Уравнение высоты треугольника
Как составить уравнение высоты треугольника по координатам его вершин?
Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону.
Следовательно, для составления уравнения высоты треугольника нужно:
- Найти уравнение стороны треугольника.
- Составить уравнение прямой, перпендикулярной этой стороне и проходящей через противолежащую вершину треугольника.
Дано: ΔABC, A(-7;2), B(5;-3), C(1;8).
Написать уравнения высот треугольника.
1) Составим уравнение стороны BC треугольника ABC.
Прямая y=kx+b проходит через точки B(5;-3), C(1;8), значит, координаты этих точек удовлетворяют уравнению прямой. Подставив координаты B и C в уравнение прямой, составляем систему уравнений и решаем её:
Таким образом, уравнение прямой BC —
Угловой коэффициент прямой, перпендикулярной BC,
Значит, уравнение высоты, проведённой к стороне BC, имеет вид
Поскольку эта прямая проходит через точку A(-7;2), подставляем координаты точки в уравнение и находим b:
Итак, уравнение высоты, проведённой к стороне BC:
2) Составим уравнение стороны AB треугольника ABC. A(-7;2), B(5;-3):
Уравнение прямой AB:
Угловой коэффициент перпендикулярной ей прямой
Значит уравнение перпендикулярной AB прямой имеет вид y=2,5x+b. Подставляем в это уравнение координаты точки C(1;8): 8=2,5·1+b, откуда b=5,5.
Получили уравнение высоты, проведённой из точки C к стороне BC: y=2,5x+5,5.
3) Составим уравнение стороны AC треугольника ABC. A(-7;2), C(1;8):
Угловой коэффициент прямой, перпендикулярной AC,
Таким образом, уравнение перпендикулярной AC прямой имеет вид
Подставив в него координаты точки B(5;-3), найдём b:
Итак, уравнение высоты треугольника ABC, опущенной из вершины B:
Уравнение высоты треугольника по координатам формула
Как составить уравнение высоты треугольника по координатам его вершин?
Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону.
Следовательно, для составления уравнения высоты треугольника нужно:
- Найти уравнение стороны треугольника.
- Составить уравнение прямой, перпендикулярной этой стороне и проходящей через противолежащую вершину треугольника.
Дано: ΔABC, A(-7;2), B(5;-3), C(1;8).
Написать уравнения высот треугольника.
1) Составим уравнение стороны BC треугольника ABC.
Прямая y=kx+b проходит через точки B(5;-3), C(1;8), значит, координаты этих точек удовлетворяют уравнению прямой. Подставив координаты B и C в уравнение прямой, составляем систему уравнений и решаем её:
Таким образом, уравнение прямой BC —
Угловой коэффициент прямой, перпендикулярной BC,
Значит, уравнение высоты, проведённой к стороне BC, имеет вид
Поскольку эта прямая проходит через точку A(-7;2), подставляем координаты точки в уравнение и находим b:
Итак, уравнение высоты, проведённой к стороне BC:
2) Составим уравнение стороны AB треугольника ABC. A(-7;2), B(5;-3):
Уравнение прямой AB:
Угловой коэффициент перпендикулярной ей прямой
Значит уравнение перпендикулярной AB прямой имеет вид y=2,5x+b. Подставляем в это уравнение координаты точки C(1;8): 8=2,5·1+b, откуда b=5,5.
Получили уравнение высоты, проведённой из точки C к стороне BC: y=2,5x+5,5.
3) Составим уравнение стороны AC треугольника ABC. A(-7;2), C(1;8):
Угловой коэффициент прямой, перпендикулярной AC,
Таким образом, уравнение перпендикулярной AC прямой имеет вид
Подставив в него координаты точки B(5;-3), найдём b:
Итак, уравнение высоты треугольника ABC, опущенной из вершины B:
Даны координаты вершин треугольника .
1) Вычислить длину стороны .
2) Составить уравнение линии .
3) Составить уравнение высоты, проведенной из вершины А, и найти ее длину.
4) Найти точку пересечения медиан.
5) Найти косинус внутреннего угла при вершине В.
6) Найти координаты точки М, расположенной симметрично точке А, относительно прямой ВС.
А
1. Длина стороны ВС равна модулю вектора .
; .
2. Уравнение прямой ВС: ; ; .
3. Уравнение высоты АК запишем как уравнение прямой, проходящей через точку перпендикулярно вектору :
. Длину высоты АК можно найти как расстояние от точки А до прямой ВС: .
