Как найти длину высоту треугольника на плоскости

Как составить уравнение высоты треугольника по координатам его вершин?

Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону.

Следовательно, для составления уравнения высоты треугольника нужно:

  1. Найти уравнение стороны треугольника.
  2. Составить уравнение прямой, перпендикулярной этой стороне и проходящей через противолежащую вершину треугольника.

Пример.

Дано: ΔABC, A(-7;2), B(5;-3), C(1;8).

Написать уравнения высот треугольника.

Решение:

1) Составим уравнение стороны BC треугольника ABC.

Прямая y=kx+b проходит через точки B(5;-3), C(1;8), значит, координаты этих точек удовлетворяют уравнению прямой. Подставив координаты B и C в уравнение прямой, составляем систему уравнений и решаем её:

    [left{ begin{array}{l} - 3 = k cdot 5 + b; \ 8 = k cdot 1 + b; \ end{array} right. Rightarrow k = - frac{{11}}{4};b = frac{{43}}{4}.]

Таким образом, уравнение прямой BC —

    [y = - frac{{11}}{4}x + frac{{43}}{4}.]

Угловой коэффициент прямой, перпендикулярной BC,

    [k_2 = - frac{1}{{k_1 }} = - frac{1}{{ - frac{{11}}{4}}} = frac{4}{{11}}.]

Значит, уравнение высоты, проведённой к стороне BC, имеет вид

    [y = frac{4}{{11}}x + b.]

Поскольку эта прямая проходит через точку A(-7;2), подставляем координаты точки в уравнение и находим b:

    [2 = frac{4}{{11}} cdot ( - 7) + b, Rightarrow b = frac{{50}}{{11}}.]

Итак, уравнение высоты, проведённой к стороне BC:

    [y = frac{4}{{11}}x + frac{{50}}{{11}}.]

2) Составим уравнение стороны AB треугольника ABC. A(-7;2), B(5;-3):

    [left{ begin{array}{l} 2 = k cdot ( - 7) + b; \ - 3 = k cdot 5 + b; \ end{array} right. Rightarrow k = - frac{5}{{12}};b = - frac{{11}}{{12}}.]

Уравнение прямой AB:

    [y = - frac{5}{{12}}x - frac{{11}}{{12}}.]

Угловой коэффициент перпендикулярной ей прямой

    [k_2 = - frac{1}{{k_1 }} = - frac{1}{{ - frac{5}{{12}}}} = frac{{12}}{5} = 2,5.]

Значит уравнение перпендикулярной AB прямой имеет вид y=2,5x+b. Подставляем в это уравнение координаты точки C(1;8): 8=2,5·1+b, откуда b=5,5.
Получили уравнение высоты, проведённой из точки C к стороне BC: y=2,5x+5,5.
3) Составим уравнение стороны AC треугольника ABC. A(-7;2), C(1;8):

    [left{ begin{array}{l} 2 = k cdot ( - 7) + b; \ 8 = k cdot 1 + b; \ end{array} right. Rightarrow k = frac{3}{4};b = frac{{29}}{4}.]

Угловой коэффициент прямой, перпендикулярной AC,

    [k_2 = - frac{1}{{k_1 }} = - frac{1}{{frac{3}{4}}} = - frac{4}{3}.]

Таким образом, уравнение перпендикулярной AC прямой имеет вид

    [y = - frac{4}{3}x + b.]

Подставив в него координаты точки B(5;-3), найдём b:

    [- 3 = - frac{4}{3} cdot 5 + b, Rightarrow b = frac{{11}}{3}.]

Итак, уравнение высоты треугольника ABC, опущенной из вершины B:

    [y = - frac{4}{3}x + frac{{11}}{3}.]

uravnenie-vysoty-treugolnika

Решить треугольник Онлайн по координатам

Данный онлайн-сервис вычисляет (показываются промежуточные расчёты) следующие параметры треугольника:

1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;

2) система линейных неравенств, определяющих треугольник;

2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;

3) внутренние углы по теореме косинусов;

4) площадь треугольника;

5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами;

10) параметры вписанной и описанной окружностей и их уравнения.

