Как найти длину высоты через уравнение прямой

Уравнение высоты треугольника

Как составить уравнение высоты треугольника по координатам его вершин?

Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону.

Следовательно, для составления уравнения высоты треугольника нужно:

  1. Найти уравнение стороны треугольника.
  2. Составить уравнение прямой, перпендикулярной этой стороне и проходящей через противолежащую вершину треугольника.

Дано: ΔABC, A(-7;2), B(5;-3), C(1;8).

Написать уравнения высот треугольника.

1) Составим уравнение стороны BC треугольника ABC.

Прямая y=kx+b проходит через точки B(5;-3), C(1;8), значит, координаты этих точек удовлетворяют уравнению прямой. Подставив координаты B и C в уравнение прямой, составляем систему уравнений и решаем её:

Таким образом, уравнение прямой BC —

Угловой коэффициент прямой, перпендикулярной BC,

Значит, уравнение высоты, проведённой к стороне BC, имеет вид

Поскольку эта прямая проходит через точку A(-7;2), подставляем координаты точки в уравнение и находим b:

Итак, уравнение высоты, проведённой к стороне BC:

2) Составим уравнение стороны AB треугольника ABC. A(-7;2), B(5;-3):

Уравнение прямой AB:

Угловой коэффициент перпендикулярной ей прямой

Значит уравнение перпендикулярной AB прямой имеет вид y=2,5x+b. Подставляем в это уравнение координаты точки C(1;8): 8=2,5·1+b, откуда b=5,5.
Получили уравнение высоты, проведённой из точки C к стороне BC: y=2,5x+5,5.
3) Составим уравнение стороны AC треугольника ABC. A(-7;2), C(1;8):

Угловой коэффициент прямой, перпендикулярной AC,

Таким образом, уравнение перпендикулярной AC прямой имеет вид

Подставив в него координаты точки B(5;-3), найдём b:

Итак, уравнение высоты треугольника ABC, опущенной из вершины B:

Уравнение высоты треугольника по координатам формула

Как составить уравнение высоты треугольника по координатам его вершин?

Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону.

Следовательно, для составления уравнения высоты треугольника нужно:

  1. Найти уравнение стороны треугольника.
  2. Составить уравнение прямой, перпендикулярной этой стороне и проходящей через противолежащую вершину треугольника.

Дано: ΔABC, A(-7;2), B(5;-3), C(1;8).

Написать уравнения высот треугольника.

1) Составим уравнение стороны BC треугольника ABC.

Прямая y=kx+b проходит через точки B(5;-3), C(1;8), значит, координаты этих точек удовлетворяют уравнению прямой. Подставив координаты B и C в уравнение прямой, составляем систему уравнений и решаем её:

Таким образом, уравнение прямой BC —

Угловой коэффициент прямой, перпендикулярной BC,

Значит, уравнение высоты, проведённой к стороне BC, имеет вид

Поскольку эта прямая проходит через точку A(-7;2), подставляем координаты точки в уравнение и находим b:

Итак, уравнение высоты, проведённой к стороне BC:

2) Составим уравнение стороны AB треугольника ABC. A(-7;2), B(5;-3):

Уравнение прямой AB:

Угловой коэффициент перпендикулярной ей прямой

Значит уравнение перпендикулярной AB прямой имеет вид y=2,5x+b. Подставляем в это уравнение координаты точки C(1;8): 8=2,5·1+b, откуда b=5,5.
Получили уравнение высоты, проведённой из точки C к стороне BC: y=2,5x+5,5.
3) Составим уравнение стороны AC треугольника ABC. A(-7;2), C(1;8):

Угловой коэффициент прямой, перпендикулярной AC,

Таким образом, уравнение перпендикулярной AC прямой имеет вид

Подставив в него координаты точки B(5;-3), найдём b:

Итак, уравнение высоты треугольника ABC, опущенной из вершины B:

Даны координаты вершин треугольника .

1) Вычислить длину стороны .

2) Составить уравнение линии .

3) Составить уравнение высоты, проведенной из вершины А, и найти ее длину.

4) Найти точку пересечения медиан.