4. Найдем координаты точки N – середины стороны ВС:
; ; .
Точка пересечения медиан О делит каждую медиану на отрезки в отношении .
Используем формулы деления отрезка в данном отношении :
.
5. Косинус угла при вершине В найдем как косинус угла между векторами и ;
.
6. Точка М, симметричная точке А относительно прямой ВС, расположена на прямой АК, перпендикулярной к прямой ВС, на таком же расстоянии от прямой, как и точка А. Координаты точки К найдем как решения системы Систему решим по формулам Крамера:
.
Точка К является серединой отрезка АМ.
.
Контрольные варианты к задаче 2
Даны координаты вершин треугольника АВС. Требуется:
1) вычислить длину стороны ВС;
2) составить уравнение линии ВС;
3) составить уравнение высоты, проведенной из вершины А;
4) вычислить длину высоты, проведенной из вершины А;
5) найти точку пересечения медиан;
6) вычислить внутренний угол при вершине В;
7) найти координаты точки М, расположенной симметрично точке А относительно прямой ВС.
1. | . | 2. | . |
3. | . | 4. | . |
5. | . | 6. | . |
7. | . | 8. | . |
9. | . | 10. | . |
11. | . | 12. | . |
13. | . | 14. | . |
15. | . | 16. | . |
17. | . | 18. | . |
19. | . | 20. | . |
21. | . | 22. | . |
23. | . | 24. | . |
25. | . | 26. | . |
27. | . | 28. | . |
29. | . | 30. | . |
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Учись учиться, не учась! 10637 – | 8008 – или читать все.
Вы можете заказать решение работы
по адресу , вместо бульдога ставьте @
Нужны сторона AB, высота CD, медиана AE и площадь. Координаты вершин А(-8;-3) В(4;-12) С(8;10)
Уравнение прямой, проходящей через две точки (x1,y1) и (x2,y2), описывается уравнением:
Для прямой AB:
(x+8)·(-9)-(y+3)·12 = 0
-9x-72-12y-36 = 0
9x+12y+108 = 0
3x + 4y + 36 = 0
Для отыскания уравнения высоты CD найдем сначала уравнение прямой, которая ей перпендикулярна. Это прямая AB (уравнение у нас есть). Выразим y через x явно:
y = -(3/4)x-9
Если прямая задана уравнением y = kx+b, то перпендикулярная ей прямая будет иметь вид y = (-1/k)x + d. Поэтому искомая высота имеет уравнение:
y = (4/3)x + d. Постоянную d найдем из условия, что высота проходит через точку С.
10 = (32/3) + d,
d = -2/3
Таким образом, уравнение высоты CD: y = (4/3)x – 2/3, или, что то же, 4x-3y-2 = 0
Медиана AE проходит через две точки – точку А и середину отрезка BC. Найдем координаты середины BC по формуле:
X = (x1+x2)/2, Y = (y1+y2)/2. Искомые координаты: XE = 6, YE = -1
Теперь ищем уравнение прямой, идущей через две точки: A(-8;-3) и E(6;-1) по указанному выше уравнению.
(x+8)·2-(y+3)·14 = 0
x+8-7y-21 = 0
x-7y-13 = 0
Это уравнение медианы AE.
Площадь треугольника, заданного на плоскости координатами вершин (x1,y1) (x2,y2) (x3,y3) определяется выражением:
S = (1/2)·|(x3-x1)·(y2-y1) – (y3-y1)·(x2-x1)|
S = (1/2)·|16·(-9)-13·12| = 300/2 = 150 (кв. ед.)
Как найти длину высоты через уравнение прямой
Внимание! Если вы делали заказ после 19.08.2021, вход в новый Личный кабинет — тут
Неправильный логин или пароль.
Укажите электронный адрес и пароль.
Пожалуйста, укажите электронный адрес или номер телефона, который вы использовали при регистрации. Вам будет отправлено письмо со ссылкой на форму изменения пароля или SMS сообщение с новым паролем.
Инструкция по изменению пароля отправлена на почту.
Чтобы зарегистрироваться, укажите ваш email и пароль
Нажимая кнопку «Зарегистрироваться» вы даете согласие на обработку персональных данных в соответствии с политикой конфеденциальности.
источники:
http://4apple.org/uravnenie-vysoty-treugolnika-po-koordinatam/
http://reshka.feniks.help/vysshaya-matematika/analiticheskaja-geometrija/dany-vershiny-treugolnika-abc
Как составить уравнение высоты треугольника по координатам его вершин?
Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону.
Следовательно, для составления уравнения высоты треугольника нужно:
- Найти уравнение стороны треугольника.
- Составить уравнение прямой, перпендикулярной этой стороне и проходящей через противолежащую вершину треугольника.
Пример.
Дано: ΔABC, A(-7;2), B(5;-3), C(1;8).
Написать уравнения высот треугольника.
Решение:
1) Составим уравнение стороны BC треугольника ABC.
Прямая y=kx+b проходит через точки B(5;-3), C(1;8), значит, координаты этих точек удовлетворяют уравнению прямой. Подставив координаты B и C в уравнение прямой, составляем систему уравнений и решаем её:
Таким образом, уравнение прямой BC —
Угловой коэффициент прямой, перпендикулярной BC,
Значит, уравнение высоты, проведённой к стороне BC, имеет вид
Поскольку эта прямая проходит через точку A(-7;2), подставляем координаты точки в уравнение и находим b:
Итак, уравнение высоты, проведённой к стороне BC:
2) Составим уравнение стороны AB треугольника ABC. A(-7;2), B(5;-3):
Уравнение прямой AB:
Угловой коэффициент перпендикулярной ей прямой
Значит уравнение перпендикулярной AB прямой имеет вид y=2,5x+b. Подставляем в это уравнение координаты точки C(1;8): 8=2,5·1+b, откуда b=5,5.
Получили уравнение высоты, проведённой из точки C к стороне BC: y=2,5x+5,5.
3) Составим уравнение стороны AC треугольника ABC. A(-7;2), C(1;8):
Угловой коэффициент прямой, перпендикулярной AC,
Таким образом, уравнение перпендикулярной AC прямой имеет вид
Подставив в него координаты точки B(5;-3), найдём b:
Итак, уравнение высоты треугольника ABC, опущенной из вершины B:
1) Зная координаты вершин Можем узнать координаты вектора BC (2-3; -3-1) = BC(-1; -4)
Прямая проходящая через точку A должна идти коллинеарно вектору BC, то есть
(х-0) = k•(-1)
(y-4) = k•(-4)
откуда получаем -х=k и -y/4 +1 = k, приравниваем k
-x = -y/4 + 1 или
4x – y = -4
2) Медиана треугольника приходит в середину противоположной стороны. То есть в точку М – середина AС. Её координаты х = (0+2)/2 = 1; y = (4+(-3))/2 = 0,5; M(1; 0,5)
Получаем медиана идет из точки B в направлении вектора MB (3-1; 1-0,5) = MB (2; 0,5)
Получаем (x-3)/2 = (y-1)/0,5
0,5х – 1,5 = 2y – 2
x – 4y = -1
3) Высота из вершины С перпендикулярна стороне AB. То есть Вектора AB и CH ортогональны и их скалярное произведение = 0
AB (3-0; 1-4) = AB(3; -3)
CH (x-2; y-(-3))
<AB•СH> = 3•(х-2) + (-3)•(y+3) = 0
3x-6 – 3y – 9 = 0
x-y = 5 – получили уравнение прямой высоты CH
Уравнение прямой AB: (х-0)/3 = (y-4)/(-3)
x+y = 4
Точка Н – пересечение этих двух прямых:
Решая систему уравнений подстановкой, находим х=4,5; y=-0,5
CH (4,5-2; -0,5+3) = CH(2,5; 2,5)
|CH| = √(2,5² + 2,5²) = 2,5•√2
Ответ:
1) 4x – y = -4;
2) x – 4y = -1;
3) 2,5•√2
Тема
2.2. Прямая на плоскости
Д
ве
взаимно перпендикулярные прямые, на
каждой из которых указано
положительное направление и масштаб,
образуют прямоугольную декартову
систему координат (рис: 2.6). :
Рис. 2.6
Точка
называется началом координат, ось
–
осью абсцисс, ось
-осью ординат. Положение на плоскости
любой точки
определяется двумя числами (координатами):
(рис.2.6).
Теорема 2.9 Расстояние
между точками
и
(рис.2.7) измеряется по
формуле
Рис. 2.7
Теорема 2.10 Если
точка
делит отрезок
в отношении
(
называется коэффициентом
пропорциональности), то ее координаты
находят так;
Следствие В частном случае, когда
отрезок делится пополам,
,
получим так называемые формулы половинного
деления;
Теорема 2.11 Площадь
треугольника
с известными вершинами
равна;
В декартовом базисе прямая изображается
уравнением первой степени с двумя
неизвестными
и
Рассмотрим различные формы задания
уравнения прямой на плоскости.