Внимание! Этот сервис не работает в браузере IE (Internet Explorer).

Запишите координаты вершин треугольника и нажмите кнопку.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.



2.9. Типовая задача с треугольником

Многие помнят из школы признаки равенства треугольников, признаки подобия треугольников и мучительное заучивание доказательств теорем. Как в

сердцАх сказал один мой одноклассник, «не понимаю, на### доказывать равенство треугольников, если и так видно, что они одинаковые». Мы тоже не

будем ничего доказывать, поскольку аналитическая геометрия рассматривает треугольник совсем с другой стороны.

Типовая задача, как правило, формулируется так: Даны три вершины треугольника. Требуется найти… много чего требуется

найти…. Повезёт, если будет пункта 3-4, но чаще всего их 5-6 и даже больше. И вам повезло – разберём всё! Или почти всё:

Задача 95

Даны вершины треугольника . Требуется:

1) составить уравнения сторон  и найти их угловые коэффициенты;
2) найти длину стороны ;
3) найти ;
4) составить прямой , проходящей через точку  параллельно прямой ;
5) составить уравнение высоты и найти её длину;
6) вычислить площадь треугольника ;
7) составить уравнение медианы ;
8) найти точку пересечения .
и для особо опасных энтузиастов:
9) найти уравнение биссектрисы ;
10) найти центр тяжести  треугольника;
11) составить систему линейных неравенств, определяющих треугольник.

С чего начать решение? Начать целесообразно с выполнения чертежа. По условию этого можно не делать, но для самоконтроля и

самопроверки всегда строим чертёж на черновике, не устану это рекомендовать:

Ещё раз напоминаю, что самый выгодный масштаб 1 единица = 1

см (2 тетрадные клетки). Всё хорошо видно, и расстояния удобно измерять линейкой.

Вперёд без страха и сомнений:

1) Составим уравнения сторон  и найдём их угловые

коэффициенты.
Поскольку известны вершины треугольника, то уравнения каждой стороны составим по двум

точкам.

Составим уравнение стороны  по точкам :

Для проверки мысленно либо на черновике подставляем координаты каждой точки в полученное уравнение.

Теперь

найдём угловой коэффициент. Для этого перепишем общее уравнение в виде уравнения с угловым коэффициентом:

Таким образом, угловой коэффициент:

Самостоятельно разбираемся со сторонами  и сверяемся, что

получилось:

2) Найдём длину стороны .  Используем соответствующую формулу для точек :

Сторону легко измерить обычной линейкой, хотя это не сильно строгая проверка 🙂

3) Найдём . Это Задача 31, повторим:

Используем формулу .
Найдём векторы:

Таким образом:
, и сам угол:
, ну что же, похоже на правду, желающие могут приложить транспортир, у кого

он есть.

Внимание! При выполнении этого пункта лучше не использовать формулы ориентированного угла

между прямыми, так как они всегда дают острый угол.

4) Составим уравнение прямой , проходящей через точку  параллельно прямой . Это стандартная задача, и мы ленимся отработать её вновь!

Из общего уравнения прямой  вытащим направляющий вектор .

Составим уравнение прямой  по точке  и направляющему вектору :

5) Составим уравнение высоты и найдём её длину.
Первую часть задания мы тоже решали:

Из уравнения стороны  снимаем вектор нормали . Уравнение высоты

 составим по точке  и направляющему вектору :

Обратите внимание, что координаты точки  нам не известны.

Иногда уравнение высоты находят из соотношения угловых коэффициентов перпендикулярных прямых: . В данном случае , тогда: . Уравнение высоты  составим по точке  и угловому коэффициенту :

Длину высоты можно найти двумя способами.

Существует окольный путь:

а) находим  – точку

пересечения высоты и стороны ;

б) находим длину отрезка  по двум

известным точкам.

Но зачем? – ведь есть удобная формула расстояния от точки  до прямой :

6) Вычислим площадь треугольника. Используем «школьную» формулу:

7) Уравнение медианы  составим в два шага:

а) Найдём точку  – середину стороны . Используем формулы координат середины отрезка.