5) Найти косинус внутреннего угла при вершине В.

6) Найти координаты точки М, расположенной симметрично точке А, относительно прямой ВС.

А

1. Длина стороны ВС равна модулю вектора .

; .

2. Уравнение прямой ВС: ; ; .

3. Уравнение высоты АК запишем как уравнение прямой, проходящей через точку перпендикулярно вектору :

. Длину высоты АК можно найти как расстояние от точки А до прямой ВС: .

4. Найдем координаты точки N – середины стороны ВС:

; ; .

Точка пересечения медиан О делит каждую медиану на отрезки в отношении .

Используем формулы деления отрезка в данном отношении :

.

5. Косинус угла при вершине В найдем как косинус угла между векторами и ;

.

6. Точка М, симметричная точке А относительно прямой ВС, расположена на прямой АК, перпендикулярной к прямой ВС, на таком же расстоянии от прямой, как и точка А. Координаты точки К найдем как решения системы Систему решим по формулам Крамера:

.

Точка К является серединой отрезка АМ.

.

Контрольные варианты к задаче 2

Даны координаты вершин треугольника АВС. Требуется:

1) вычислить длину стороны ВС;

2) составить уравнение линии ВС;

3) составить уравнение высоты, проведенной из вершины А;

4) вычислить длину высоты, проведенной из вершины А;

5) найти точку пересечения медиан;

6) вычислить внутренний угол при вершине В;

7) найти координаты точки М, расположенной симметрично точке А относительно прямой ВС.

1. . 2. .
3. . 4. .
5. . 6. .
7. . 8. .
9. . 10. .
11. . 12. .
13. . 14. .
15. . 16. .
17. . 18. .
19. . 20. .
21. . 22. .
23. . 24. .
25. . 26. .
27. . 28. .
29. . 30. .

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 10637 – | 8008 – или читать все.

Вы можете заказать решение работы
по адресу , вместо бульдога ставьте @

Нужны сторона AB, высота CD, медиана AE и площадь. Координаты вершин А(-8;-3) В(4;-12) С(8;10)

Уравнение прямой, проходящей через две точки (x1,y1) и (x2,y2), описывается уравнением:

Для прямой AB:
(x+8)·(-9)-(y+3)·12 = 0
-9x-72-12y-36 = 0
9x+12y+108 = 0
3x + 4y + 36 = 0

Для отыскания уравнения высоты CD найдем сначала уравнение прямой, которая ей перпендикулярна. Это прямая AB (уравнение у нас есть). Выразим y через x явно:
y = -(3/4)x-9

Если прямая задана уравнением y = kx+b, то перпендикулярная ей прямая будет иметь вид y = (-1/k)x + d. Поэтому искомая высота имеет уравнение:

y = (4/3)x + d. Постоянную d найдем из условия, что высота проходит через точку С.

10 = (32/3) + d,
d = -2/3

Таким образом, уравнение высоты CD: y = (4/3)x – 2/3, или, что то же, 4x-3y-2 = 0

Медиана AE проходит через две точки – точку А и середину отрезка BC. Найдем координаты середины BC по формуле:
X = (x1+x2)/2, Y = (y1+y2)/2. Искомые координаты: XE = 6, YE = -1

Теперь ищем уравнение прямой, идущей через две точки: A(-8;-3) и E(6;-1) по указанному выше уравнению.

(x+8)·2-(y+3)·14 = 0
x+8-7y-21 = 0
x-7y-13 = 0

Это уравнение медианы AE.

Площадь треугольника, заданного на плоскости координатами вершин (x1,y1) (x2,y2) (x3,y3) определяется выражением:

S = (1/2)·|(x3-x1)·(y2-y1) – (y3-y1)·(x2-x1)|
S = (1/2)·|16·(-9)-13·12| = 300/2 = 150 (кв. ед.)

Как найти длину высоты через уравнение прямой

Внимание! Если вы делали заказ после 19.08.2021, вход в новый Личный кабинет — тут

Неправильный логин или пароль.

Укажите электронный адрес и пароль.

