Как найти дополнительные точки функции онлайн

Подборка онлайн калькуляторов для полного исследования функции и построение графика.
Найти Область определения функции
Вычислить Четность функции
Периодичность функции
Вычисление точек пересечения графика с осью (нули функции)
Промежутки знакопостоянства
Асимптоты функции
Найти экстремумы функции
Точки перегиба, интервалы выпуклости и вогнутости
Построить график функции

even – четная функция;
odd – нечетная функция;
neither even nor odd – функция общего вида;

Для нахождения интервалов на которых функция положительна используйте знак “>”
для интервалов на которых функция отрицательна используйте знак “<“.

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»

Исследование функции по-шагам

Примеры исследуемых функций

  • График логарифмической функции
  • y = log(x)/x
  • График показательной функции
  • y = 2^x - 3^x
  • График степенной функции
  • f(x) = x^5 - x^4 + x^2 - x + 1
  • График гиперболы
  • f(x) = (x - 1)/(x + 1)
  • y = 1/x
  • График квадратичной функции
  • x^2 - x + 5
  • График тригонометрической функции
  • sin(x) - 2*cos(x) + 3*sin(2*x)
  • Функция Гомпертца
  • e/2*e^(-e^-x)
  • e^(-e^-x)
  • -1/2*e^(-e^-x)
  • e^(-1/4*e^(-x))
  • e^(-e^(-2*x))
  • Логистическая кривая
  • 1/(1 + exp(-x))

Что исследует?

  • Область определения функции. Умеет определять только точки, в которых знаменатель функции обращается в нуль
  • Умеет определять точки пересечения графика функции с осями координат
  • Экстремумы функции: интервалы (отрезки) возрастания и убывания функции, а также локальные (или относительные) и глобальные (или абсолютные) минимумы и максимумы функции
  • Точки перегибов графика функции: перегибы: интервалы выпуклости, вогнутости (впуклости)
  • Вертикальные асимптоты: область определения функции, точки, где знаменатель функции обращается в нуль
  • Горизонтальные асимптоты графика функции
  • Наклонные асимптоты графика функции
  • Четность и нечетность функции

Подробнее про Исследование функции.

Указанные выше примеры содержат также:

  • модуль или абсолютное значение: absolute(x) или |x|
  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x),
    арккотангенс acot(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x),
    гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    гиперболический арксинус asinh(x), гиперболический арккосинус acosh(x),
    гиперболический арктангенс atanh(x), гиперболический арккотангенс acoth(x)
  • другие тригонометрические и гиперболические функции:
    секанс sec(x), косеканс csc(x), арксеканс asec(x),
    арккосеканс acsc(x), гиперболический секанс sech(x),
    гиперболический косеканс csch(x), гиперболический арксеканс asech(x),
    гиперболический арккосеканс acsch(x)
  • функции округления:
    в меньшую сторону floor(x), в большую сторону ceiling(x)
  • знак числа:
    sign(x)
  • для теории вероятности:
    функция ошибок erf(x) (интеграл вероятности),
    функция Лапласа laplace(x)
  • Факториал от x:
    x! или factorial(x)
  • Гамма-функция gamma(x)
  • Функция Ламберта LambertW(x)
  • Тригонометрические интегралы: Si(x),
    Ci(x),
    Shi(x),
    Chi(x)

Правила ввода

Можно делать следующие операции

2*x
– умножение
3/x
– деление
x^2
– возведение в квадрат
x^3
– возведение в куб
x^5
– возведение в степень
x + 7
– сложение
x – 6
– вычитание
Действительные числа
вводить в виде 7.5, не 7,5

Постоянные

pi
– число Пи
e
– основание натурального логарифма
i
– комплексное число
oo
– символ бесконечности

Экстремумы функции

С помощью данного сервиса можно найти наибольшее и наименьшее значение функции одной переменной f(x) с оформлением решения в Word. Если же задана функция f(x,y), следовательно, необходимо найти экстремум функции двух переменных. Также можно найти интервалы возрастания и убывания функции.

  • Решение онлайн
  • Видеоинструкция
  • Оформление Word
  • Также решают

Необходимое условие экстремума функции одной переменной

Уравнение f’0(x*) = 0 – это необходимое условие экстремума функции одной переменной, т.е. в точке x* первая производная функции должна обращаться в нуль. Оно выделяет стационарные точки xс, в которых функция не возрастает и не убывает.

Достаточное условие экстремума функции одной переменной

Пусть f0(x) дважды дифференцируемая по x, принадлежащему множеству D. Если в точке x* выполняется условие:

f’0(x*) = 0

f”0(x*) > 0

то точка x* является точкой локального (глобального) минимума функции.

Если в точке x* выполняется условие:

f’0(x*) = 0

f”0(x*) < 0

то точка x* – локальный (глобальный) максимум.