Известны концы , и тогда середина:

б) Уравнение медианы  составим по точкам :

 – для проверки подставим координаты точек .

8) Найдём точку пересечения  высоты и медианы:
      в

Первое уравнение умножили на 5, складываем их почленно:
 – подставим в первое уравнение:

9) Биссектриса делит угол пополам:

Из свойств биссектрисы внутреннего угла следует соотношение длин следующих отрезков:

Длины сторон уже найдены в предыдущих пунктах: .

Таким образом, . Координаты точки  найдём по формулам деления отрезка в данном отношении. Да,

параметр «лямбда» получился просто сказочным, ну а кому сейчас легко? Точки  известны и понеслась нелёгкая:

Примечание: на последнем шаге я умножил числитель и знаменатель на сопряжённое выражение  – чтобы использовать формулу  и

избавиться от иррациональности в знаменателе.

Разбираемся со второй координатой:

аким образом:  

И предчувствие вас не обмануло, уравнение биссектрисы  составим по точкам  по формуле :

обратите внимание на технику упрощений:

Проверил, всё сходится. На практике, конечно, вычисления почти всегда будут проще. Никого не хотел запугать, так уж получилось =)

10) Найдём центр тяжести треугольника.

Но сначала поймём, что такое центр тяжести плоской фигуры. Мысленно вырежьте из тонкого однородного картона любую фигуру. …Почему-то фигура зайца

в голову пришла. Так вот: если слегка насадить данную фигуру центром тяжести (какой же я изверг =)) на вертикально расположенную иголку, то

теоретически фигура не должна свалиться.

Центром тяжести треугольника является точка пересечения его медиан. В треугольнике три медианы и пересекаются они в одной точке.

Из пункта 7 нам уже известна одна из медиан: .  Как решить задачу?

Напрашивается очевидный алгоритм: можно найти уравнение второй медианы (любой из двух оставшихся) и точку пересечения этих медиан. Но есть путь

короче! Нужно только знать полезное свойство:

Точка пересечения медиан делит каждую из медиан в

отношении , считая от вершины треугольника. Поэтому справедливо

отношение
Нам известны концы отрезка – точки  и .
По формулам деления отрезка в данном отношении:

Таким образом, центр тяжести треугольника:
И заключительный пункт задачи, для освоения которого нужно уметь решать недавно разобранные линейные

неравенства:

11) Составим систему линейных неравенств, определяющих треугольник.

Для удобства я перепишу найденные уравнения сторон:

Рассмотрим прямую . Треугольник лежит в полуплоскости, где находится

вершина . Составим вспомогательный многочлен  и вычислим его значение в точке : . Поскольку сторона  принадлежит треугольнику, то неравенство будет нестрогим:

Внимание! Если вам не понятен этот алгоритм, то обратитесь к

Задаче 90.

Рассмотрим прямую . Треугольник расположен ниже данной прямой, поэтому

очевидно неравенство .

И, наконец, для  составим многочлен , в который подставим координаты точки : .
Таким образом, получаем третье неравенство: .

Итак, треугольник  определяется следующей системой линейных

неравенств:

Готово.

Какой можно сделать вывод?


Многие задачи аналитической геометрии прозрачны и просты,
главное, не допустить вычислительных ошибок.

Следует отметить, что по настоящему трудные задачи в аналитической геометрии встречаются редко, и вы справитесь практически с любой из них!

Главное, придерживаться методики решения и проявить маломальское упорство.

Ну что, может ещё задачку? Да ладно, не надо стесняться, я же по глазам вижу, что хотите =) 

Но сейчас на очереди другая увлекательная тема, продолжаем изучать геометрию плоскости:

3.1. Алгебраическая линия и её порядок

2.8. Как научиться решать задачи по геометрии?

| Оглавление |



Автор: Aлeксaндр Eмeлин

Примеры решений по аналитической геометрии на плоскости

В этом разделе вы найдете бесплатные примеры решений задач по аналитической геометрии на плоскости об исследовании треугольника (заданного вершинами или сторонами): уравнения сторон, углы, площадь, уравнения и длины высот, медиан, биссектрис и т.п.