Пожалуйста, укажите электронный адрес или номер телефона, который вы использовали при регистрации. Вам будет отправлено письмо со ссылкой на форму изменения пароля или SMS сообщение с новым паролем.

Инструкция по изменению пароля отправлена на почту.

Чтобы зарегистрироваться, укажите ваш email и пароль

Нажимая кнопку «Зарегистрироваться» вы даете согласие на обработку персональных данных в соответствии с политикой конфеденциальности.

источники:

http://4apple.org/uravnenie-vysoty-treugolnika-po-koordinatam/

http://reshka.feniks.help/vysshaya-matematika/analiticheskaja-geometrija/dany-vershiny-treugolnika-abc

Как составить уравнение высоты треугольника по координатам его вершин?

Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону.

Следовательно, для составления уравнения высоты треугольника нужно:

  1. Найти уравнение стороны треугольника.
  2. Составить уравнение прямой, перпендикулярной этой стороне и проходящей через противолежащую вершину треугольника.

Пример.

Дано: ΔABC, A(-7;2), B(5;-3), C(1;8).

Написать уравнения высот треугольника.

Решение:

1) Составим уравнение стороны BC треугольника ABC.

Прямая y=kx+b проходит через точки B(5;-3), C(1;8), значит, координаты этих точек удовлетворяют уравнению прямой. Подставив координаты B и C в уравнение прямой, составляем систему уравнений и решаем её:

    [left{ begin{array}{l} - 3 = k cdot 5 + b; \ 8 = k cdot 1 + b; \ end{array} right. Rightarrow k = - frac{{11}}{4};b = frac{{43}}{4}.]

Таким образом, уравнение прямой BC —

    [y = - frac{{11}}{4}x + frac{{43}}{4}.]

Угловой коэффициент прямой, перпендикулярной BC,

    [k_2 = - frac{1}{{k_1 }} = - frac{1}{{ - frac{{11}}{4}}} = frac{4}{{11}}.]

Значит, уравнение высоты, проведённой к стороне BC, имеет вид

    [y = frac{4}{{11}}x + b.]

Поскольку эта прямая проходит через точку A(-7;2), подставляем координаты точки в уравнение и находим b:

    [2 = frac{4}{{11}} cdot ( - 7) + b, Rightarrow b = frac{{50}}{{11}}.]

Итак, уравнение высоты, проведённой к стороне BC:

    [y = frac{4}{{11}}x + frac{{50}}{{11}}.]

2) Составим уравнение стороны AB треугольника ABC. A(-7;2), B(5;-3):

    [left{ begin{array}{l} 2 = k cdot ( - 7) + b; \ - 3 = k cdot 5 + b; \ end{array} right. Rightarrow k = - frac{5}{{12}};b = - frac{{11}}{{12}}.]

Уравнение прямой AB:

    [y = - frac{5}{{12}}x - frac{{11}}{{12}}.]

Угловой коэффициент перпендикулярной ей прямой

    [k_2 = - frac{1}{{k_1 }} = - frac{1}{{ - frac{5}{{12}}}} = frac{{12}}{5} = 2,5.]

Значит уравнение перпендикулярной AB прямой имеет вид y=2,5x+b. Подставляем в это уравнение координаты точки C(1;8): 8=2,5·1+b, откуда b=5,5.
Получили уравнение высоты, проведённой из точки C к стороне BC: y=2,5x+5,5.
3) Составим уравнение стороны AC треугольника ABC. A(-7;2), C(1;8):

    [left{ begin{array}{l} 2 = k cdot ( - 7) + b; \ 8 = k cdot 1 + b; \ end{array} right. Rightarrow k = frac{3}{4};b = frac{{29}}{4}.]

Угловой коэффициент прямой, перпендикулярной AC,

    [k_2 = - frac{1}{{k_1 }} = - frac{1}{{frac{3}{4}}} = - frac{4}{3}.]

Таким образом, уравнение перпендикулярной AC прямой имеет вид

    [y = - frac{4}{3}x + b.]

Подставив в него координаты точки B(5;-3), найдём b:

    [- 3 = - frac{4}{3} cdot 5 + b, Rightarrow b = frac{{11}}{3}.]

