нижней и крайней правой его стороне. Они обозначены как векторы и b, причем в данном случае к а прибавляется b. Но одновременно эта же диагональ – это сумма векторов, которые соответствуют крайней левой и его верхней стороне. Напомним, что противоположные стороны параллелограмма равны и параллельны, поэтому они и обозначены одним вектором. В этом случае уже к прибавляется a. Результат при этом получается одинаковый, поэтому можно записать, что

35 vectory

На этом примере мы увидели, как работает ещё одно правило сложения векторов, который называется правилом параллелограмма. Если есть два вектора, которые необходимо сложить, то можно отложить их от одной точки, а потом достроить получившуюся фигуру до параллелограмма.

Задание. Сложите с помощью правила параллелограмма вектора, изображенные на рисунке:

36 vectory

Решение. Надо всего лишь построить параллелограмм, как показано на рисунке. Его диагональ и окажется искомым вектором:

37 vectory

Ещё один закон, использующийся в алгебре, называется сочетательным законом, записывается он так:

38 vectory

Оказывается, что и при действиях с векторами он также работает, то есть справедливо соотношение:

39 vectory

Здесь оранжевый вектор – это сумма красного (а) и синего (b) вектора. Если к оранжевому вектору добавить зеленый (с), то получится фиолетовый вектор, который, таким образом, является суммой

40 vectory

Желтый вектор – это сумма синего и зеленого вектора. Видно, что фиолетовый вектор представляет собой сумму красного и желтого, то есть он представляет сумму

41 vectory

Складывать можно любое количество векторов. В этом случае надо последовательно прикладывать эти вектора друг к другу, выстраивая «цепочку» векторов. Например, сложение 4 векторов, показанных на рисунке, будет осуществляться следующим образом:

42 vectory

Этот способ сложения векторов именуют правилом многоугольника. Естественно, в силу переместительного закона вектора можно прикладывать друг к другу в разной последовательности, при этом результат будет получаться один и тот же.

Задание. Сложите, используя правило многоугольника, вектора, изображенные на рисунке. Выполните сложение двумя разными способами:

43 vectory

В первом случае последовательно сложим вектора a, b, c и d. Во втором случае изменим последовательность сложения. Например, сложим их в порядке d, b, c, a:

44 vectory

Видно, что каждый из двух способов дал один и тот же результат, что ещё раз подтверждает справедливость переместительного закона сложения векторов.

Вычитание векторов

Напомним, что в алгебре операция вычитания вводится как операция обратная сложению. То есть если для трех чисел верно соотношение

a + b = c

то разностью чисел с и a как раз окажется b:

c – a = b

Аналогично вычитание понимается и в векторной алгебре. Пусть построены вектора а, b и c так, что

45 vectory

Этот пример показывает, как строить разность двух векторов. На рисунке вектора с и отложены от одной точки, а вектор b, являющийся их разницей, проведен от конца вычитаемого вектора к концу уменьшаемого вектора.

46 vectory

В данном случае под уменьшаемым вектором понимается тот, который в разнице стоит перед знаком минус, а вычитаемый вектор – тот, который находится уже после этого знака. Например, в записи

47 vectory

Вектор а – уменьшаемый, а вектор b – вычитаемый.

Задание. Постройте в тетради разность векторов, изображенных на рисунке:

48 vectory

Решение. Заметим, что в условии не сказано, какой вектор из какого надо вычитать. Поэтому можно построить сразу два ответа:

49 vectory

Несложно заметить, две получившиеся разности представляют собой противоположно направленные векторы одной длины. Такие векторы называются противоположными.

50 vectory

Очевидно, что если сложить друг с другом два противоположных вектора, то получится нулевой вектор:

51 vectory

Противоположные вектора играют в векторной алгебре такую же роль, как и противоположные числа. С их помощью удобно выполнять вычитание векторов. Напомним, что для обычных чисел справедливо соотношение:

52 vectory

Поэтому операцию вычитания можно заменить операцией сложения, если вместо вычитаемого вектора взять вектор, противоположный ему. Рассмотрим этот способ на примере. Пусть из надо вычесть b:

53 vectory

На первом шаге надо построить вектор, противоположный b:

54 vectory

Теперь надо просто сложить a и (– b):

55 vectory

В итоге нам удалось построить разность векторов а и b.

Умножение вектора на число

Предположим, что нам надо сложить два равных вектора. В результате мы получим новый вектор, который будет сонаправлен с исходным, но его длина будет вдвое больше. Логично считать, что получившийся вектор вдвое больше исходного, то есть он получился при умножении вектора на число 2:

56 vectory

Аналогично можно построить вектора, которые больше исходного не в 2, а в 3,4 и т. д. раз:

57 vectory

Итак, чтобы умножить вектор на положительное число k, надо построить сонаправленный с ним вектор, длина которого в k раз больше.А как умножать вектор на отрицательное число? Здесь нужно использовать противоположный вектор. Логично считать, что он получается при умножении (– 1) на вектор. Зная это, легко умножать вектор и на другие отрицательные числа:

58 vectory

Естественно, что если вектор умножается на ноль, то в результате получается нулевой вектор.

Задание. На рисунке показаны вектора а и b. Найдите вектора

59 vectory

Решение. Для построения снам надо сначала умножить исходные вектора на 4 и 2, а далее полученные результаты сложить:

60 vectory

Для нахождения вектора d надо построить вектор, противоположный вектору 2b, и уже его складывать с 4a:

61 vectory

Наконец, для нахождения вектора е необходимо построить противоположный вектор уже для :

62 vectory

Некоторые правила обычной алгебры, касающиеся операции умножения, справедливы и для векторов. Первый такое правило – это сочетательный закон:

63 vectory

Видно, что мы можем либо сразу умножить вектор а на число 12, либо сначала его умножить на 4, а потом на 3. Результат операции при этом не изменится.

Также в отношении операции умножения векторов на число справедлив распределительный закона, которые позволяют раскрывать скобки:

64 vectory

Например, пусть нам надо сложить вектора и . Распределительный закон говорит, что мы можем поступить двумя способами. В первом случае мы просто строим вектора 2а и 3а и складываем их. Во втором случае мы складываем только числа 2 и 3 (получаем 5), и далее уже умножаем вектор а на число 5:

65 vectory

Есть ещё один распределительный закон, в котором в скобках находится уже сумма векторов, а не чисел:

66 vectory

Этот закон можно применить в случае, когда нам необходимо, например, сложить вектора и 4b. Конечно, можно просто построить их и сложить, однако закон говорит, что мы можем сначала сложить aи b, и уже потом эту сумму умножить на 4:

67 vectory

Сформулированные нами законы сложения и умножения векторов позволяют выполнять действия с векторами так же, как с числами. В том числе можно упрощать выражения, содержащие векторные величины. Например, пусть известны вектора а, b и с, и надо найти вектор

68 vectory

Видно, что выражение значительно упростилось.

Решение задач с помощью векторов

Вектора активно используются в физике при решении многих задач, однако они также помогают доказывать геометрические теоремы. Рассмотрим несколько примеров, и начнем со вспомогательной задачи.

Задание. Известно, что С – это середина отрезка АВ. Докажите, что для любой точки О выполняется равенство:

69 vectory

Используя правило треугольника, вектор ОС можно представить в виде двух различных сумм:

70 vectory

Проанализируем выражение в скобках. Вектора АС и ВС коллинеарны, ведь они лежат на одной прямой АВ. При этом они противоположно направлены. Длина у них одинакова, ведь С – середина АВ. Тогда по определению АС и ВС – противоположные вектора, и их сумма равна нулю:

71 vectory

Задание. Докажите, что если в трапеции провести прямую, проходящую через середины ее оснований, то она также пройдет через точку, в которой пересекаются продолжения боковых сторон трапеции.

Решение. Построим трапецию, обозначим ее вершины и середины оснований:

72 vectory

Здесь ABCD – трапеция, основаниями которой являются отрезки ВС и AD. M и N – их середины. Прямые АВ и CD пересекаются в точке O. Необходимо доказать, что прямая MN также проходит через О.

Заметим, что ∆ОВС и ∆ОАD подобны. Действительно, у них есть общий ∠ВОС, а ∠ОВС и ∠ОАD одинаковы как односторонние углы при секущей АВ, поэтому треугольники подобны по 1-ому признаку. Обозначим коэффициент подобия буквой k, тогда можно записать, что

73 vectory

Так как отрезки ОА и АВ лежат на одной прямой, то вектора ОА и АВ коллинеарны и притом сонаправлены, поэтому в (1) отрезки можно заменить векторами:

74 vectory

(это соотношение мы доказали в предыдущей, вспомогательной задаче).

Аналогичную формулу можно составить и для второго основания и его середины N:

75 vectory

Полученное нами равенство означает, что вектора ON и ОМ коллинеарны, а значит, лежат на одной прямой (эти вектора не могут лежать на параллельных прямых, так как имеют общую точку О). Тогда получается, что О, M и N лежат на одной прямой, ч. т. д.

Математические или физические величины могут быть представлены как скалярными величинами (численным значением), так и векторными величинами (величиной и направлением в пространстве).

Вектор представляет собой направленный отрезок прямой, для которого указано, какая из его граничных точек является началом, а какая — концом. Таким образом, в векторе присутствует две составляющих – это его длина и направление.

Изображение вектора на чертеже
simenergy.ru

Рис.1. Изображение вектора на чертеже.

При работе с векторами часто вводят некоторую декартову систему координат в которой определяют координаты вектора, раскладывая его по базисным векторам:

– для вектора, расположенного в пространстве координат (x,y) и выходящего из начала координат 

– для вектора, расположенного в пространстве координат (x,y,z) и выходящего из начала координат 

Расстояние между началом и концом вектора называется его длиной, а для обозначения длины вектора (его абсолютной величины) пользуются символом модуля.

Векторы расположенные либо на одной прямой, либо на параллельных прямых называются коллинеарными. Нулевой вектор считается коллинеарным любому вектору. Среди коллинеарных векторов различают одинаково направленные (сонаправленные) и противоположно направленные векторы. Векторы называются компланарными, если они лежат либо на одной плоскости, либо на прямых, параллельных одной и той же плоскости. 