Теорема 2.12 В прямоугольной системе
координат
любая прямая задается уравнением первой
степени, называемым общим уравнением
прямой
,
где
– постоянные коэффициенты, причем
.
Уравнение прямой с угловым коэффициентом:
З
десь
параметры
и
имеют определенный геометрический
смысл (рис2.8).
Рис. 2.8
и называется угловым коэффициентом.
– угол, образованный прямой
с положительным направлением
.
В качестве положительного направления
измерения угла а принято направление
против хода часовой стрелки (рис.
2.8).
– отрезок, отсекаемый прямой на оси
ординат.
Выполнив несложные алгебраические
преобразования, можно от общего уравнения
прямой перейти к уравнению прямой с
угловым коэффициентом. При этом
,
Уравнение прямой в отрезках
выглядит так:
.
Здесь
и
–
отрезки, отсекаемые прямой на осях
абсцисс и ординат соответственно. Их
связь с коэффициентами общего уравнения
,
.
В этой форме можно представить уравнение
прямой, не проходящей через начало
координат, т.е. если
.
Нормальное уравнение прямой:
Геометрический смысл коэффициентов
этого уравнения:
– длина перпендикуляра,
опущенного из начала координат на
прямую;
– угол, образованный этим перпендикуляром,
с положительным направлением оси
(рис.2.9).
Рис. 2.9
Чтобы перейти к этому виду уравнения
прямой, надо умножить все члены общего
уравнения на нормирующий множитель
.
Знак
выбирается таким образом, чтобы
Уравнение пучка прямых описывает
множество прямых, проходящих через
точку
с известными координатами:
.
Уравнение прямой, проходящей через
две точки
и
:
Угол между прямыми
в зависимости от формы задания уравнений
прямых может быть найден по формуле:
или
.
З
десь
угол
измеряется от прямой с угловым
коэффициентом
или
до прямой с параметрами
или
(рис.2.10):
Рис. 2.10
Из этих формул легко выводятся условия
параллельности:
или
и перпендикулярности прямых:
или
.
Координаты точки пересечения
двух прямых определяются как
решение системы, составленной из
уравнений прямых.
Теорема 2.13
Расстояние
от точки
до прямой
(или
)
определяется по формулам:
или
Задача 2.5 Дано общее уравнение прямой
.
Написать: а) уравнение с угловым
коэффициентом; б) уравнение в отрезках;
в) нормальное уравнение. Построить
прямую.
Решение
а) Оставим член с
слева, а остальные перенесем в правую
часть уравнения. Затем разделим обе
части на коэффициент при
,
т.е. на -3. В результате
получим уравнение с угловым коэффициентом
Задача 2.6 Написать
уравнение прямой, проходящей через
точку
и отсекающей от координатного угла
треугольник, площадью равной
3.
Решение
О
чевидно,
что таких прямых будет 2,
а треугольники образованы во
втором и четвертом квадрантах (рис.2.11):
Рис. 2.11
Запишем уравнение пучка прямых, проходящих
через точку
:
Преобразуем его к уравнению в отрезках:
.
Таким образом,
Так как
и
имеют разные знаки, то площадь указанных
в условии задачи треугольников может
быть найдена по формуле
Отсюда
или
Решив квадратное уравнение, найдем
Тогда уравнения прямых будут иметь вид:
Задача 2.7 Дан
треугольник с вершинами
и
.
Написать уравнения сторон треугольника,
медианы
,
высоты
,
найти длины медианы
и высоты
,
угол при вершине
,
площадь треугольника
.
Решение
П
остроим
треугольник с указанными вершинами и
отметим все перечисленные элементы
(рис. 2.12).
Рис. 2.12
Уравнения, сторон треугольника получим,
используя уравнения прямой, проходящей
через две точки.
Уравнение
можно было записать и без таких выкладок,
учитывая, что обе точки лежат на оси
.
Для нахождения уравнения медианы
предварительно определим координаты
точки
как середины отрезка
:
Тогда уравнение медианы
будет иметь вид
Длину
определим как расстояние между точками
и
:
.
Запишем уравнение пучка прямых, проходящих
через вершину
:
Так как высота
перпендикулярна стороне треугольника
,
то их угловые коэффициенты связаны так:
Из уравнения
легко найти
Тогда
,
и уравнение высоты
будет
или
.