Итак, уравнение высоты треугольника ABC, опущенной из вершины B:

    [y = - frac{4}{3}x + frac{{11}}{3}.]

uravnenie-vysoty-treugolnika

1) Зная координаты вершин Можем узнать координаты вектора BC (2-3; -3-1) = BC(-1; -4)

Прямая проходящая через точку A должна идти коллинеарно вектору BC, то есть

(х-0) = k•(-1)

(y-4) = k•(-4)

откуда получаем -х=k и -y/4 +1 = k, приравниваем k

-x = -y/4 + 1 или

4x – y = -4

2) Медиана треугольника приходит в середину противоположной стороны. То есть в точку М – середина AС. Её координаты х = (0+2)/2 = 1; y = (4+(-3))/2 = 0,5; M(1; 0,5)

Получаем медиана идет из точки B в направлении вектора MB (3-1; 1-0,5) = MB (2; 0,5)

Получаем (x-3)/2 = (y-1)/0,5

0,5х – 1,5 = 2y – 2

x – 4y = -1

3) Высота из вершины С перпендикулярна стороне AB. То есть Вектора AB и CH ортогональны и их скалярное произведение = 0

AB (3-0; 1-4) = AB(3; -3)

CH (x-2; y-(-3))

<AB•СH> = 3•(х-2) + (-3)•(y+3) = 0

3x-6 – 3y – 9 = 0

x-y = 5 – получили уравнение прямой высоты CH

Уравнение прямой AB: (х-0)/3 = (y-4)/(-3)

x+y = 4

Точка Н – пересечение этих двух прямых:

Решая систему уравнений подстановкой, находим х=4,5; y=-0,5

CH (4,5-2; -0,5+3) = CH(2,5; 2,5)

|CH| = √(2,5² + 2,5²) = 2,5•√2

Ответ:

1) 4x – y = -4;

2) x – 4y = -1;

3) 2,5•√2

Тема
2.2. Прямая на плоскости

Д
ве
взаимно перпендикулярные прямые, на
каждой из ко­то­рых указано
положительное направление и масштаб,
образуют прямоугольную декартову
систему координат (рис: 2.6). :

Рис. 2.6

Точка

называется началом координат, ось


осью абсцисс, ось

-осью ординат. Положение на плоскости
любой точки

определяется двумя числами (координатами):

(рис.2.6).

Теорема 2.9 Расстояние


между точками

и

(рис.2.7) измеряется по
формуле

Рис. 2.7

Теорема 2.10 Если
точка

делит отрезок

в отношении

(
называется коэффициентом
пропорциональности), то ее координаты
находят так;

Следствие В частном случае, когда
отрезок делится пополам,
,
получим так называемые формулы половинного
деления;

Теорема 2.11 Площадь
треугольника

с известными вершинами

равна;

В декартовом базисе прямая изображается
уравнением первой степени с двумя
неизвестными

и

Рассмотрим различные формы задания
уравнения прямой на плоскости.

Теорема 2.12 В прямоугольной системе
координат

любая прямая задается уравнением первой
степени, называемым общим уравнением
прямой

,

где

– постоянные коэффициенты, причем
.

Уравнение прямой с угловым коэффициентом:

З
десь
параметры

и

имеют определенный геометрический
смысл (рис2.8).

Рис. 2.8


и называется угловым коэффициентом.


– угол, образованный прямой
с положительным направ­ле­нием
.
В качестве положительного направления
изме­ре­ния угла а принято направление
против хода часовой стрелки (рис.
2.8).


– отрезок, отсекаемый прямой на оси
ординат.

Выполнив несложные алгебраические
преобразования, можно от общего уравнения
прямой перейти к уравнению пря­мой с
угловым коэффициентом. При этом

,

Уравнение прямой в отрезках
выглядит так:

.

Здесь

и

отрезки, отсекаемые прямой на осях
абсцисс и ординат соответственно. Их
связь с коэффициентами общего уравнения

,

.

В этой форме можно представить уравнение
прямой, не проходящей через начало
координат, т.е. если
.