Другие решения по аналитической геометрии на плоскости

Лучшее спасибо – порекомендовать эту страницу

Решения задач о треугольнике онлайн

Задача 1. Даны вершины треугольника $A (-2, 1), B (3, 3), С (1, 0)$. Найти:
а) длину стороны $AB$;
б) уравнение медианы $BM$;
в) $cos$ угла $BCA$;
г) уравнение высоты $CD$;
д) длину высоты $СD$;
е) площадь треугольника $АВС$.

Задача 2. Найти длину высоты $AD$ в треугольнике с вершинами $A(3,2), B(2,-5), C(-6,-1)$ и написать уравнение перпендикуляра, опущенного из точки $C$ на прямую $AB$.

Задача 3. Даны вершины $A(1,1), B(7,5), C(4,5)$ треугольника. Найти:
1) длину стороны $AB$;
2) внутренний угол $A$ в радианах с точностью до 0,01;
3) уравнение высоты, проведенной через вершину $C$;
4) уравнение медианы, проведенной через вершину $C$;
5) точку пересечения высот треугольника;
6) длину высоты, опущенной из вершины $C$;
7) систему линейных неравенств, определяющую внутреннюю область треугольника.
Сделать чертеж.

Задача 4. Даны уравнения двух сторон треугольника $4x-5y+9=0$ и $x+4y-3=0$. Найти уравнение третьей стороны, если известно, что медианы этого треугольника пересекаются в точке $P(3,1)$.

Задача 5. Даны две вершины $A(-3,3)$, $B(5,-1)$ и точка $D(4,3)$ пересечения высот треугольника. Составить уравнения его сторон.

Задача 6. Найти углы и площадь треугольника, образованного прямыми $у = 2х$, $y = -2х$ и $у = х + 6$.

Задача 7. Найти точку пересечения медиан и точку пересечения высот треугольника: $А(0, – 4)$, $В(3, 0)$ и $С(0, 6)$.

Задача 8. Вычислить координаты точек середины отрезков, являющихся медианами треугольника $ABC$, если $A(-6;1)$, $B(4;3)$, $C(10;8)$.

Не получаются задачи? Решим быстро и подробно!

8

Даны вершины
треугольника.
Найти:

  1. длину стороны ВС;

  2. уравнение высоты ВС;

  3. уравнение высоты, проведённой из вершины
    А;

  4. длину высоты, проведённой из вершины
    А;

  5. угол В.

Сделать чертёж.

Дано: А(-8;3), В(4;-2), С(7;2).

РЕШЕНИЕ

  1. Длину стороны ВС находим по формуле
    .
    По условию имеем В(4;-2), С(7;2).

  1. Найдём уравнение стороны ВС. Найдём
    уравнение прямой, на которой лежит
    сторона ВС. Используем уравнение прямой,
    проходящей через две точки
    ,
    полагая

  1. Найдём уравнение высоты, проведённой
    из вершины А. При составлении уравнения
    прямой, на которой лежит высота
    треугольника, воспользуемся формулой

    и условием перпендикулярности двух
    прямых
    :

Определим угловой коэффициент прямой
ВС. Для этого разрешим уравнение стороны
ВС относительно у:

Следовательно, высота, проведённая из
точки А, имеет угловой коэффициент

Тогда, уравнение высоты, опущенной из
вершины А(-8;3) на сторону ВС:

  1. Найдём длину высоты, проведённой из
    вершины А. Она равна расстоянию от точки
    А(-8;3) до прямой ВС заданной уравнением
    .
    По формуле

    вычисляем расстояние от точки А до
    прямой ВС, полагая

  1. Найдём угол В. Угол В равен углу между
    прямыми ВС и АВ и может быть найден с
    помощью формулы
    .
    Угловой коэффициент прямо ВС известен
    и равен
    .
    Найдём угловой коэффициент прямой АВ
    по формуле:

Тогда получаем,

И угол равен

Выполним чертёж. В прямоугольной
декартовой системе координат хОу строим
исходные точки и получаем треугольник
АВС. Затем из вершины А опустим
перпендикуляр на сторону ВС, получим
АК.