Длину высоты
определим как расстояние от точки
до прямой
:
Так как мы установили общие уравнения
прямых
и
,
то воспользуемся соответствующей
формулой для определения угла при
вершине
треугольника
.
Площадь треугольника
равна
.
Задача 2.8 Найти
точку пересечения медиан и точку
пересечения высот треугольника, вершины
которого
и
.
Решение
С
троим
треугольник, показываем точки пересечения
его медиан и высот (рис.2.13).
Рис.2.13
Определим координаты точки
как середины отрезка
,
воспользовавшись формулами половинного
деления
Для определения координат точки
пересечения медиан
воспользуемся свойством этой точки,
согласно которому она делит медиану
в отношении
,
считая от вершины, т.е.
.
Тогда для точки
Треугольник
является равнобедренным, так как длины
сторон
и
равны:
Следовательно, медиана
будет и высотой. Отсюда уравнение высоты
определим как уравнение прямой, проходящей
через точки
:
Уравнение пучка прямых, проходящих
через точку
может быть записано как
.
Уравнение
находим через известные координаты
концов отрезка:
Так как высота
перпендикулярна
,
то ее угловой коэффициент
и уравнение
будет
или
Координаты точки
пересечения высот
и
определим из решения системы, составленной
из уравнений высот:
47
Соседние файлы в папке высшая математика
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
2.9. Типовая задача с треугольником
Многие помнят из школы признаки равенства треугольников, признаки подобия треугольников и мучительное заучивание доказательств теорем. Как в
сердцАх сказал один мой одноклассник, «не понимаю, на### доказывать равенство треугольников, если и так видно, что они одинаковые». Мы тоже не
будем ничего доказывать, поскольку аналитическая геометрия рассматривает треугольник совсем с другой стороны.
Типовая задача, как правило, формулируется так: Даны три вершины треугольника. Требуется найти… много чего требуется
найти…. Повезёт, если будет пункта 3-4, но чаще всего их 5-6 и даже больше. И вам повезло – разберём всё! Или почти всё:
Задача 95
Даны вершины треугольника . Требуется:
1) составить уравнения сторон и найти их угловые коэффициенты;
2) найти длину стороны ;
3) найти ;
4) составить прямой , проходящей через точку параллельно прямой ;
5) составить уравнение высоты и найти её длину;
6) вычислить площадь треугольника ;
7) составить уравнение медианы ;
8) найти точку пересечения .
и для особо опасных энтузиастов:
9) найти уравнение биссектрисы ;
10) найти центр тяжести треугольника;
11) составить систему линейных неравенств, определяющих треугольник.
С чего начать решение? Начать целесообразно с выполнения чертежа. По условию этого можно не делать, но для самоконтроля и
самопроверки всегда строим чертёж на черновике, не устану это рекомендовать:
Ещё раз напоминаю, что самый выгодный масштаб 1 единица = 1
см (2 тетрадные клетки). Всё хорошо видно, и расстояния удобно измерять линейкой.
Вперёд без страха и сомнений:
1) Составим уравнения сторон и найдём их угловые
коэффициенты.
Поскольку известны вершины треугольника, то уравнения каждой стороны составим по двум
точкам.
Составим уравнение стороны по точкам :
Для проверки мысленно либо на черновике подставляем координаты каждой точки в полученное уравнение.
Теперь
найдём угловой коэффициент. Для этого перепишем общее уравнение в виде уравнения с угловым коэффициентом:
Таким образом, угловой коэффициент:
Самостоятельно разбираемся со сторонами и сверяемся, что
получилось:
2) Найдём длину стороны . Используем соответствующую формулу для точек :
Сторону легко измерить обычной линейкой, хотя это не сильно строгая проверка 🙂
3) Найдём . Это Задача 31, повторим:
Используем формулу .
Найдём векторы:
Таким образом:
, и сам угол:
, ну что же, похоже на правду, желающие могут приложить транспортир, у кого
он есть.
Внимание! При выполнении этого пункта лучше не использовать формулы ориентированного угла
между прямыми, так как они всегда дают острый угол.
4) Составим уравнение прямой , проходящей через точку параллельно прямой . Это стандартная задача, и мы ленимся отработать её вновь!
Из общего уравнения прямой вытащим направляющий вектор .
Составим уравнение прямой по точке и направляющему вектору :
5) Составим уравнение высоты и найдём её длину.
Первую часть задания мы тоже решали:
Из уравнения стороны снимаем вектор нормали . Уравнение высоты
составим по точке и направляющему вектору :
Обратите внимание, что координаты точки нам не известны.