Нормальное уравнение прямой:

Геометрический смысл коэффициентов
этого уравнения
:

– длина перпендикуляра,
опущенного из начала координат на
прямую;

– угол, образованный этим перпендикуляром,
с положительным направлением оси
(рис.2.9).

Рис. 2.9

Чтобы перейти к этому виду уравнения
прямой, надо умножить все члены общего
уравнения на нормирующий множитель

.

Знак

выбирается таким образом, чтобы

Уравнение пучка прямых описывает
множество прямых, проходящих через
точку

с известными координатами:

.

Уравнение прямой, проходящей через
две точки


и
:

Угол между прямыми

в зависимости от формы задания уравнений
прямых может быть найден по формуле:

или

.

З
десь
угол

измеряется от прямой с угловым
коэффици­ен­том

или

до прямой с параметрами

или

(рис.2.10):

Рис. 2.10

Из этих формул легко выводятся условия
параллельности:


или

и перпендикулярности прямых:


или
.

Координаты точки пересечения
двух прямых опреде­ляют­ся как
решение системы, составленной из
уравнений прямых.

Теорема 2.13
Расстояние

от точки

до прямой

(или
)
определяется по формулам:


или

Задача 2.5 Дано общее уравнение прямой
.

Написать: а) уравнение с угловым
коэффициентом; б) уравнение в отрезках;
в) нормальное уравнение. Построить
прямую.

Решение

а) Оставим член с

слева, а остальные перенесем в правую
часть уравнения. Затем разделим обе
части на коэффициент при
,
т.е. на -3. В результате
получим уравнение с угловым коэффициентом

Задача 2.6 Написать
уравнение прямой, проходящей через
точку

и отсекающей от координатного угла
треугольник, площадью равной
3.

Решение

О
чевидно,
что таких прямых будет 2,
а треугольники обра­зо­ваны во
втором и четвертом квадрантах (рис.2.11):

Рис. 2.11

Запишем уравнение пучка прямых, проходящих
через точку
:

Преобразуем его к уравнению в отрезках:

.

Таким образом,

Так как

и

имеют разные знаки, то площадь указанных
в условии задачи треугольников может
быть найдена по формуле

Отсюда

или

Решив квадратное уравнение, найдем

Тогда уравнения прямых будут иметь вид:

Задача 2.7 Дан
треугольник с вершинами

и
.
Написать уравнения сторон треугольника,
медианы
,
высоты
,
найти длины медианы

и высоты
,
угол при вершине
,
площадь треугольника
.

Решение

П
остроим
треугольник с указанными вершинами и
отметим все перечисленные элементы
(рис. 2.12).

Рис. 2.12

Уравнения, сторон треугольника получим,
используя уравнения прямой, проходящей
через две точки.

Уравнение

можно было записать и без таких выкладок,
учитывая, что обе точки лежат на оси
.

Для нахождения уравнения медианы

предварительно определим координаты
точки

как середины отрезка
:

Тогда уравнение медианы

будет иметь вид

Длину

определим как расстояние между точками

и
:

.

Запишем уравнение пучка прямых, проходящих
через вершину
:

Так как высота

перпендикулярна стороне треугольника
,
то их угловые коэффициенты связаны так:

Из уравнения

легко найти

Тогда
,
и уравнение высоты

будет


или

.

Длину высоты

определим как расстояние от точки

до прямой
:

Так как мы установили общие уравнения
прямых

и
,
то воспользуемся соответствующей
формулой для определения угла при
вершине

треугольника
.

Площадь треугольника

равна

.

Задача 2.8 Найти
точку пересечения медиан и точку
пересечения высот треугольника, вершины
которого

и
.

Решение

С
троим
треугольник, показываем точки пересечения
его медиан и высот (рис.2.13).

Рис.2.13

Определим координаты точки

как середины отрезка
,
воспользовавшись формулами половинного
деления

Для определения координат точки
пересечения медиан

воспользуемся свойством этой точки,
согласно которому она делит медиану

в отношении
,
считая от вершины, т.е.
.
Тогда для точки

Треугольник

является равнобедренным, так как длины
сторон

и

равны:

Следовательно, медиана

будет и высотой. Отсюда уравнение высоты


определим как уравнение прямой, проходящей
через точки
:

Уравнение пучка прямых, проходящих
через точку

может быть записано как

.