1. Длина вектора (модуль вектора)

Длина вектора определяет его скалярное значение и зависит от его координат, но не зависит от его направления. Длина вектора (или модуль вектора) вычисляется через арифметический квадратный корень из суммы квадратов координат (компонент) вектора (используется правило вычисления гипотенузы в прямоугольном треугольнике, где сам вектор становится гипотенузой).

Через координаты модуль вектора вычисляется следующим образом:

– для вектора, расположенного в пространстве координат (x,y) и выходящего из начала координат 

– для вектора, расположенного в пространстве координат (x,y,z) и выходящего из начала координат,  формула будет аналогична формуле диагонали прямоугольного параллелепипеда, так как вектор в пространстве принимает такое же положение относительно осей координат. 

2. Угол между векторами

Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения второго вектора. Угол между векторами определяется с использованием выражения для определения скалярного произведения векторов

Таким образом, косинус угла между векторами равен отношению скалярного произведения к произведению длин или модулей векторов. Данной формулой можно пользоваться в случае, если известны длины векторов и их скалярное произведение, либо векторы заданы координатами в прямоугольной системе координат на плоскости или в пространстве в виде:  и .

Если векторы A и B заданы в трехмерном пространстве и координаты каждого из них заданы в виде:  и , то угол между векторами определяется по следующему выражению:

Следует отметить, что угол между векторами  и  можно также определить применяя теорему косинусов для треугольника: квадрат любой стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

где AB, OA, OB – соответствующая сторона треугольника.

Теорема косинусов для треугольника
simenergy.ru

Рис.2. Теорема косинусов для треугольника

Применительно к векторным исчислением данная формула перепишется следующим образом:

Таким образом, угол между векторами  и  определяется по следующему выражению:

где  и  – модуль (длина) вектора, а  – модуль (длина) вектора, который определяется из разности двух векторов. Неизвестные входящие в уравнение определяются по координатам векторов  и .

3. Сложение векторов

Сложение двух векторов  и  (сумма двух векторов) – это операция вычисления вектора , все элементы которого равны попарной сумме соответствующих элементов векторов  и . В случае если вектора заданы в прямоугольной системе координат сумму векторов  и  можно найти по следующей формуле:

В графическом виде, сложение двух свободных векторов можно осуществлять как по правилу треугольника, так и по правилу параллелограмма.

Сложение двух векторов
simenergy.ru

Рис.3. Сложение двух векторов

Сложение двух скользящих векторов определено лишь в случае, когда прямые, на которых они расположены, пересекаются. Сложение двух фиксированных векторов определено лишь в случае, когда они имеют общее начало.

Правило треугольника.

Для сложения двух векторов  и  по правилу треугольника оба эти вектора переносятся параллельно самим себе так, чтобы начало одного из них совпадало с концом другого. Тогда вектор суммы задаётся третьей стороной образовавшегося треугольника, причём его начало совпадает с началом первого вектора, а конец с концом второго вектора.

Модуль (длину) вектора суммы определяют по теореме косинусов:

где  – угол между векторами, когда начало одного совпадает с концом другого.

Правило параллелограмма.

Для сложения двух векторов  и  по правилу параллелограмма оба эти вектора переносятся параллельно самим себе так, чтобы их начала совпадали. Тогда вектор суммы задаётся диагональю построенного на них параллелограмма, исходящей из их общего начала.

Модуль (длину) вектора суммы определяют по теореме косинусов:

где  – угол между векторами выходящими из одной точки.

Примечание:

Как видно, в зависимости от того какой угол выбирается, изменяется знак перед косинусом угла в формуле для определения модуля (длины) вектора суммы.

4. Разность векторов

Разность векторов  и  (вычитание векторов) – это операция вычисления вектора , все элементы которого равны попарной разности соответствующих элементов векторов  и . В случае если вектора заданы в прямоугольной системе координат разность векторов  и  можно найти по следующей формуле:

В графическом виде, разностью векторов  и  называется сумма вектора  и вектора противоположного вектору , т.е. 

Разность двух свободных векторов
simenergy.ru

Рис.4. Разность двух свободных векторов

Разность двух свободных векторов в графическом виде может быть определена как по правилу треугольника, так и по правилу параллелограмма. Модуль (длина) вектора разности определяется по теореме косинусов. В зависимости от используемого угла в формуле изменяется знак перед косинусом (рассматривалось ранее).

5. Скалярное произведение векторов

Скалярным произведением двух векторов называется действительное число, равное произведению длин умножаемых векторов на косинус угла между ними. Скалярное произведение векторов  и  обозначается одним из следующих обозначений  или  или  и определяется по формуле:

где– длины векторов   и  соответственно, а  – косинус угла между векторами.

Скалярное произведение двух векторов
simenergy.ru

Рис.5. Скалярное произведение двух векторов

Скалярное произведение также можно вычислить через координаты векторов в прямоугольной системе координат на плоскости или в пространстве.

Скалярным произведением двух векторов на плоскости или в трехмерном пространстве в прямоугольной системе координат называется сумма произведений соответствующих координат векторов  и .

Таким образом, для векторов  и  на плоскости в прямоугольной декартовой системе координат формула для вычисления скалярного произведения имеет следующий вид:

Для трехмерного пространства формула для вычисления скалярного произведения векторов  и  имеет следующий вид:

Свойства скалярного произведения.

1. Свойство коммутативности скалярного произведения

2. Свойство дистрибутивности скалярного произведения

3. Сочетательное свойство скалярного произведения (ассоциативность)

где  – произвольное действительное число.

Следует отметить, что в случае:

если скалярное произведение положительно, следовательно, угол между векторами – острый (менее 90 градусов);

если скалярное произведение отрицательно, следовательно,  угол между векторами  – тупой (больше 90 градусов);

если скалярное произведение равно 0, следовательно, вектора являются ортогональными (которые лежат перпендикулярно друг к другу);

если скалярное произведение равно произведению длин векторов, следовательно, данные векторы коллинеарные между собой (параллельные).

6. Векторное произведение векторов

Векторным произведением двух векторов  и называется вектор  для которого выполняются следующие условия:

1. вектор  ортогонален (перпендикулярен) плоскости векторов  и ;

2. направление вектора  определяется по правилу правой руки (вектор  направлен так, что из конца вектора  кратчайший поворот от вектора  к вектору  виден происходящим против часовой стрелки);

Нахождение направления векторного произведения с помощью правила правой руки
simenergy.ru

Рис.6. Нахождение направления векторного произведения с помощью правила правой руки.

3. длина вектора   равняется площади параллелограмма, образованного векторами, и может быть определена из выражения, равного произведению длин умножаемых векторов на синус угла между ними.

Векторное произведение векторов  и  обозначается следующим образом  (или ), а  длина (модуль) векторного произведения определяется по формуле:

где– длины векторов   и  соответственно, а  – синус угла между векторами.

Векторное произведение векторов отличается от скалярного произведения тем, что оно представляет собой не просто число, а вектор, имеющий свое собственное направление (направление обуславливает трехмерность системы). Таким образом, векторное произведение векторов по определению возможно только в трехмерном пространстве, где у каждого вектора указаны три координаты (i,j,k). Векторное произведение не обладает свойствами коммутативности в отличие от скалярного произведения векторов.

Векторное произведение двух векторов
simenergy.ru

Рис.7. Векторное произведение двух векторов

Векторное произведение также можно вычислить через координаты векторов в прямоугольной системе координат в пространстве.

Свойства векторного произведения.

1. Свойство антикоммутативности векторного произведения

2. Свойство дистрибутивности векторного произведения

3. Сочетательное свойство векторного произведения (ассоциативность)

где  – произвольное действительное число.

Следует отметить, что в случае:

если векторное произведение равно 0, следовательно, вектора являются коллинеарными (вектора параллельны друг другу);

если векторное произведение равно произведению длин векторов, следовательно, вектора являются ортогональными (которые лежат перпендикулярно друг к другу).

Вектором называется направленный отрезок. Вектор обозначается либо символом Векторная алгебра: основные понятия и определения (Векторная алгебра: основные понятия и определения — точка начала, Векторная алгебра: основные понятия и определения — точка конца вектора), либо Векторная алгебра: основные понятия и определения. В математике обычно рассматриваются свободные векторы, то есть векторы, точка приложения которых может быть выбрана произвольно.

Векторная алгебра: основные понятия и определения

2. Длиной (модулем) вектора Векторная алгебра: основные понятия и определения называется длина отрезка Векторная алгебра: основные понятия и определения. Модуль вектора обозначается Векторная алгебра: основные понятия и определения.

3.Вектор называется единичным, если его длина равна «1»; единичный вектор Векторная алгебра: основные понятия и определения направления вектора Векторная алгебра: основные понятия и определения называется ортом вектора Векторная алгебра: основные понятия и определения и определяется по формуле Векторная алгебра: основные понятия и определения.

4. Вектор называется нулевым, если его начало и конец совпадают Векторная алгебра: основные понятия и определения; любое направление можно считать направлением нулевого вектора.

5. Векторы называются коллинеарными, если они лежат либо на одной прямой, либо на параллельных прямых. Коллинеарность векторов обозначается: Векторная алгебра: основные понятия и определения. Необходимым и достаточным условием коллинеарности векторов Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения является существование такого числа Векторная алгебра: основные понятия и определения, что Векторная алгебра: основные понятия и определения.

6. Два вектора называются равными, если они коллинеарны, имеют одинаковую длину и направление.

7. Вектор Векторная алгебра: основные понятия и определения называется противоположным вектору Векторная алгебра: основные понятия и определения, если модули их равны, а направления противоположны.

8. Векторы называются компланарными, если они лежат в одной плоскости или в параллельных плоскостях.

Для решения задач необходимо уметь выполнять линейные операции над вектором в геометрической форме, то есть над вектором, как над
направленным отрезком: сложение, вычитание векторов и умножение вектора на число.

9. Сложение двух векторов можно выполнить по правилу параллелограмма (рис. 1) или по правилу треугольника (рис. 2).

Векторная алгебра: основные понятия и определения

При сложении более двух векторов, лежащих в одной плоскости, используется правило «замыкающей линии многоугольника» (рис. 3).

Векторная алгебра: основные понятия и определения

При сложении трех некомпланарных векторов удобно пользоваться правилом «параллелепипеда» (рис. 4).

Векторная алгебра: основные понятия и определения

10. Действие вычитания двух векторов связано с действием сложения (рис.5).

Векторная алгебра: основные понятия и определения

Разностью двух векторов называется вектор, проведенный из конца вычитаемого в конец уменьшаемого. Заметим, что разностью является вектор, служащий второй диагональю параллелограмма.

Разность можно также представить в виде сложения с противоположным вектором (рис. 6).

Векторная алгебра: основные понятия и определения

11. Произведением вектора Векторная алгебра: основные понятия и определения на число Векторная алгебра: основные понятия и определения называется вектор Векторная алгебра: основные понятия и определения, который имеет :

12. Для решения задач полезно знать также следующие законы и свойства:

  • переместительный: Векторная алгебра: основные понятия и определения
  • сочетательный: Векторная алгебра: основные понятия и определения
  • распределительный: Векторная алгебра: основные понятия и определения

Примеры задач решаемых с применением векторной алгебры

Задача:

Пусть даны точки Векторная алгебра: основные понятия и определения Векторная алгебра: основные понятия и определения

1) Найти координаты векторов

Векторная алгебра: основные понятия и определения

2) Написать разложение этих векторов по базису Векторная алгебра: основные понятия и определения

3) Найти длины этих векторов

4) Найти скалярное произведение Векторная алгебра: основные понятия и определения

5) Найти угол между векторами Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения.

6) Найти разложение вектора Векторная алгебра: основные понятия и определения по базису Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения

Решение:

1) Вычислим координаты векторов Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения (нужно из координат точки его конца вычесть координаты его начала):

Векторная алгебра: основные понятия и определения

Векторная алгебра: основные понятия и определения, аналогично, Векторная алгебра: основные понятия и определения

Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения

2) Векторная алгебра: основные понятия и определения

3)

Векторная алгебра: основные понятия и определения

4) Для вычисления угла между векторами воспользуемся формулой:

Векторная алгебра: основные понятия и определения

5) Разложить вектор Векторная алгебра: основные понятия и определения по векторам Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения — это значит представить вектор Векторная алгебра: основные понятия и определения в виде линейной комбинации векторов Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения, т. е.

Векторная алгебра: основные понятия и определения, где Векторная алгебра: основные понятия и определения. Имеем Векторная алгебра: основные понятия и определения Векторная алгебра: основные понятия и определения Векторная алгебра: основные понятия и определения, но у равных векторов соответственно равны координаты, следовательно, получим систему, из которой найдем Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения.

Векторная алгебра: основные понятия и определения

Задача:

а). Даны векторы Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения в некотором базисе. Показать, что векторы Векторная алгебра: основные понятия и определения образуют базис и найти координаты вектора Векторная алгебра: основные понятия и определения в этом базисе.

Решение:

Три вектора образуют базис, если Векторная алгебра: основные понятия и определения.

Векторная алгебра: основные понятия и определения

Найдем координаты вектора Векторная алгебра: основные понятия и определения в базисе Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения.

Векторная алгебра: основные понятия и определения

Два вектора равны, если их соответствующие координаты равны.

Векторная алгебра: основные понятия и определения

Решим систему методом Крамера:

Векторная алгебра: основные понятия и определения

Ответ: Векторная алгебра: основные понятия и определения.

Векторная алгебра: основные понятия и определения

Задача:

Даны координаты вершин тетраэдра Векторная алгебра: основные понятия и определения Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения. Найти: 1) координаты точки пересечения медиан треугольника Векторная алгебра: основные понятия и определения; 2) уравнение прямой, проходящей через вершину Векторная алгебра: основные понятия и определения параллельно медиане, проведенной из вершины Векторная алгебра: основные понятия и определения треугольника Векторная алгебра: основные понятия и определения; 3) координаты точки, симметричной точке Векторная алгебра: основные понятия и определения относительно плоскости Векторная алгебра: основные понятия и определения. Сделать чертёж.

Решение:

1) Найдем координаты т. Векторная алгебра: основные понятия и определения середины отрезка Векторная алгебра: основные понятия и определения (рис. 16): Векторная алгебра: основные понятия и определенияВекторная алгебра: основные понятия и определения

Векторная алгебра: основные понятия и определения

Точка Векторная алгебра: основные понятия и определения пересечения медиан треугольника делит медиану Векторная алгебра: основные понятия и определения в отношении Векторная алгебра: основные понятия и определения, считая от вершины Векторная алгебра: основные понятия и определения. Найдем координаты точки Векторная алгебра: основные понятия и определения:

Векторная алгебра: основные понятия и определения

2) Найдем направляющий вектор прямой Векторная алгебра: основные понятия и определения Векторная алгебра: основные понятия и определения. Уравнение прямой, проходящей через вершину Векторная алгебра: основные понятия и определения параллельно прямой Векторная алгебра: основные понятия и определения:

Векторная алгебра: основные понятия и определения

3) Найдем уравнение плоскости Векторная алгебра: основные понятия и определения:

Векторная алгебра: основные понятия и определения

Найдем каноническое уравнение прямой, перпендикулярной плоскости Векторная алгебра: основные понятия и определения и проходящей через т. Векторная алгебра: основные понятия и определения: Векторная алгебра: основные понятия и определения. Запишем каноническое уравнение прямой в параметрическом виде: Векторная алгебра: основные понятия и определения Векторная алгебра: основные понятия и определения.

Найдем координаты точки Векторная алгебра: основные понятия и определения пересечения плоскости Векторная алгебра: основные понятия и определения и найденной прямой: Векторная алгебра: основные понятия и определения Векторная алгебра: основные понятия и определения

Координаты точки Векторная алгебра: основные понятия и определения симметричной точке Векторная алгебра: основные понятия и определения относительно плоскости Векторная алгебра: основные понятия и определенияВекторная алгебра: основные понятия и определения.

Ответ: 1) координаты точки пересечения медиан Векторная алгебра: основные понятия и определения уравнение прямой Векторная алгебра: основные понятия и определения; 3) координаты симметричном точки Векторная алгебра: основные понятия и определения.

На этой странице размещён краткий курс лекций по высшей математике для заочников с теорией, формулами и примерами решения задач:

Высшая математика краткий курс лекций для заочников

Возможно вам будут полезны эти страницы:

Векторная алгебра — решение заданий и задач по всем темам с вычислением

Понятие вектора. Линейные операции над векторами

1°. Любые две точки Векторная алгебра пространства, если они упорядочены (например, А является первой, а В — второй точкой), определяют отрезок вместе с выбранным направлением (а именно, от A к В). Направленный отрезок называется вектором. Вектор с началом в A и концом в В обозначается Векторная алгебра или Векторная алгебра Длина вектора, обозначаемая Векторная алгебра , АВ или Векторная алгебра а, называется также модулем вектора. Чтобы найти координаты вектора, нужно из координат конца вектора вычесть одноименные координаты начала: Векторная алгебра Тогда длина вектора найдется так:

Векторы, расположенные на одной прямой или на параллельных прямых, называются коллинеарными.

Два вектора Векторная алгебра называются равными, если они коллинеарны, имеют одинаковые модули и направления. В этом случае пишутВекторная алгебра Равные векторы имеют равные координаты.

Векторы Векторная алгебраназываются противоположными, если они коллинеарны, имеют одинаковые длины и противоположные направления: Векторная алгебра

Вектор называется нулевым, если его модуль равен нулю, и обозначается Векторная алгебра

2°. Линейными называются действия сложения, вычитания векторов и умножения вектора на число.

1.Если начало Векторная алгебра совмещено с концом Векторная алгебра то начало Векторная алгебрасовпадает с началом Векторная алгебра а конец — с концом Векторная алгебра (рис. 3.1).

2.Если начала векторов Векторная алгебра совмещены, то начало Векторная алгебра совпадает с концом Векторная алгебра, а конец Векторная алгебра совпадает с концом Векторная алгебра (рис. 3.2).

3.При умножении вектораВекторная алгебра на число (скаляр) Векторная алгебрадлина вектора умножается на Векторная алгебра, а направление сохраняется, еслиВекторная алгебра и изменяется на противоположное, если Векторная алгебра (рис. 3.3).

Вектор Векторная алгебраназывается ортом, или единичным вектором вектора Векторная алгебра его длина равна единице:Векторная алгебра

3°. Запись ci — Векторная алгебра означает, что вектор Векторная алгебраимеет координатыВекторная алгебра или Векторная алгебра разложен по базису Векторная алгебра — орты осей Ох, Оу и Oz пространственной системы координат Oxyz). При этом

Векторная алгебра

4°. Числа Векторная алгебра называются направляющими косинусами вектора Векторная алгебра — углы между вектором Векторная алгебра и координатными осями Ох, Оу, Oz соответственно. Единичный вектор Векторная алгебра — орт вектора Векторная алгебра. Для любого вектора справедливо: Векторная алгебра

5°. Линейные операции над векторами, которые заданы своими координатами, определяются так: пусть Векторная алгебратогда

Векторная алгебра

Следовательно, при сложении векторов складываются их соответствующие координаты, а при умножении вектора на число умножаются на число все координаты вектора.

6°. Необходимое и достаточное условие коллинеарности векторов Векторная алгебра, устанавливаемое равенством Векторная алгебра может быть записано соотношениями Векторная алгебра из которых следует пропорциональность их координат: Векторная алгебра

Если один из членов какого-нибудь из этих отношений равен нулю, то и второй член того же отношения должен быть нулем. Геометрически это значит, что в этом случае оба вектора перпендикулярны соответствующей координатной оси (например, если Векторная алгебра то векторы Векторная алгебра).

7°. Система векторов Векторная алгебра называется линейно независимой, если равенство

Векторная алгебра

(Векторная алгебра — действительные числа) возможно только при Векторная алгебра Если же равенство (1) возможно при некотором нетривиальном наборе Векторная алгебра то система этих векторов называется линейно зависимой. Любой вектор линейно зависимой системы линейно выражается через остальные.

Примеры с решениями

Пример:

Доказать, что треугольник с вершинами в точках A(1,2), B(2,5), С(3,4) прямоугольный.

Решение:

Построим векторы, совпадающие со сторонами треугольника (см. п. 1°): Векторная алгебра (рис. 3.4).

Векторная алгебра

Найдем длины сторон: Векторная алгебра Векторная алгебра
Нетрудно видеть, что Векторная алгебра Следовательно, треугольник ABC прямоугольный с гипотенузой Векторная алгебра и катетами Векторная алгебра

Пример:

Проверить, что точки А( 2,-4,3), В(5, —2,9), С( 7,4,6) и D(6,8, -3) являются вершинами трапеции.

Решение:

Составим векторы-стороны с целью обнаружения коллинеарности векторов (в трапеции ВС || AD) (рис. 3.5):

Векторная алгебра

Имеем Векторная алгебра значит, ABCD — трапеция.

Пример:

Найти орт и направляющие косинусы вектора Векторная алгебра

Решение:

Имеем Векторная алгебра В соответствии с п. 3°, 4°

Векторная алгебраи направляющие косинусы вектора Векторная алгебраВекторная алгебра причем Векторная алгебра

Пример:

Определить точку В, которая является концом вектора Векторная алгебра, если его начало совпадает с точкой

Решение:

Пусть точка В имеет координаты B(x,y,z) (рис. 3.6). Тогда координа- ^ ты вектора (п. 1°)

Векторная алгебра

Векторная алгебра

Следовательно, Векторная алгебра Ответ. В(5, -5,3).

Пример:

Вектор Векторная алгебра разложить по векторам

Векторная алгебра

Решение:

Необходимо найти такие числа х, у, z, что Векторная алгебрат.е.

Векторная алгебра

Имея в виду, что при сложении векторов складываются их координаты и равные векторы имеют равные координаты, приходим к системе уравнений

Векторная алгебра

из которой

Векторная алгебра

Ответ. Векторная алгебра

Пример:

Показать, что система векторов Векторная алгебраВекторная алгебра линейно независима.

Решение:

В данном случае равенство (1) имеет вид Векторная алгебра, или Векторная алгебра Отсюда получаем систему уравнений

Векторная алгебра

из которой следует, что Векторная алгебра Это подтверждает линейную независимость данных векторов.

Пример:

Показать, что система векторов Векторная алгебраВекторная алгебра линейно зависима.

Решение:

Равенство (1) равносильно системе уравнений

Векторная алгебра

Она имеет ненулевое решение, например, Векторная алгебра Таким образом, Векторная алгебра Отсюда видно, что Векторная алгебрат.е. вектор Векторная алгебра линейно выражается через Векторная алгебра Очевидно, что Векторная алгебра можно выразить через Векторная алгебра— через Векторная алгебра

Скалярное произведение векторов

1°. Скалярным произведением двух ненулевых векторов а и b называется число, равное произведению их длин на косинус угла Векторная алгебра между ними:

Векторная алгебра

Из Векторная алгебра (рис. 3.7) имеемВекторная алгебра (Векторная алгебра — проекция вектораВекторная алгебра на направление вектора Векторная алгебра).

Итак, Векторная алгебра

2°. Если

Векторная алгебра

т.е. скалярное произведение векторов равно сумме произведений одноименных координат этих векторов.

При этом Векторная алгебра если же Векторная алгебра, т. е. Векторная алгебрапоскольку cos 90° = 0 (условие перпендикулярности двух векторов).

3°. Из определения скалярного произведения следует формула для вычисления угла между двумя векторами:

Векторная алгебра

Примеры с решениями

Пример:

Перпендикулярны ли векторы Векторная алгебра если Векторная алгебра

Решение:

Условие перпендикулярности векторов (п. 2°) Векторная алгебра в нашем случае

Векторная алгебра

Ответ. Да.

Пример:

Найти проекцию вектора Векторная алгебра на направление вектора Векторная алгебра

Решение:

Имеем Векторная алгебра (п. 1°). Подставив сюда выражение для Векторная алгебра из п. 3°, получим

Векторная алгебра

Ответ Векторная алгебра

Пример:

Зная векторы, совпадающие с двумя сторонами: Векторная алгебра и Векторная алгебра найти внутренние углы треугольника ABC.

Решение:

Имеем (рис. 3.8)

Векторная алгебра

Векторная алгебра

Векторная алгебра

При помощи таблиц находим Векторная алгебра Для нахождения других углов нам понадобится вектор Векторная алгебракоторый является суммой Векторная алгебра : Векторная алгебра поэтому Векторная алгебра

Векторная алгебра

Ответ. 123° 10′, 19°29′, 37°21′.

Пример:

Найти координаты вектора Векторная алгебра если Векторная алгебра где Векторная алгебраи Векторная алгебра

Решение:

На рис. 3.9 имеем Векторная алгебра Из условий перпендикулярности векторов (п. 2°) имеем Векторная алгебраПоложим Векторная алгебра Условие задачи перепишем в виде Рис. 3.9 системы

Векторная алгебра

Векторная алгебра

Векторное произведение векторов

1°. Векторы Векторная алгебра приведенные к одному началу, образуют правую (левую) тройку при условии: если смотреть из конца вектора Векторная алгебра на плоскость векторов Векторная алгебра то кратчайший поворот от Векторная алгебра совершается против (по) часовой стрелки (рис. 3.10).

Векторная алгебра

2°. Векторным произведением ненулевых векторов Векторная алгебра называется вектор Векторная алгебра, обозначаемый Векторная алгебра удовлетворяющий следующим трем условиям.

1)Векторная алгебра вектор Векторная алгебра перпендикулярен плоскости векторов Векторная алгебра

2) Вектор Векторная алгебра направлен так, что векторы Векторная алгебра образуют правую тройку.

3) Векторная алгебра т.е. его длина численно равна площади параллелограмма, построенного на векторах Векторная алгебра (рис. 3.11), таким образом, Векторная алгебра

Если векторы Векторная алгебра коллинеарны, то под Векторная алгебра понимается нулевой вектор:Векторная алгебра

3°. Если известны координаты векторов-сомножителей Векторная алгебра то для отыскания координат векторного произведения служит формула

Векторная алгебра

в которой определитель следует разложить по элементам первой строки.

Примеры с решениями

Пример:

Найти площадь треугольника, вершины которого находятся в точках А(1,2,3), В{3,2,1), С(1,0,1).

Решение:

Найдем координаты векторов Векторная алгебраОпределим координаты векторного произведения Векторная алгебра (рис. 3.12):

Векторная алгебра

Найдем длину этого вектора, которая равна численно площади параллелограмма S (п. 2°): Векторная алгебра Площадь треугольника Векторная алгебра равна Векторная алгебра

Векторная алгебра

Пример:

Построить параллелограмм на векторах Векторная алгебра и Векторная алгебра вычислить его площадь и высоту, опущенную на Векторная алгебра.

Сделаем чертеж (рис. 3.13). Имеем Векторная алгебра Отдельно вычисляем векторное произведение:

Векторная алгебра

Следовательно,

Векторная алгебра

Векторная алгебра

Смешанное произведение векторов

1°. Смешанным произведением трех ненулевых векторов Векторная алгебра называется число, равное скалярному произведению двух векторов, один из которых — векторное произведение Векторная алгебра, а другой — вектор Векторная алгебра. Обозначение: Векторная алгебра Если Векторная алгебра образуют правую тройку, то Векторная алгебра ЕслиВекторная алгебра образуют левую тройку, то Векторная алгебра

Модуль смешанного произведения векторовВекторная алгебра равен объему параллелепипеда (рис. 3.14), построенного на этих векторах,Векторная алгебра Условие Векторная алгебра равносильно тому, что векторы Векторная алгебра расположены в одной плоскости, т.е. компланарны. Имеет место равенство

Векторная алгебра

Объем тетраэдра с вершинами в точках Векторная алгебраВекторная алгебра можно вычислить по формуле Векторная алгебрагде

Векторная алгебра

Векторная алгебра

2°. Условие Векторная алгебра равносильно условию линейной независимости Векторная алгебра, а тогда любой вектор Векторная алгебра линейно выражается через них, т. е. Векторная алгебра Для определения х, у, z следует решить соответствующую систему линейных уравнений

Примеры с решениями

Пример:

Найти объем параллелепипеда, построенного на векторах Векторная алгебра

Решение:

Искомый объем Векторная алгебра Поскольку

Векторная алгебра

Пример:

В точках 0(0,0,0), А(5,2,0), В(2,5,0) и С(1,2,4) находятся вершины пирамиды. Вычислить ее объем, площадь грани ABC и высоту пирамиды, опущенную на эту грань.

Решение:

1) Сделаем схематический чертеж (рис. 3.15).

2) Введем векторы Векторная алгебра Векторная алгебра.Объем пирамиды ОАВС (тетраэда) равен

Векторная алгебра

3) Площадь грани ABC

Векторная алгебра

4) Объем пирамиды Векторная алгебра отсюда Векторная алгебра
Ответ. Векторная алгебра

Основные понятия векторной алгебры

Основные понятия векторной алгебры

Основные понятия векторной алгебры

Основные понятия векторной алгебры

Основные понятия векторной алгебры

Основные понятия векторной алгебры

Основные понятия векторной алгебры

Прямоугольные декартовы координаты

Координатная ось

Пусть на плоскости или в пространстве задана произвольная прямая L: Ясно, что по этой прямой L сы можем перемещаться в oднoм из двух противоположных направлений. Выбор любого (одного) из этих направлений будем называть ориентацией прямой L.

Оnределение:

Прямая с заданной на ней ориентацией называется осью. На чертеже ориентация оси указывается стрелкой (рис. 1 ) . Фиксируем на оси Векторная алгебра некоторую точку О и выберем какой-нибудь отрезок а, доложив по определению его длину равной единице (рис. 2).

Пусть М — произвольная точка оси Векторная алгебра. Поставим этой точке в соответствие число х по следующему прав илу: х равно расстоюiию между точками О и М, взятому со знаком плюс или со знаком минус н зависимости от того, совпадает ли направление движения от точки О к точке М с заданным направлением или противоположно ему (рис. 3).

Векторная алгебра

Оnределение:

Ось Векторная алгебра с точкой начала отсчета О и масштабными отрезками а называется координатной осью, а число х, вычисляемое по указанному правилу, называется координатой точки М. Обозначение: М (х).

Прямоугольные декартовы координаты на плоскости

Пусть П — произвольная плоскость. Возьмем на ней некоторую точку О и проведем через эту точку взаимно перпендикулярные прямые L 1 и L 2. Зададим на каждой из nрямых L 1 и L 2 ориентацию и выберем единый масштабный отрезок а. Тогда эти прямые nревратятся в координатные оси с общей точкой отсчета О (рис. 4).

Векторная алгебра

Назовем одну из координатных осей осью абсцисс (осью Ох), друrую —осью ординат (осью Оу) (рис. 5). Точка О называется началом координат. Пусть М — произвольная точка плоскости П (рис. 6). Проведем через точку М прямые, перпендикулярные координатным осям, и поставим ей в соответствие упорядоченную пару чисел (х, у) по следующему nравилу:

Векторная алгебра

Числа х и у называются прямоугольными декартовыми при этом х называется ее абсциссой, а у — ординатой. координатами точки М; Обозначение: М(х, у). Чтобы кратко охарактеризовать описанную конструкцию, говорят, что на плоскости П задана прямоугольная декартова система координат Ох у. Координатные оси разбивают плоскость на четыре части, называемые четвертями или квадрантами. На рисунке и в таблице показано, как эти квадранты нумеруются (рис. 7).

Векторная алгебра

Замечание:

Масштабные от резки на координатных осях могут быть и разной длины. В этом случае координатная система называется просто прямоугольной.

Прямоугольные декартовы координаты в пространстве

Возьмем в пространстве некоторую точку О и проведем через нее три взаимно перпендикулярные прямые L 1 , L 2 и L 3 . Выберем на каждой из nрямых ориентацию и единый масштаб. Прямые L 1 , L 2 и L 3 превратятся в координатные оси с общей точкой отсчета О (рис. 8).

Векторная алгебра

Назовем одну из этих осей осью абсцисс (осью Ох), вторую — осью ординат (осью Оу) и третью — осью аппликат (осью Oz) (рис. 9). Точка О называется началом координат. Пусть М — nроизвольная точка (рис. 10). Проведем через точку М nлоскости, перпендикулярные координатным осям, и поставим ей в соответстnие упорядоченную тройку чисел (х, у, z) по следующему правилу:

Векторная алгебра

Числа х, у и z называются прямоугольными декартовыми координатами точки М; при этом х называется абсциссой точки М, у — ее ординатой, а z —аппликатой. Обозначение: М(х, у, z). Таким образом, в пространстве введена прямоугольная декартова система координат.

Оnределение:

Плоскость, проходящая через любую пару координатных осей, называется координатной плоскостью.

Координатных плоскостей три: Оху, Oyz и Oxz. Эти плоскости разбивают пространство на восемь частей — октантов. 1 .4. Простейшие задачи аналитической геометрии А. Расстояние между точками Пусть М 11 ) и М 22 )- две точки на координатной оси. Тогда расстояние d между ними вычисляется по формуле

Векторная алгебра

Если на плоскости задана прямоугольная декартова система координат Оху, то расстояние d между любыми двумя точками М 11 , у1 и М22 , y2) вычисляется по следующей формуле

Векторная алгебра

Рассмотрим прямоугольный треугольник ∆MM1M2 (pиc. l l). По теореме Пифагора

Векторная алгебра

Так как расстояние d между точками M 1 и M 2 равно длине отрезка M1M2 а |M1M| = |x 2 — x 1|, |MM2| = |y 2 — y 1|, то отсюда получаем, что

Векторная алгебра

Замечая, что

Векторная алгебра

,и извлекая из обеих частей равенства квадратный корень, приходим к требуемой формуле .

Замечание:

Расстояние между точками Векторная алгебра в пространстве вычисляется по следующей формуле

Векторная алгебра

Векторная алгебра

Задача:

Написать уравнение окружности радиуса т с центром в точке Р(а, b).

Пусть М(х, у) — точка окружности (рис. 12). Это означает, что |M P| = r. Заменим |M P|его выражением

Векторная алгебра

и возведем обе части полученного равенства в квадрат:

Векторная алгебра

Это есть каноническое уравнение окружности радиуса r с центром в точке Р(а, b) .

Задача:

Пусть F л (-с, 0) и F n (c, 0) -фиксированные точки плоскости, а -заданное число (а > с ≥ 0). Найти условие, которому удовлетворяют координаты х и у точки М, обладающей следующим свойством: сумма расстояний от точки М до Fл и до F n равна 2а.

Вычислим расстояния между точками М и F л и между точками М и F n . Имеем

Векторная алгебра

(рис. 13). Отсюда

Векторная алгебра

Перенесем второй корень в правую часть

Векторная алгебра

Возводя обе части в квадрат, после простых преобразований получим

Векторная алгебра

С целью дальнейших упрощений вновь возводим обе части в квадрат. В результате nриходим к равенству

Векторная алгебра

Полагая b 2 = а 2 — с 2 и деля обе части nоследнего соотноwения на а 2 b2 , nолучаем уравнение эллипса

Векторная алгебра

(см. главу 111) .

Деление отрезка в данном отношении:

Пусть М11 , y1) и М22 , y2) — различные точки плоскости. Пусть, далее, точка М(х, у) лежит на отрезке М1М2 и делит его в отношении λ 1 : λ 2 , т. е.

Векторная алгебра

Требуется выразить координаты х и у этой точки через координаты концов отрезка М1М2 и числа λ 1 и λ 2 . Предположим сначала, что отрезок М1М2 не параллелен оси ординат Оу (рис. 14). Тогда

Векторная алгебра

Так как

Векторная алгебра

то из последних двух соотношений получаем, что

Векторная алгебра
Векторная алгебра

Точка М лежит между точками М1 и М2 , поэтому либо х 1 < х < х 2 , либо х 1 > х > х 2 . В любом из этих случаев разности х1 — х и х — х 2 имеют одинаковые знаки. Это позволяет переписать последнее равенство в следующей форме

Векторная алгебра

Отсюда

Векторная алгебра

В случае, когда отрезок М1М2 параллелен оси Оу, х 1 = х 2 = х. Заметим, что тот же результат дает формула (*), если nоложить в ней х 1 = х 2 . Справедливость формулы

Векторная алгебра

доказывается аналогичным рассуждением .

Задача:

Найти координаты центра тяжести М треугольника с вершинами в точках . М1 ( х 1 , у 1 ), М2 ( х 2 , у 2 ) и М3 ( х 3 , у 3 ). Восnользуемся тем, что центр тяжести треугольника совпадает с точкой пересечения его медиан. Точка М делит каждую медиану в отношении 2 : 1, считая от вершины (рис. 15). Тем самым, ее координаты х и у можно найти по формулам

Векторная алгебра

где х’ и у’ — координаты второго конца М’ медианы М3 М’. Так как М’ — середина отрезка М1М2, то

Векторная алгебра
Векторная алгебра

Полученные соотношения позволяют выразить координаты z и у центра тяжести М треугольника ∆М1М2М3 через координаты его вершин:

Векторная алгебра

Замечание:

Если точка М(х,у,z ) делит отрезок с концами М1( х1, у1, z1) и М2( х2, у2, z2) в отношении λ1 : λ2, то ее координаты вычисляются по формулам

Векторная алгебра

Полярные координаты

Предположим, что задана точка О, ось Векторная алгебра.содержащая точку О, и масштабный отрезок (эталон длины) (рис. 16).

Пусть М — произвольная точка плоскости, отличная от точки О (рис.17). Ее положение на плоскости однозначно определяется двумя числами: расстоянием г между точками О и М и отсчитываемым против часовой стрелки углом φ между положительным лучом оси Векторная алгебра и лучом ОМ с началом в точке О. Пару (г, φ) называют полярными координатами точки М; г — полярный радиус точки М , φ — полярный угол.

Точка О называется полюсом, Векторная алгебра — полярной осью.

Ясно, чтоВекторная алгебраЕсли точка М совпадаете полюсом, то считаем г = 0; полярный угол φ в этом случае не определен.

Таким образом, на плоскости можно задать еще одну координатную систему — полярную.

Прямоугольную декартову систему координат Оху будем называть согласованной с заданной полярной, если начало координат 0(0, 0) — полюс, ось Ох — полярная ось, а ось Оу составляете осью Ох угол, равныйВекторная алгебра. Тогда

Векторная алгебра

Векторная алгебра

(рис.18). В свою очередь Векторная алгебра

Пример:

Пусть R > О — заданное число. Множество точек плоскости, полярные координаты (г, <р) которых удовлетворяют равенству

r = R,

является окружностью радиуса R с центром в полюсе (рис. 19)

Векторная алгебра

Определители 2-го и 3-го порядков

Пусть имеем четыре числа а11, а12, а21, а22 (читается — «а-один-один», «а-один-два», «а-два-один», «а-два-два»).

Определителем второго порядка называется число

Векторная алгебра

Обозначение:

Векторная алгебра

Числа а11, а12, а21, а22 называются элементами определителя; пары элементов а11, а12 и а21, а22 образуют строки определителя, а пары элементов а11, а21 и а12, а22 — его столбцы; пара элементов а11, а22 образует главную диагональ определителя, а пара а12, а21побочную диагональ.

Тем самым, для вычисления определителя второго порядка нужно из произведения а11, а22 элементов главной диагонали вычесть произведение а12, а21 элементов его побочной диагонали (рис. 20).

Векторная алгебра

Пример:

Вычислить определитель

Векторная алгебра

По правилу (1) имеем

Векторная алгебра

С определителями второго порядка мы встречаемся уже при отыскании решения системы двух линейных алгебраических уравнений с двумя неизвестными

Векторная алгебра

Решая эту систему методом исключения неизвестных при условии, что

Векторная алгебра

находим

Векторная алгебра

Пусгь теперь даны девять чисел aij (i = I, 2, 3; j = I, 2, 3).

Определителем третьего порядка называется число, обозначаемое символом

Векторная алгебра

и вычисляемое по следующему правилу:

Векторная алгебра

Первый индекс i элемента aij указывает номер строки, в которой он расположен, а второй индекс j — номер столбца.

Элементы а11, а22, а33 образуют главную диагональ определителя ∆, элементы а13, а22, а31 — побочную диагональ, элементы а13, а22, а31 — побочную диагональ.

Чтобы разобраться с распределением знаков в правой части формулы (2), обратим внимание на следующее: произведение элементов а11, а22, а33 главной диагонали входит в формулу со своим знаком, также как и произведение а11, а22, а33 и а11, а22, а33 элементов, расположенных в вершинах треугольников, основания которых параллельны главной диагонали (рис. 21); с другой стороны, произведение а13, а22, а31 элементов побочной диагонали, а также произведения а12, а21, а33 и а11, а23, а32 — с противоположным знаком (рис.22). Такой подход к вычислению определителя третьего порядка называется правилом треугольника.

Векторная алгебра

Пример:

Вычислить определитель

Векторная алгебра

Применяя правило треугольника, находим

Векторная алгебра

Установим некоторые свойства определителей 3-го порядка, легко проверяемые при помощи разложений (1) и (2).

Свойство:

Величина определителя не изменится, если все его строки заменить его столбцами с теми же номерами

Векторная алгебра

Свойство:

При перестановке любых двух строк (или любых двух столбцов) определителя он изменяет свой знак на противоположный.

Свойство:

Общий множитель всех элементов одной строки (или одного столбца) определителя можно вынести за знак определителя

Векторная алгебра

Следующие три свойства определителя вытекают из свойств 1-3. Впрочем, в их справедливости можно убедиться и непосредственно, пользуясь формулами (1) и (2).

Свойство:

Если определитель имеет две равные строки (или дна равных столбца), то он равен нулю.

Свойство:

Если все элементы некоторой строки (или некоторого столбца) равны нулю, то и сам определитель равен нулю.

Свойство:

Если соответствующие элементы двух строк (или двух столбцов) пропорциональны, то определитель равен нулю.

Укажем еще один способ вычисления определителя 3-го порядка

Векторная алгебра

Минором Mij элемента aij определителя ∆ называется определитель, получаемый изданного путем вычеркивания элементов i-й строки и j-ro столбца, на пересечении которых находится этот элемент. Например, минором элемента a23 будет определитель

Векторная алгебра

Алгебраическим дополнением элемента Aij называется минор Mij — этого элемента, взятый со своим знаком, если сумма i + j номеров строки и столбца, на пересечении которых расположен элемент aij, есть число четное, и с противоположным знаком, если это число нечетное:

Векторная алгебра

Теорема:

Определитель равен сумме произведений элементов любой его строки (любого его столбца) на их алгебраические дополнения, так что имеют место следующие равенства

Векторная алгебра

Покажем, например, что

Векторная алгебра

Пользуясь формулой (2), получаем, что

Векторная алгебра

Правило (3) называется разложением определителя по элементам i-й строки, а правило (4) — разложением определителя по элементам j -го столбца.

Пример:

Вычислить определитель

Векторная алгебра

Раскладывая определитель по элементам 1-ой строки, получим

Векторная алгебра

Понятия связанного и свободного векторов

Рассмотрим две точки А и В. По соединяющему их отрезку можно перемещаться в любом из двух противоположных направлений. Если считать, например, точку А начальной, а точку В конечной, то тогда получаем направленный отрезок АВ, в другом случае — направленный отрезок В А. Направленные отрезки часто называют связанными или закрепленными векторами. На чертеже заданное направление указывается стрелкой (рис. 1).

Векторная алгебра

В случае, когда начальная и конечная точки совпадают, А = В, связанный вектор называется нулевым.

Определение:

Будем говорить, что связанные векторы АВ и CD равны, если середины отрезков AD и ВС совпадают (рис. 2).

Обозначение:

А В = CD.

Заметим, что в случае, когда точки А, В, С и D не лежат на одной прямой, это равносильно тому, что четырехугольник ABCD — параллелограмм. Ясно, что равные связанные векторы имеют равные длины.

Пример:

Рассмотрим квадрат и выберем векторы, как указано на рис.3. Векторы АВ и DC равны, а векторы ВС и DA не равны.

Укажем некоторые свойства равных связанных векторов:

  1. Каждый связанный вектор равен самому себе: АВ = АВ.
  2. Если АВ = CD, той CD = АВ.
  3. Если АВ = CD и CD = EF,то АВ = EF (рис.4).

Пусть АВ — заданный связанный вектор и С — произвольная точка. Ясно, что, опираясь на определение, всегда можно построить точку D так, чтобы

CD = АВ.

Тем самым, от каждой точки можно отложить связанный вектор, равный исходному (рис. 5).

Мы будем рассматривать свободные векторы, т. е. такие векторы, начальную точку которых можно выбирать произвольно, или, что то же самое, которые можно произвольно переносить параллельно самим себе. Ясно, что свободный вектор Векторная алгебра однозначно определяется заданием связанного вектора АВ.

Если в качестве начальных выбирать лишь те точки, которые лежат на прямой, определяемой заданным (ненулевым) связанным вектором, то мы приходим к понятию скользящего вектора (рис. 6).

Векторная алгебра

Связанные и скользящие векторы широко используются в теоретической механике.

Для обозначен ия свободных векторов будем пользоваться полужирными строчными латинскими буквами — а, b, с,… ; нулевой вектор обозначается через 0.

Пусть заданы вектор а и точка А. Существует ровно одна точка В, для которой

Векторная алгебра = а

(рис.7). Операция построения связанного вектора АВ, для которого выполняется это равенство, называется откладыванием свободного вектора а от точки А.

Векторная алгебра

Заметим, что связанные векторы, получаемые в результате описанной операции откладывания, равны между собой и, значит, имеют одинаковую дли ну. Это позволяет ввести длину свободного вектора а, которую мы будем обозначать символом |а. Длина нулевого вектора равна нулю. Если а = b, то |а| = |b; обратное неверно.

Линейные операции над векторами

Сложение векторов

Пусть заданы два вектора а и b. Возьмем какую-нибудь точку О и отложим от нее вектор a: Векторная алгебра= а. От полученной точки А отложим вектор b: Векторная алгебра = b. Полученный в результате векторВекторная алгебра называется суммой векторов а и b и обозначается через a + b (рис. 8). Этот способ построения суммы векторов называется правилом треугольника.

Нетрудно заметить, что сложение векторов коммутативно, т. е. для любых векторов а и b справедливо равенство

Векторная алгебра

Если отложить векторы а и 1» от обшей точки О и построить на них как на сторонах параллелограмм, то вектор Векторная алгебра, идущий из общего начала О в противоположную вершину параллелограмма, будет их суммой а + b (или b +а) (рис. 10). Этот способ построения суммы векторов называется правилом параллелограмма.

Векторная алгебра

Пусть заданы три вектора, например, a, b и с. Отложим от произвольной точки О вектор a: Векторная алгебра = а; от полученной точки А отложим вектор b: Векторная алгебра = b; отточки В — вектор с: Векторная алгебра= с (рис. 11). По определению суммы Векторная алгебра— а + b и Векторная алгебра = (а + b) + с (рис. 12). С другой стороны, АС = b + с и, значит, ОС = а + (Ь + с) (рис. 13). Тем самым, для любых векторов a, b и с выполняется равенство

(а +b) + с = а + (b + с),

т. е. сложение векторов ассоциативно. Опуская скобки, можно говорить о сумме трех векторов и записывать ее так:

а + b + с.

Векторная алгебра

Аналогично определяется сумма любого числа векторов: это есть вектор, который замыкает ломаную, построенную из заданных векторов. На рис. 14 показан», как построить сумму семи векторов:

Векторная алгебра

Приведенный способ сложения произвольного числа векторов называется правилом замыкающего ломаную.

Пример:

Найти сумму векторов, идущих из центра правильного шестиугольника в его вершины.

По правилу замыкающего ломаную получаем

Векторная алгебра

(рис. 15).

Векторная алгебра

Умножение вектора на число

Определение:

Свободные векторы а и b называются коллинеарными, если определяющие их связанные векторы лежат на параллельных или на совпадающих прямых (рис. 16).

Векторная алгебра

Обозначение: а||b.

Замечание:

Из определения следует, что если хотя бы один из векторов a и b нулевой, то они коллинеарны.

Если отложить коллинеарные векторы а и b от обшей точки О, Векторная алгебра = n, Векторная алгебра = Ь, то точки О, А н В будут лежать на одной прямой. При этом возможны два случая: точки А и В располагаются на этой прямой: 1) по одну сторону от точки О, 2) по разные стороны (рис. 17). В первом случае векторы а и b называются одинаково направленными, а во втором — противоположно направленными.

Векторная алгебра

Если векторы имеют равные длины и одинаково направлены, то они равны. Пусть а — вектор, λ — вещественное число.

Определение:

Произведением вектора а на число λ называется вектор b такой, что

  1. |Ь| = |λ| • |а|;

2) векторы а и b одинаково (соответственно, противоположно) направлены, если λ > 0 (соответственно, λ < 0).
Обозначение: b = λа.

При λ = 0 положим λа = 0.

Таким образом, векторы а и Ь = λа коллинеарны по определению. Верной обратное: если векторы а(а ≠ 0) и Ь коллинеарны, то можно найти число А такое, что h = λа.

Укажем основные свойства этой операции умножения вектора на число:

Векторная алгебра

(здесь λ и μ — любые действительные числа, а и Ь — произвольные векторы).
Определение:

Вектор, длина которого равна единице, называется единичным вектором, или ортом, и обозначается а° (читается: а с нуликом), |а°| = 1.
Если а ≠ 0, то вектор

Векторная алгебра

есть единичный вектор (орт) направления вектора а (рис. 18).

Векторная алгебра

Координаты и компоненты вектора

Выберем в пространстве прямоугольную декартову систему координат. Обозначим через i, j, к единичные векторы (орты) положительных направлений осей Ox, Оу, Oz (рис. 19). Рассмотрим произвольный вектор п, начало которого лежит в начале координат О, а конец — в точке А. Проведем через точку А плоскости, перпендикулярные осям Ох, Оу и Oz. Эти плоскости пересекут координатные оси в точках Р, Q и R соответственно. Из рис. 20 видно, что

Векторная алгебра

Векторы Векторная алгебра коллинеарны соответственно единичным векторам i, j, k,

Векторная алгебра

поэтому найдутся числа х, у, z такие, что

Векторная алгебра

и, следовательно,

а = xi + yj + zk. (2)

Формула (2) называется разложением вектора а по векторам i, j, к. Указанным способом всякий вектор может быть разложен по векторам i, j, k.

Векторы i, j, к попарно ортогональны, и их длины равны единице. Тройку i, j, k называют ортонормированным (координатным) базисом (ортобазисом).

Можно показать, что для каждого вектора а разложение (2) по базису i, j, к единственно, т. е. коэффициенты х, у, z в разложении вектора а по векторам i, j, к определены однозначно. Эти коэффициенты называются координатами вектора а. Они совпадают с координатами х, у, z точки А — конца вектора а. Мы пишем в этом случае

а = {х, y,z}.

Эта запись означает, что свободный вектор а однозначно задастся упорядоченной тройкой своих координат. Векторы xi, yj, zk, сумма которых равна вектору а, называются компонентами вектора а.

Векторная алгебра

Из вышеизложенного следует, что два вектора а = { х1, у1, z1 } и b = {х2, у2, z2} равны тогда и только тогда, когда соответственно равны их координаты, т. е.

Векторная алгебра

Радиус-вектором точки М(х,у, z) называется вектор г = xi + yj + zk, идущий из начала координат О в точку М (рис. 21).

Линейные операции над векторами в координатах

Пусть имеем два вектора а = { х1, у1, z1} и b = { х2, у2, z2 },так что а = х1i, у1j+ z1k. b = х2i+ у2j+z2k. На основании правила сложения векторов имеем

Векторная алгебра

или, что то же,

Векторная алгебра

— при сложении векторов их координаты попарно складываются. Аналогично получаем

Векторная алгебра

Далее,

Векторная алгебра

или, что то же,

Векторная алгебра

— при умножении вектора на число все его координаты умножаются на это число.
Пусть а = { х1, у1, z1}, b = { х2, у2, z2 } — коллинеарные векторы, причем b ≠ 0. Тогда а = μb, т.е.

Векторная алгебра

или (3)

Векторная алгебра

Обратно, если выполняются соотношения (3), то а = μb, т. е. векторы a и b коллинеарны.

Таким образом, векторы а и b коллинеарны тогда и только тогда, когда их координаты пропорциональны.

Векторная алгебра

Пример:

Найти координаты вектора Векторная алгебраначало которого находится в точке М1 ( х1, у1, z1 ). а конец — в точке M2 (х2, у2, z2).
Из рис. 22 видно, что Векторная алгебра = r2 — r1 , где r2, r1 — радиус-векторы точек М1 и M2 соответственно. Поэтому

Векторная алгебра

— координаты вектора ММг равны разностям одноименных координат конечной М2 и начальной М точек этого вектора.

Проекция вектора на ось

Рассмотрим на оси l ненулевой направленный отрезок АВ (рис.23). Величиной направленного отрезка АВ на оси l называется число, равное длине отрезка АВ, взятой со знаком «+», если направление отрезка АВ совпадаете направлением оси l, и со знаком «-», если эти направления противоположны.

Рассмотрим теперь произвольный вектор Векторная алгебра, определяемый связанным вектором АВ. Опуская из его начала и конца перпендикуляры на заданную ось l, построим на ней направленный отрезок CD (рис. 24).

Векторная алгебра

Определение:

Проекцией вектора Векторная алгебрана ось l называется величина направленного отрезка CD, построенного указанным выше способом.

Обозначение: Векторная алгебра

Основные свойства проекций

  1. Проекция вектора АВ на какую-либо ось l равна произведению длины вектора на косинус угла между осью и этим вектором (рис. 25)Векторная алгебра
  2. Проекция суммы векторов на какую-либо ось l равна сумме проекций векторов на ту же ось.

Например,

Векторная алгебра

(рис. 26).

Векторная алгебра

Скалярное произведение векторов

Пусть имеем два вектора a и b.

Определение:

Скалярным произведением вектора а на вектор b называется число, обозначаемое символом (а, b) и определяемое равенством

Векторная алгебра

(1)
где φ, или в иной записи (Векторная алгебра), есть угол между векторами а и b (рис. 27 а).
Заметив, что |b| cos φ есть проекция вектора b на направление вектора а, можем написать

Векторная алгебра

(рис. 27 б) и, аналогично,’ (2)

Векторная алгебра
Векторная алгебра

(рис. 27 в), т.е. скалярное произведение двух векторов равно длине одного из них, помноженной на проекцию на него другого вектора. В случае, если один из векторов а или b — нулевой, будем считать, что

(a, b) = 0.

Свойства скалярного произведения

  1. Скалярное произведение обращается в нуль в том и только в том случае, когда по крайней мере один из перемножаемых векторов является нулевым или когда векторы а и b ортогональны, a ⊥ b.

Это следует из формулы (1), определяющей скалярное произведение.

Поскольку направление нулевого вектора не определено, мы можем его считать ортогональным любому вектору. Поэтому указанное свойство скалярного произведения можно сформулировать так:

Векторная алгебра

2. Скалярное произведение коммутативно:

(а, b) = (b, а).

Справедливость утверждения вытекает из формулы (I), если учесть четность функции cos φ: cos(- φ) = cos φ.

3. Скалярное произведение обладает распределительным свойством относительно сложения:

(а + b, с) = (а, с) + (b, c).

Действительно,

Векторная алгебра

4. Числовой множитель А можно выносить за знак скалярного произведения

(λа, b) = (а, λb) = λ (а, b).

  • Действительно, пусть λ > 0. Тогда
Векторная алгебра

поскольку при λ > 0 углы (Векторная алгебра) и (λВекторная алгебра) равны (рис.28).

Аналогично рассматривается случай λ < 0. При λ = 0 свойство 4 очевидно.

Векторная алгебра

Замечание:

В общeм случае (а, b)c ≠ a(b, c).

Скалярное произведение векторов, заданных координатами

Пусть векторы а и b заданы своими координатами в ортонормированном базисе i, j, k:

Векторная алгебра

Рассмотрим скалярное произведение векторов а и b:

Векторная алгебра

Пользуясь распределительным свойством скалярного произведения, находим

Векторная алгебра

Учитывая, что

Векторная алгебра

получаем (4)

Векторная алгебра

То есть, если векторы а и b заданы своими координатами в ортонормированном базисе, то их скалярное произведение равно сумме произведений одноименных координат.

Пример:

Найти скалярное произведение векторов n = 4i — 2j + k и b = 6i + 3j + 2k.

(a, b) = 4 • 6 + (-2) • 3 + 1 • 2 = 20.

Скалярное произведение вектора на себя называется скалярным квадратом:

(а, а) = а2.

Применяя формулу (4) при b = а, найдем (5)

Векторная алгебра

С другой стороны,

Векторная алгебра

так что из (5) следует, что (6)

Векторная алгебра

— в ортонормированном базисе длина вектора равна квадратному корню из суммы квадратов его координат.

Косинус угла между векторами. Направляющие косинусы

Согласно определению

(а, b) = |а| • |b| • cos φ,

где φ — у гол между векторами а и b. Из этой формулы получаем
(7)

Векторная алгебра

(предполагается, что векторы а и b — ненулевые).

Пусть а = { х1, у1, z1}, b = { х2, у2, z2 }. Тогда формула (7) примет следующий вид

Векторная алгебра

Пример:

Найти угол между векторами a = {2, -4,4,} и d = {-3,2,6}. Пользуясь формулой (8), находим

Векторная алгебра

Пусть b = i, T.e. b = {1,0,0}. Тогда для всякого вектора а = { х1, у1, z1} ≠ 0 имеем

Векторная алгебра

или, в координатной записи, (9)

Векторная алгебра

где а есть угол, образованный вектором я с осью Ох. Аналогично получаем формулы

Векторная алгебра
Векторная алгебра

Формулы (9)-(11) определяют направляющие косинусы вектора а, т. е. косинусы углов, образуемых вектором n с осями координат (рис. 29).

Пример:

Найти координаты единичного вектора n°. По условию | n°| = 1. Пусть n° = zi+ yj+ zk. Тогда

Векторная алгебра

Таким образом, координатами единичного вектора являются косинусы углов, образованных этим вектором с осями координат:

Векторная алгебра

Отсюда получаем

Векторная алгебра
Векторная алгебра

Пример:

Пусть единичный вектор n° ортогонален оси z:

Векторная алгебра

(рис. 30). Тогда его координаты г и у соответственно равны

x=cos φ, y = sin φ.

Тем самым,

Векторная алгебра

Векторное произведение векторов

Определение:

Векторным произведением вектора а на вектор b называется вектор, обозначаемый символом [a, b] (или a х b), такой, что

1) длина вектора [а, b] равна |а| • |Ь| • sin φ, где φ — угол между векторами а и b (рис.31);

2) вектор [а, b] перпендикулярен векторам а и b, т.е. перпендикулярен плоскости этих векторов;

3) вектор [а, Ь] направлен так, что из конца этого вектора кратчайший поворот от л к Ь виден происходящим против часовой стрелки (рис. 32).

Векторная алгебра

Иными словами, векторы я, b и [a, b] образуют правую тройку векторов, т.е. расположены так, как большой, указательный и средний пальцы правой руки. В случае, если векторы a и b коллинеарны, будем считать, что [a, b] = 0.

Векторная алгебра

По определению длина векторного произведения (1)

Векторная алгебра

численно равна площади Векторная алгебра параллелограмма (рис.33), построенного на перемножаемых векторах a и b как на сторонах:

|[a, b]| = Векторная алгебра.

Свойства векторного произведения

  1. Векторное произведение равно нулевому вектору тогда и только тогда, когда по крайней мере один из перемножаемых векторов является нулевым или когда эти векторы коллинеарны (если векторы я и b коллинеарны, то угол между ними равен либо 0, либо тг).

Это легко получить из того, что |[a, b]| = |a| • |b| • sin φ.

Если считать нулевой вектор коллинеарным любому вектору, то условие коллинеарности векторов a и b можно выразить так

Векторная алгебра

2. Векторное произведение антикоммутативно, т. е. всегда (2)

Векторная алгебра

В самом деле, векторы [а, b] и [b, а] имеют одинаковую длину и коллинеарны. Направления же этих векторов противоположны, так как из конца вектора [a, b] кратчайший поворот от a к b будет виден происходящим против часовой стрелки, а из конца вектора [b, a] — почасовой стрелке (рис. 34).