Иногда уравнение высоты находят из соотношения угловых коэффициентов перпендикулярных прямых: . В данном случае , тогда: . Уравнение высоты составим по точке и угловому коэффициенту :
Длину высоты можно найти двумя способами.
Существует окольный путь:
а) находим – точку
пересечения высоты и стороны ;
б) находим длину отрезка по двум
известным точкам.
Но зачем? – ведь есть удобная формула расстояния от точки до прямой :
6) Вычислим площадь треугольника. Используем «школьную» формулу:
7) Уравнение медианы составим в два шага:
а) Найдём точку – середину стороны . Используем формулы координат середины отрезка.
Известны концы , и тогда середина:
б) Уравнение медианы составим по точкам :
– для проверки подставим координаты точек .
8) Найдём точку пересечения высоты и медианы:
в
Первое уравнение умножили на 5, складываем их почленно:
– подставим в первое уравнение:
9) Биссектриса делит угол пополам:
Из свойств биссектрисы внутреннего угла следует соотношение длин следующих отрезков:
Длины сторон уже найдены в предыдущих пунктах: .
Таким образом, . Координаты точки найдём по формулам деления отрезка в данном отношении. Да,
параметр «лямбда» получился просто сказочным, ну а кому сейчас легко? Точки известны и понеслась нелёгкая:
Примечание: на последнем шаге я умножил числитель и знаменатель на сопряжённое выражение – чтобы использовать формулу и
избавиться от иррациональности в знаменателе.
Разбираемся со второй координатой:
аким образом:
И предчувствие вас не обмануло, уравнение биссектрисы составим по точкам по формуле :
обратите внимание на технику упрощений:
Проверил, всё сходится. На практике, конечно, вычисления почти всегда будут проще. Никого не хотел запугать, так уж получилось =)
10) Найдём центр тяжести треугольника.
Но сначала поймём, что такое центр тяжести плоской фигуры. Мысленно вырежьте из тонкого однородного картона любую фигуру. …Почему-то фигура зайца
в голову пришла. Так вот: если слегка насадить данную фигуру центром тяжести (какой же я изверг =)) на вертикально расположенную иголку, то
теоретически фигура не должна свалиться.
Центром тяжести треугольника является точка пересечения его медиан. В треугольнике три медианы и пересекаются они в одной точке.
Из пункта 7 нам уже известна одна из медиан: . Как решить задачу?
Напрашивается очевидный алгоритм: можно найти уравнение второй медианы (любой из двух оставшихся) и точку пересечения этих медиан. Но есть путь
короче! Нужно только знать полезное свойство:
Точка пересечения медиан делит каждую из медиан в
отношении , считая от вершины треугольника. Поэтому справедливо
отношение
Нам известны концы отрезка – точки и .
По формулам деления отрезка в данном отношении:
Таким образом, центр тяжести треугольника:
И заключительный пункт задачи, для освоения которого нужно уметь решать недавно разобранные линейные
неравенства:
11) Составим систему линейных неравенств, определяющих треугольник.
Для удобства я перепишу найденные уравнения сторон:
Рассмотрим прямую . Треугольник лежит в полуплоскости, где находится
вершина . Составим вспомогательный многочлен и вычислим его значение в точке : . Поскольку сторона принадлежит треугольнику, то неравенство будет нестрогим:
Внимание! Если вам не понятен этот алгоритм, то обратитесь к
Задаче 90.
Рассмотрим прямую . Треугольник расположен ниже данной прямой, поэтому
очевидно неравенство .
И, наконец, для составим многочлен , в который подставим координаты точки : .
Таким образом, получаем третье неравенство: .
Итак, треугольник определяется следующей системой линейных
неравенств:
Готово.
Какой можно сделать вывод?
Многие задачи аналитической геометрии прозрачны и просты,
главное, не допустить вычислительных ошибок.
Следует отметить, что по настоящему трудные задачи в аналитической геометрии встречаются редко, и вы справитесь практически с любой из них!
Главное, придерживаться методики решения и проявить маломальское упорство.
Ну что, может ещё задачку? Да ладно, не надо стесняться, я же по глазам вижу, что хотите =)
Но сейчас на очереди другая увлекательная тема, продолжаем изучать геометрию плоскости:
3.1. Алгебраическая линия и её порядок
2.8. Как научиться решать задачи по геометрии?
| Оглавление |
Автор: Aлeксaндр Eмeлин