Уравнение

находим через известные координаты
концов отрезка:

Так как высота

перпендикулярна
,
то ее угловой коэффициент

и уравнение

будет


или

Координаты точки

пересечения высот

и

определим из решения системы, составленной
из уравнений высот:

47

Соседние файлы в папке высшая математика

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #


2.9. Типовая задача с треугольником

Многие помнят из школы признаки равенства треугольников, признаки подобия треугольников и мучительное заучивание доказательств теорем. Как в

сердцАх сказал один мой одноклассник, «не понимаю, на### доказывать равенство треугольников, если и так видно, что они одинаковые». Мы тоже не

будем ничего доказывать, поскольку аналитическая геометрия рассматривает треугольник совсем с другой стороны.

Типовая задача, как правило, формулируется так: Даны три вершины треугольника. Требуется найти… много чего требуется

найти…. Повезёт, если будет пункта 3-4, но чаще всего их 5-6 и даже больше. И вам повезло – разберём всё! Или почти всё:

Задача 95

Даны вершины треугольника . Требуется:

1) составить уравнения сторон  и найти их угловые коэффициенты;
2) найти длину стороны ;
3) найти ;
4) составить прямой , проходящей через точку  параллельно прямой ;
5) составить уравнение высоты и найти её длину;
6) вычислить площадь треугольника ;
7) составить уравнение медианы ;
8) найти точку пересечения .
и для особо опасных энтузиастов:
9) найти уравнение биссектрисы ;
10) найти центр тяжести  треугольника;
11) составить систему линейных неравенств, определяющих треугольник.

С чего начать решение? Начать целесообразно с выполнения чертежа. По условию этого можно не делать, но для самоконтроля и

самопроверки всегда строим чертёж на черновике, не устану это рекомендовать:

Ещё раз напоминаю, что самый выгодный масштаб 1 единица = 1

см (2 тетрадные клетки). Всё хорошо видно, и расстояния удобно измерять линейкой.

Вперёд без страха и сомнений:

1) Составим уравнения сторон  и найдём их угловые

коэффициенты.
Поскольку известны вершины треугольника, то уравнения каждой стороны составим по двум

точкам.

Составим уравнение стороны  по точкам :

Для проверки мысленно либо на черновике подставляем координаты каждой точки в полученное уравнение.

Теперь

найдём угловой коэффициент. Для этого перепишем общее уравнение в виде уравнения с угловым коэффициентом:

Таким образом, угловой коэффициент:

Самостоятельно разбираемся со сторонами  и сверяемся, что

получилось:

2) Найдём длину стороны .  Используем соответствующую формулу для точек :

Сторону легко измерить обычной линейкой, хотя это не сильно строгая проверка 🙂

3) Найдём . Это Задача 31, повторим:

Используем формулу .
Найдём векторы:

Таким образом:
, и сам угол:
, ну что же, похоже на правду, желающие могут приложить транспортир, у кого

он есть.

Внимание! При выполнении этого пункта лучше не использовать формулы ориентированного угла

между прямыми, так как они всегда дают острый угол.

4) Составим уравнение прямой , проходящей через точку  параллельно прямой . Это стандартная задача, и мы ленимся отработать её вновь!

Из общего уравнения прямой  вытащим направляющий вектор .

Составим уравнение прямой  по точке  и направляющему вектору :

5) Составим уравнение высоты и найдём её длину.
Первую часть задания мы тоже решали:

Из уравнения стороны  снимаем вектор нормали . Уравнение высоты

 составим по точке  и направляющему вектору :

Обратите внимание, что координаты точки  нам не известны.

Иногда уравнение высоты находят из соотношения угловых коэффициентов перпендикулярных прямых: . В данном случае , тогда: . Уравнение высоты  составим по точке  и угловому коэффициенту :

Длину высоты можно найти двумя способами.

Существует окольный путь:

а) находим  – точку

пересечения высоты и стороны ;

б) находим длину отрезка  по двум

известным точкам.

Но зачем? – ведь есть удобная формула расстояния от точки  до прямой :

6) Вычислим площадь треугольника. Используем «школьную» формулу:

7) Уравнение медианы  составим в два шага:

а) Найдём точку  – середину стороны . Используем формулы координат середины отрезка.

Известны концы , и тогда середина:

б) Уравнение медианы  составим по точкам :

 – для проверки подставим координаты точек .

8) Найдём точку пересечения  высоты и медианы:
      в

Первое уравнение умножили на 5, складываем их почленно:
 – подставим в первое уравнение:

9) Биссектриса делит угол пополам:

Из свойств биссектрисы внутреннего угла следует соотношение длин следующих отрезков:

Длины сторон уже найдены в предыдущих пунктах: .

Таким образом, . Координаты точки  найдём по формулам деления отрезка в данном отношении. Да,

параметр «лямбда» получился просто сказочным, ну а кому сейчас легко? Точки  известны и понеслась нелёгкая:

Примечание: на последнем шаге я умножил числитель и знаменатель на сопряжённое выражение  – чтобы использовать формулу  и

избавиться от иррациональности в знаменателе.

Разбираемся со второй координатой:

аким образом:  

И предчувствие вас не обмануло, уравнение биссектрисы  составим по точкам  по формуле :

обратите внимание на технику упрощений:

Проверил, всё сходится. На практике, конечно, вычисления почти всегда будут проще. Никого не хотел запугать, так уж получилось =)

10) Найдём центр тяжести треугольника.

Но сначала поймём, что такое центр тяжести плоской фигуры. Мысленно вырежьте из тонкого однородного картона любую фигуру. …Почему-то фигура зайца

в голову пришла. Так вот: если слегка насадить данную фигуру центром тяжести (какой же я изверг =)) на вертикально расположенную иголку, то

теоретически фигура не должна свалиться.

Центром тяжести треугольника является точка пересечения его медиан. В треугольнике три медианы и пересекаются они в одной точке.

Из пункта 7 нам уже известна одна из медиан: .  Как решить задачу?

Напрашивается очевидный алгоритм: можно найти уравнение второй медианы (любой из двух оставшихся) и точку пересечения этих медиан. Но есть путь

короче! Нужно только знать полезное свойство:

Точка пересечения медиан делит каждую из медиан в

отношении , считая от вершины треугольника. Поэтому справедливо

отношение
Нам известны концы отрезка – точки  и .
По формулам деления отрезка в данном отношении:

Таким образом, центр тяжести треугольника:
И заключительный пункт задачи, для освоения которого нужно уметь решать недавно разобранные линейные

неравенства:

11) Составим систему линейных неравенств, определяющих треугольник.

Для удобства я перепишу найденные уравнения сторон:

Рассмотрим прямую . Треугольник лежит в полуплоскости, где находится

вершина . Составим вспомогательный многочлен  и вычислим его значение в точке : . Поскольку сторона  принадлежит треугольнику, то неравенство будет нестрогим:

Внимание! Если вам не понятен этот алгоритм, то обратитесь к

Задаче 90.

Рассмотрим прямую . Треугольник расположен ниже данной прямой, поэтому

очевидно неравенство .

И, наконец, для  составим многочлен , в который подставим координаты точки : .
Таким образом, получаем третье неравенство: .

Итак, треугольник  определяется следующей системой линейных

неравенств:

Готово.

Какой можно сделать вывод?


Многие задачи аналитической геометрии прозрачны и просты,
главное, не допустить вычислительных ошибок.

Следует отметить, что по настоящему трудные задачи в аналитической геометрии встречаются редко, и вы справитесь практически с любой из них!

Главное, придерживаться методики решения и проявить маломальское упорство.

Ну что, может ещё задачку? Да ладно, не надо стесняться, я же по глазам вижу, что хотите =) 

Но сейчас на очереди другая увлекательная тема, продолжаем изучать геометрию плоскости:

3.1. Алгебраическая линия и её порядок

2.8. Как научиться решать задачи по геометрии?

| Оглавление |



Автор: Aлeксaндр Eмeлин

Добавить комментарий