18

Даны координаты вершин пирамиды А1А2А3А4.
Найти:

  1. координаты вектора

    и длину ребра
    ;

  2. угол между рёбрами

    и
    ;

  3. площадь грани
    ;

  4. объём пирамиды;

  5. уравнение плоскости
    ;

  6. уравнение прямой
    ;

  7. угол между ребром

    и гранью
    ;

  8. уравнение высоты, опущенной из вершины

    на грань
    ;

Сделать чертёж.

Дано: А1(7;2;2), А2(5;7;7), А3(5;3;1),
А4(2;3;7).

РЕШЕНИЕ

  1. Вектор

    равен

Длину ребра

можно найти как расстояние между двумя
точками

и
,
оно равно

Получаем

  1. Угол между рёбрами

    и

    найдём как угол между векторами

    и
    .

Вектор

Таким образом, имеем два вектора

и
,
угол между ними найдём по формуле:

Скалярное произведение двух векторов
в числителе дроби находили как сумму
произведений одноимённых координат
(проекций).

  1. Площадь грани

    равна половине площади параллелограмма,
    построенного на векторах, как на
    сторонах. И площадь треугольника

    можно вычислить через векторное
    произведение

Координаты вектора

или

Векторное произведение вычислим через
определитель 3-го порядка, разложив его
по элементам первой строки:

Модуль векторного произведения

  1. Объём треугольной пирамиды А1А2А3А4
    можно рассматривать как одну шестую
    часть объёма параллелепипеда, построенного
    на векторах
    ,

    и

    как на рёбрах:

Смешанное произведение трёх векторов
равно

  1. Уравнение плоскости

    имеет вид

или для нашей задачи

Разложим определитель по элементам
первой строки:

  1. Уравнения прямой

    найдём в канонической форме, для этого
    воспользуемся уравнением прямой,
    проходящей через две заданные точки

    и
    :

,

  1. Углом ψ между ребром

    и гранью

    будет острый угол между прямой

    и её проекцией на плоскость
    .
    Для нахождения угла ψ воспользуемся
    формулой

Канонические уравнения прямой

получим как:

Отсюда l=5; m=1;
n=-5, где l,
m, n –
координаты направляющего вектора прямой
:

;

Уравнение плоскости

было получено в пункте 5:

Отсюда А=5; В=7; С=-4, где А, В, С – координаты
нормального вектора плоскости
:

Тогда получаем

  1. Уравнения высоты, опущенной из вершины

    на грань
    .

Канонические уравнения прямой, проходящей
через точку
,
имеют вид
,
где l, m, n
– координаты направляющего вектора
прямой.

Так как высота перпендикулярна плоскости
,
то из условия перпендикулярности прямой
и плоскости

координаты направляющего вектора
прямой, перпендикулярной плоскости
можно заменить координатами нормального
вектора плоскости l=A=5;
m=B=7; n=C=-4.

Окончательно получим

Выполним чертёж пирамиды как пересечения
плоскостей её граней:

Грань А1А2А4:

Грань А1А2А3:

Грань А1А3А4:

Грань А2А3А4:

28

Составить уравнение и построить линию,
каждая точка которой равноотстоит от
оси ординат и от окружности

РЕШЕНИЕ

В системе координат хОу строим ось
ординат х=0 и окружность

Пусть точка М(х; у) – произвольная точка
искомого геометрического места точек.
Опустим перпендикуляры на ось ординат
и на окружность.

Тогда расстояние от произвольной точки
М(х; у) до оси ординат

абсцисса точки М(х; у), а расстояние от
точки М(х; у) до окружности
.
Приравнивая эти расстояния и снимая
знак модуля, получаем

Получили уравнение параболы, строим
верхнюю часть окружности и параболы,
так как чертёж симметричный:

Соседние файлы в папке Приборостроителям

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий