Определите длину волны фотона, испускаемого при переходе электрона в атоме водорода с третьего уровня на первый.
Ученик
(100),
закрыт
9 лет назад
Екатерина Ром
Гуру
(2510)
12 лет назад
на третьем уровне энергия равна -1,51 эВ=E1
на первом уровне она равна -13,6=E2
Согласно постулату Бора, при переходе электрона из одного состояния (с большей энергией) в другое (с меньшей энергией) испускается фотон, частота которого определяется формулой:
v=(E1-E2)/h=(-1.51Эв+13.6эВ) /(4,136*10^-15 эВ*с) =2,92*10^15Гц
длина волны l=с/v=3*10^8м/с/2,92*10^15 Гц=1,03*10^-7м=103нм
Источник: физика
Как найти длину волны излучения?
При
переходе электрона в атоме с одного стационарного состояния в другое, а затем в
третье, атом получает энергии соответственно 12,8 эВ и 0,3 эВ. Определите длину
волны излучения, обусловленного переходом электронов с третьего стационарного
состояния в первое.
Решение.
При
переходе электрона с третьего стационарного состояния в первое атом теряет
энергию.
Согласно
второму постулату Бора изменение энергии атома связано с частотой испускаемого
им электромагнитного излучения следующим соотношением.
Следовательно,
длина волны, испускаемой атомом при переходе электрона с третьего стационарного
состояния в первое будет равна l.
Ответ:
l = 95 нм.
Источник: Подготовка к тестированию по физике. Шепелевич. В. Г.
поделиться знаниями или
запомнить страничку
- Все категории
-
экономические
43,651 -
гуманитарные
33,653 -
юридические
17,917 -
школьный раздел
611,893 -
разное
16,900
Популярное на сайте:
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
Вычислить длину волны излучения при переходе электрона в атоме водорода с шестой на третью орбиту
Длину
волны света, излучаемого атомом при переходе электрона с одной орбиты на другую можно определить по формуле:
$lambda=frac{1}{R(frac{1}{n_1^2}-frac{1}{n_2^2})}$
где R = 1,1*107 м-1 – постоянная Ридберга, n1 – номер
орбиты, на которую переходит электрон, n2 – номер орбиты, с которой переходит электрон.
$lambda=frac{1}{1,1*10^7*(frac{1}{3^2}-frac{1}{6^2})}approx 0.0000011;text{м}$
В этой статье мы собираемся обдумать взаимосвязь энергии и длины волны вместе с примерами и решить некоторые задачи, чтобы проиллюстрировать то же самое.
Энергия находится в прямой зависимости от частоты электромагнитных излучений. Если длина волны увеличивается, это означает, что повторяемость волны будет уменьшаться, что непосредственно влияет на энергию частицы в волне.
Формула соотношения энергии и длины волны
Энергия частицы может быть связана с ее скоростью во время распространения. Скорость частицы дает представление о частоте и длине волны. Если длина волны мала, то частота и, следовательно, энергия частицы будут увеличиваться.
Если колебания частицы больше в траектории пути, то возвратность частицы в волну больше и длина волны мала, это означает, что энергия, которой обладает частица, больше.
Энергия любого тела связана с его длиной волны уравнением
E=hc/λ
Где «h» — постоянная Планка h = 6.626 * 10-34Js
C – скорость света c=3 *108 м/с и
λ – длина волны света
Энергия обратно пропорциональна длине волны света. Чем меньше длина волны, тем больше энергия частицы в волне.
Задача 1: Рассчитать энергию фотонов, испускающих красный свет. Считайте длину волны луча красного света равной 698 нм. Какова будет энергия, если длина волны уменьшится до 500 нм, то есть если источник излучает зеленый свет?
Данный:λ1=698нм
λ2=500 нм
ч = 6.626 * 10-34 Js
с=3 * 108 м/с
У нас есть,
E=hc/λ1
E = 6.626 * 10-34 Дж* 3 * 108 м/с/698* 10-9m
=0.028* 10-17=28* 10-20Дж
Энергия красной длины волны 28* 10-20Джоули.
Если длина волны λ2=500 нм
Тогда энергия, связанная с зеленым светом, равна
E=hc/λ2
E = 6.626 * 10-34 Дж* 3 * 108 м/с / 500* 10-9m
= 0.03910-17=39* 10-20Дж
Мы видим, что энергия увеличилась до 39*10-20 Джоулей при уменьшении длины волны.
Подробнее о Влияние преломления на длину волны: как, почему, подробные факты.
График взаимосвязи энергии и длины волны
По мере увеличения длины волны частота волны падает, тем самым уменьшая энергию, которой обладает волна. Если мы построим график зависимости энергии от длины волны появляющейся частицы, то график будет выглядеть так, как показано ниже.
Приведенный выше график ясно показывает, что по мере увеличения длины волны энергия, связанная с частицей, уменьшается экспоненциально.
Связь кинетической энергии и длины волны
Если скорость частицы больше, то очевидно, что кинетическая энергия частицы велика. Кинетическая энергия определяется уравнением
КЭ=1/2мВ2
Где m – масса объекта или частицы
V – скорость массы
Мы можем записать приведенное выше уравнение как
2E=мв2
Умножение «m» в обеих частях уравнения
2mE=(мВ)2
Импульс объекта определяется как произведение массы объекта на скорость, с которой он движется.
p = mv
Следовательно, приведенное выше уравнение становится
P2=2 мВ
P=√2mE
Согласно де Бройлю,
λ =h/p
Подставляя приведенное выше уравнение, мы имеем
λ =h/ √2mE
Приведенное выше уравнение дает связь между энергией и длиной волны частицы.
Подробнее о Что такое кинетическая энергия света: подробные факты.
Задача 2. Вычислить кинетическую энергию частицы массой 9.1 × 10-31 кг с длиной волны 293 нм. Кроме того, найдите скорость частицы.
Данный: λ = 293 нм
м = 9.1 × 10-31 kg
ч = 6.626 * 10-34Js
с=3 *108 м/с
У нас есть,
λ =h/ √2mE
λ2=h2/ 2мЕ
Е = ч2/ 2мλ2
=(6.626 * 10-34 Дж)2/2* 9.1* 10-31* (293*10-9) 2
= 0.28 * 10-23
Кинетическая энергия, связанная с частицей, равна 0.28*10-23 Джоули.
Теперь, чтобы вычислить скорость частицы, выведем формулу скорости из кинетической энергии:
КЕ=1/2 мВ2
2E= мв2
v=√(2Е/м)
= √(2(0.28*10-23)/(9.8*10-31))
= 0.24 * 104= 2400 м / с
Скорость частицы с длиной волны 298 нм составляет 2400 м/с.
Связь энергии электрона и длины волны
Энергия электрона определяется простым уравнением:
Е=чню
Где «h» — постоянная Планка, а
nu – частота появления электрона
Частота электрона определяется как
ню = v / λ
Где v – скорость электрона и
λ – длина волны электронной волны
Следовательно, энергия связана с длиной волны электрона как
E=hv/λ
Это соотношение позволяет найти энергию, связанную с распространением одиночного электрона с определенной длиной волны, скоростью и частотой. Энергия обратно пропорциональна длине волны. Если длина волны электрона уменьшается, энергия волны должна быть больше.
Изображение Фото: Pixabay
Получив энергию в той или иной форме, электрон переходит из более низкого энергетического состояния в более высокое энергетическое состояние. Для перехода электронов из одного состояния в другое энергия электрона определяется уравнением
Э=РE(1/нf– 1/нi)
Где RE=-2.18* 10-18m-1 является константой Ридберга
nf это конечное состояние электрона
ni это начальное состояние электрона
Мы можем далее переписать приведенное выше уравнение как
ч ню = RE(1/нf– 1/нi)
hc/λ =RE(1/нf– 1/нi)
1/λ =REhc(1/nf– 1/нi)
1/λ =R(1/nf– 1/нi)
Где,
Р=РEчс=1.097* 107
По мере того, как электрон получает энергию, электрон переходит и перескакивает в более высокое состояние энергетического уровня и высвобождает энергию электронам, присутствующим в этом состоянии, и либо становится стабильным, либо высвобождает количество энергии и возвращается в более низкие энергетические состояния.
Подробнее о 16+ Пример амплитуды волны: подробные пояснения.
Задача 3: Если электрон переходит из состояния ni=1, чтобы указать nf=2, затем рассчитайте длину волны электрона.
Данный:
ni=1
nf=2
1/λ =RE(1/нf– 1/нi)
1/λ=-1.097*107 * ( 1/2-1/1 )
1/λ=0.5485* 107
Следовательно,
λ = 1/0.5485* 107
λ =1.823*10-7
λ =182.3*10-9=182.3нм
Длина волны света, излучаемого при переходе электрона с одного энергетического уровня на другой, равна 182.3 нм.
Связь лучистой энергии и длины волны
Каждый объект поглощает световые лучи в дневное время в зависимости от его формы, размера и состава. Если температура поверхности объекта достигает температуры выше абсолютного нуля, объект будет излучать излучения в виде волн.
Это испускаемое излучение пропорционально четвертой степени абсолютной температуры объекта и определяется уравнением
U=ɛΣ Т4A
Где U – излучаемая энергия
ɛ – коэффициент излучения излучения от объекта
Σ — постоянная Стефана-Больцмана, равная Σ=5.67*10-8Вт / м2K4
T – абсолютная температура
А – площадь объекта
Объект с высокой температурой излучает излучение с короткими длинами волн, а более холодные поверхности излучают волны с большей длиной волны. В зависимости от испускаемого излучения и длины волны испускаемого излучения волны классифицируются в соответствии с приведенной ниже таблицей.
Имя и фамилия | Радиоволны | Микроволны | Инфракрасный порт | Видимый | Ультрафиолетовое | рентген | Гамма излучение |
Длина волны | > 1м | 1mm-1m | 700нм-1мм | 400nm-700nm | 10nm-380nm | 0.01nm-10nm | <0.01 нм |
частота | <300 МГц | 300MHz-300GHz | 300ГГц-430ТГц | 430ТГц-750ТГц | 750ТГц-30ФГц | 30PHz-30EHz | >30 Гц |
По мере уменьшения длины волны излучения частота волны возрастает. Длина волны напрямую связана с температурой, поэтому, если частота испускаемого излучения больше, это означает, что энергия объекта высока.
Гамма-лучи, рентгеновские лучи и ультрафиолетовые лучи имеют очень короткую длину волны, поэтому энергия этих волн очень высока по сравнению с видимым, инфракрасным, микроволнами или радиоволнами. Кроме того, чем выше излучение, полученное объектом, тем больше он будет излучать в зависимости от коэффициента излучения объекта.
Ниже приведен график зависимости энергии от длины волны в секунду для разных температур. График показывает, что по мере повышения температуры системы энергия испускаемого излучения также увеличивается с температурой.
Для длины волны в видимой области эмиссия излучения максимальна. Это связано с тем, что Солнце излучает УФ-лучи вместе с инфракрасными лучами и видимыми лучами, а эти лучи представляют собой электромагнитные волны дальнего действия. Озоновый слой Земли защищает земную атмосферу от этого вредного излучения и либо отражается обратно, либо задерживается в облаках.
В видимом диапазоне в дневное время излучается больше излучений, поскольку в дневное время от Солнца поступает все больше и больше излучений, а испускается меньше ИК-лучей по сравнению с видимым спектром. Ночью температура снижается, длина волны излучения увеличивается, и объект излучает больше ИК-лучей.
Подробнее о Свойства преломления: волна, физические свойства, исчерпывающие факты.
Задача 4: Коробка длиной 11 см, шириной 2 см и воздухом 7 см нагревается до температуры 1200 Кельвинов. Если коэффициент излучения ящика равен 0.5, то рассчитайте скорость излучения энергии из ящика.
Данный:л=11см
ч=2см
б = 7cm
е =0.5
Σ=5.67* 10-8Вт / м2K4
Т=1200 К
Общая площадь ящика составляет
A=2(фунт+чб+гл)
=2(11*7+7*s 2+2*11)
=2 (77+14+22)
=0.0226 кв.м
Энергия, излучаемая коробкой, равна
U=ɛ Σ T4A
=0.5* 5.67* 10-8* 12004* 0.0226
=1328.6 Вт
Связь частоты энергии и длины волны
Чем больше частота волны, тем больше энергия, связанная с частицей. Энергия связана с частотой волны как
E=ч/ню
Где «h» — постоянная Планка.
nu – частота волны
Частота волны определяется как скорость волны в среде и длина волны.
ню = v / λ
Где v – скорость волны
λ – длина волны
Следовательно,
λ=v/ну
Это дает связь между частотой и длиной волны волны. Это говорит о том, что длина волны и частота обратно пропорциональны друг другу. Если длина волны увеличивается, частота волны уменьшится.
Подробнее о Влияние преломления на частоту: как, почему нет, подробные факты.
Задача 5. Скорость луча света, испускаемого источником, равна 1.9 × 108 РС. Частота возникновения излучаемой волны составляет 450ТГц. Найдите длину волны испускаемого излучения.
Данный: v=1.9*108 м/с
F=450ТГц=450*1012Hz
Длина волны луча света равна
λ = v/f
=1.9* 108/ 450* 1012
= 0.004222 * 10-4
=422.2* 10-9=422.2нм
Луч света имеет длину волны 422.2 нм.
Связь энергии фотона и длины волны
Энергия, которой обладает фотон, называется энергией фотона и обратно пропорциональна электромагнитной волне фотона по соотношению
E=hc/λ
Где «h» — постоянная Планка.
С – скорость света
λ – длина волны фотона
Частота фотона определяется уравнением
f=с/λ
Где f – частота
Следовательно, фотон с большей длиной волны обладает небольшой единицей энергии, тогда как фотон с меньшей длиной волны дает большое количество энергии.
Подробнее о Какова длина волны фотона: как найти, несколько идей и фактов.
Задача 6: Рассчитать энергию фотона, распространяющегося в электромагнитной волне с длиной волны 620 нм.
Данный: Длина волныλ =620 нм
ч = 6.626 * 10-34 js
с=3 *108 м/с
У нас есть,
E=hc/λ
Е=6.626 * 10-34 Дж*3 * 108 м/с/620* 10-9m
= 0.032 * 10-17= 32 * 10-20 Дж
Энергия, связанная с фотоном, равна 32* 10-20Джоули.
Часто задаваемые вопросы
Q1. Вычислите длину волны электрона, движущегося со скоростью 6.35 × 106 м/с
Данный: v=6.35*106м/с
м=9.1*10-31kg
ч=6.62* 10-34 Js
Кинетическая энергия электрона равна
КЕ=1/2 мВ2
=1/2 * 9.1*10-31* (6.35* 106)2
=1.83* 10-17Дж
Импульс электрона равен
P=√2mE
=√2* 9.1* 10-31* 1.83 * 10-17
= 5.7 * 10-24кг.м / с
Теперь длина волны электрона
λ =h/√2mE
= 6.62 * 10-34/ 5.7 * 10-24
= 4.8 * 10-10m
=48нм
Длина волны электрона, движущегося со скоростью 6.35*106м/с составляет 48 нм.
Q2. Черный объект площадью 180 кв.м находится при температуре 550К. Какова скорость излучения энергии от объекта?
Данный: А=180 кв.м
Т=550К
Поскольку объект имеет черный цвет, коэффициент излучения равен 1.
е =1
У нас есть,
U=ɛΣT4A
=1*с 5.67* 10-8* 5504* 180
= 0.93 * 106МОЩНОСТЬ
Мощность излучения от выброса излучения от объекта составляет 0.93*106Вт.
Какова абсолютная температура системы?
Это неизменное и совершенное значение температуры системы.
Абсолютная температура системы измеряется по шкале градусов Цельсия, Фаренгейта или Кельвина, которые измеряют ноль как абсолютный ноль градусов.
Как длина волны фотона зависит от температуры?
Температура системы определяет подвижность частиц системы.
Чем больше излучений получает система при более высоких температурах, тем больше излучения будет излучаться системой. При более высоких температурах излучаются более короткие волны, а при более низких температурах излучаются более длинные волны.