Векторная алгебра

3. Векторное произведение обладает распределительным свойством по отношению к сложению

Векторная алгебра

4. Числовой множитель λ можно выносить за знак векторного произведения

Векторная алгебра

Векторное произведение векторов, заданных координатами

Пусть векторы a и b заданы своими координатами в базисе i,j, k: а = { х1, у1, z1}, b = { х2, у2, z2 }. Пользуясь распределительным свойством векторного произведения, находим (3)

Векторная алгебра

Выпишем векторные произведения координатных ортов (рис. 35):

Векторная алгебра
Векторная алгебра
Векторная алгебра

Поэтому для векторного произведения векторов a и b получаем из формулы (3) следующее выражение (4)

Векторная алгебра

Формулу (4) можно записать в символической, легко запоминающейся форме, если воспользоваться определителем 3-го порядка: (5)

Векторная алгебра

Разлагая этот определитель по элементам 1-й строки, получим (4). Примеры:

  1. Найти площадь параллелограмма, построенного на векторах а = i + j- k, b = 2i + j- k.

Искомая площадь Векторная алгебра = |[а, b]. Поэтому находим

Векторная алгебра

откуда

Векторная алгебра
Векторная алгебра

2. Найти площадь треугольника ОАВ (рис.36).

Ясно, что площадь S∆ треугольника ОАВ равна половине площади S параллелограмма О АС В. Вычисляя векторное произведение [a, b] векторов a=Векторная алгебра и b = Векторная алгебра, получаем

Векторная алгебра

Отсюда

Векторная алгебра

Замечание:

Векторное произведение не ассоциативно, т.е. равенство [[а, b], с] = [а, b,с]] в общем случае неверно. Например, при а = i, b = j. c= j имеем

Векторная алгебра

Смешанное произведение векторов

Пусть имеем три вектора а, b и с. Перемножим векторы а и b векторно. В результате получим вектор [а, b). Умножим его скалярно на вектор с:

([a, b], с).

Число ([а, b], с) называется смешанным произведением векторов а, b, с и обозначается символом (а, b, с).

Геометрический смысл смешанного произведения

Отложим векторы а, b и с от общей точки О (рис. 37). Если все четыре точки О, А, В, С лежат в одной плоскости (векторы a, b и с называются в этом случае компланарными), то смешанное произведение ([а, b], с) = 0. Это следует из того, что вектор [а, b] перпендикулярен плоскости, в которой лежат векторы а и b, а значит, и вектору с.

Векторная алгебра

Если же точки О, А, В, С не лежат в одной плоскости (векторы a, b и с некомпланарны), построим на ребрах OA, OB и ОС параллелепипед (рис. 38 а). По определению векторного произведения имеем

Векторная алгебра

где Векторная алгебра — площадь параллелограмма OADB, а с — единичный вектор, перпендикулярный векторам а и b и такой, что тройка а, b, с — правая, т. е. векторы a, b и с расположены соответственно как большой, указательный и средний пальцы правой руки (рис. 38 6).

Векторная алгебра

Умножая обе части последнего равенства справа скалярно на вектор с, получаем, что

Векторная алгебра

Число ргe с равно высоте h построенного параллелепипеда, взятого со знаком « + », если угол ip между векторами с и с острый (тройка а, b, с — правая), и со знаком «-», если угол — тупой (тройка а, b, с — левая), так что

Векторная алгебра

Тем самым, смешанное произведение векторов a, b и с равно объему V параллелепипеда, построенного на этих векторах как на ребрах, если тройка а, b, с — правая, и -V, если тройка а, b, с — левая.

Исходя из геометрического смысла смешанного произведения, можно заключить, что, перемножая те же векторы a, b и с в любом другом порядке, мы всегда будем О получать либо +V, либо -V. Знак произведения будет зависеть лишь от того, какую тройку образуют перемножаемые векторы — правую или левую. Если векторы а, b, с образуют правую тройку, то правыми будут также тройки b, с, а и с, а, b. В то же время все три тройки b, а, с; а, с, b и с, b, а — левые. Тем самым,

(а, b, с) = (b, с, а) = (с, a,b) = -(b, а, с) = -(а, с, b) = -(с, b, а).

Еще раз подчеркнем, что смешанное произведение векторов равно нулю тогда и только тогда, когда перемножаемые векторы а, b, с компланарны:

{а, b, с компланарны} <=> (а, b, с) = 0.

Смешанное произведение в координатах

Пусть векторы а, b, с заданы своими координатами в базисе i, j, k:

Векторная алгебра

Найдем выражение для их смешанного произведения (а, b, с). Имеем

Векторная алгебра

Откуда

Векторная алгебра

Итак,

Векторная алгебра

— смешанное произведение векторов, заданных своими координатами в базисе i, j, k, равно определителю третьего порядка, строки которого составлены соответственно из координат первого, второго и третьего из перемножаемых векторов.

Необходимое и достаточное условие компланарности векторов а = { х1, у1, z1}, b = { х2, у2, z2 }, c = { х3, у3, z3} запишется в следующем виде

Векторная алгебра

Пример:

Проверить, компланарны ли векторы

a = {7, 4,-6}, b = {2, 1,1}, с ={19, 11,17}.

Рассматриваемые векторы будут компланарны или некомпланарны в зависимости от того, будет равен нулю или нет определитель

Векторная алгебра

Разлагая его по элементам первой строки, получим

Векторная алгебра

Двойное векторное произведение

Двойное векторное произведение [а, [b, с]] представляет собой вектор, перпендикулярный к векторам а и [b, с]. Поэтому он лежит в плоскости векторов b и с и может быть разложен по этим векторам. Можно показать, что справедлива формула

[а, [b, с]] = b(а, с) — с(а, b).

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Бином Ньютона
  22. Число е
  23. Непрерывные дроби
  24. Функция
  25. Исследование функций
  26. Предел
  27. Интеграл
  28. Двойной интеграл
  29. Тройной интеграл
  30. Интегрирование
  31. Неопределённый интеграл
  32. Определенный интеграл
  33. Криволинейные интегралы
  34. Поверхностные интегралы
  35. Несобственные интегралы
  36. Кратные интегралы
  37. Интегралы, зависящие от параметра
  38. Квадратный трехчлен
  39. Производная
  40. Применение производной к исследованию функций
  41. Приложения производной
  42. Дифференциал функции
  43. Дифференцирование в математике
  44. Формулы и правила дифференцирования
  45. Дифференциальное исчисление
  46. Дифференциальные уравнения
  47. Дифференциальные уравнения первого порядка
  48. Дифференциальные уравнения высших порядков
  49. Дифференциальные уравнения в частных производных
  50. Тригонометрические функции
  51. Тригонометрические уравнения и неравенства
  52. Показательная функция
  53. Показательные уравнения
  54. Обобщенная степень
  55. Взаимно обратные функции
  56. Логарифмическая функция
  57. Уравнения и неравенства
  58. Положительные и отрицательные числа
  59. Алгебраические выражения
  60. Иррациональные алгебраические выражения
  61. Преобразование алгебраических выражений
  62. Преобразование дробных алгебраических выражений
  63. Разложение многочленов на множители
  64. Многочлены от одного переменного
  65. Алгебраические дроби
  66. Пропорции
  67. Уравнения
  68. Системы уравнений
  69. Системы уравнений высших степеней
  70. Системы алгебраических уравнений
  71. Системы линейных уравнений
  72. Системы дифференциальных уравнений
  73. Арифметический квадратный корень
  74. Квадратные и кубические корни
  75. Извлечение квадратного корня
  76. Рациональные числа
  77. Иррациональные числа
  78. Арифметический корень
  79. Квадратные уравнения
  80. Иррациональные уравнения
  81. Последовательность
  82. Ряды сходящиеся и расходящиеся
  83. Тригонометрические функции произвольного угла
  84. Тригонометрические формулы
  85. Обратные тригонометрические функции
  86. Теорема Безу
  87. Математическая индукция
  88. Показатель степени
  89. Показательные функции и логарифмы
  90. Множество
  91. Множество действительных чисел
  92. Числовые множества
  93. Преобразование рациональных выражений
  94. Преобразование иррациональных выражений
  95. Геометрия
  96. Действительные числа
  97. Степени и корни
  98. Степень с рациональным показателем
  99. Тригонометрические функции угла
  100. Тригонометрические функции числового аргумента
  101. Тригонометрические выражения и их преобразования
  102. Преобразование тригонометрических выражений
  103. Комбинаторика
  104. Вычислительная математика
  105. Прямая линия на плоскости и ее уравнения
  106. Прямая и плоскость
  107. Линии и уравнения
  108. Прямая линия
  109. Уравнения прямой и плоскости в пространстве
  110. Кривые второго порядка
  111. Кривые и поверхности второго порядка
  112. Числовые ряды
  113. Степенные ряды
  114. Ряды Фурье
  115. Преобразование Фурье
  116. Функциональные ряды
  117. Функции многих переменных
  118. Метод координат
  119. Гармонический анализ
  120. Вещественные числа
  121. Предел последовательности
  122. Аналитическая геометрия
  123. Аналитическая геометрия на плоскости
  124. Аналитическая геометрия в пространстве
  125. Функции одной переменной
  126. Высшая алгебра
  127. Векторный анализ
  128. Векторы
  129. Скалярное произведение векторов
  130. Векторное произведение векторов
  131. Смешанное произведение векторов
  132. Операции над векторами
  133. Непрерывность функций
  134. Предел и непрерывность функций нескольких переменных
  135. Предел и непрерывность функции одной переменной
  136. Производные и дифференциалы функции одной переменной
  137. Частные производные и дифференцируемость функций нескольких переменных
  138. Дифференциальное исчисление функции одной переменной
  139. Матрицы
  140. Линейные и евклидовы пространства
  141. Линейные отображения
  142. Дифференциальные теоремы о среднем
  143. Теория устойчивости дифференциальных уравнений
  144. Функции комплексного переменного
  145. Преобразование Лапласа
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат

Добавить комментарий