Пример №1. Найти наибольшее и наименьшее значения функции:
Наибольшее и наименьшее значения функции. Пример на отрезке [1; 3].

Решение.



Критическая точка одна x1 = 2 (f’(x)=0). Эта точка принадлежит отрезку [1;3]. (Точка x=0 не является критической, так как 0∉[1;3]).

Вычисляем значения функции на концах отрезка и в критической точке.

f(1)=9, f(2)=5/2, f(3)=3 8/81

Ответ: fmin=5/2 при x=2; fmax=9 при x=1

Пример №2. С помощью производных высших порядков найти экстремум функции y=x-2sin(x).

Решение.

Находим производную функции: y’=1-2cos(x). Найдем критические точки: 1-cos(x)=2, cos(x)=½, x=±π/3+2πk, k∈Z. Находим y’’=2sin(x), вычисляем Наибольшее и наименьшее значения функции. Пример, значит x=π/3+2πk, k∈Z – точки минимума функции; Наибольшее и наименьшее значения функции. Пример, значит x=-π/3+2πk, k∈Z – точки максимума функции.

Пример №3. Исследовать на экстремум фцнкцию в окрестностях точки x=0.

Решение. Здесь необходимо найти экстремумы функции. Если экстремум x=0, то выяснить его тип (минимум или максимум). Если среди найденных точек нет x = 0, то вычислить значение функции f(x=0).

Следует обратить внимание, что когда производная с каждой стороны от данной точки не меняет своего знака, не исчерпываются возможные ситуации даже для дифференцируемых функций: может случиться, что для сколь угодно малой окрестности по одну из сторон от точки x0 или по обе стороны производная меняет знак. В этих точках приходится применять другие методы для исследования функций на экстремум.

Пример №4. Разбить число 49 на два слагаемых, произведение которых будет наибольшим.

Решение. Обозначим x – первое слагаемое. Тогда (49-x) – второе слагаемое.

Произведение будет максимальным: x·(49-x) → max

или

49x – x2

Наибольший объем цилиндра

Найти размеры цилиндра наибольшего объема, изготовленного из заготовки в форме шара радиуса R.

Решение:



Объем цилиндра равен: V = πr2H

где H = 2h,

Подставим эти значения в целевую функцию.



V → max

Найдем экстремум функции. Поскольку функция объема V(h) зависит только от одной переменной, то найдем производную с помощью сервиса Производная онлайн и приравняем ее к нулю.

dV/dh = 2πR2 – 6πh2

dV/dh = 0

2πR2 – 6πh2 = 0 или R2 = 3h2

Откуда





При высоте и радиусе основания размеры цилиндра будут наибольшими.

bold{mathrm{Basic}} bold{alphabetagamma} bold{mathrm{ABGamma}} bold{sincos} bold{gedivrightarrow} bold{overline{x}spacemathbb{C}forall} bold{sumspaceintspaceproduct} bold{begin{pmatrix}square&square\square&squareend{pmatrix}} bold{H_{2}O}
square^{2} x^{square} sqrt{square} nthroot[msquare]{square} frac{msquare}{msquare} log_{msquare} pi theta infty int frac{d}{dx}
ge le cdot div x^{circ} (square) |square| (f:circ:g) f(x) ln e^{square}
left(squareright)^{‘} frac{partial}{partial x} int_{msquare}^{msquare} lim sum sin cos tan cot csc sec
alpha beta gamma delta zeta eta theta iota kappa lambda mu
nu xi pi rho sigma tau upsilon phi chi psi omega
A B Gamma Delta E Z H Theta K Lambda M
N Xi Pi P Sigma T Upsilon Phi X Psi Omega
sin cos tan cot sec csc sinh cosh tanh coth sech
arcsin arccos arctan arccot arcsec arccsc arcsinh arccosh arctanh arccoth arcsech
begin{cases}square\squareend{cases} begin{cases}square\square\squareend{cases} = ne div cdot times < > le ge
(square) [square] ▭:longdivision{▭} times twostack{▭}{▭} + twostack{▭}{▭} – twostack{▭}{▭} square! x^{circ} rightarrow lfloorsquarerfloor lceilsquarerceil
overline{square} vec{square} in forall notin exist mathbb{R} mathbb{C} mathbb{N} mathbb{Z} emptyset
vee wedge neg oplus cap cup square^{c} subset subsete superset supersete
int intint intintint int_{square}^{square} int_{square}^{square}int_{square}^{square} int_{square}^{square}int_{square}^{square}int_{square}^{square} sum prod
lim lim _{xto infty } lim _{xto 0+} lim _{xto 0-} frac{d}{dx} frac{d^2}{dx^2} left(squareright)^{‘} left(squareright)^{”} frac{partial}{partial x}
(2times2) (2times3) (3times3) (3times2) (4times2) (4times3) (4times4) (3times4) (2times4) (5times5)
(1times2) (1times3) (1times4) (1times5) (1times6) (2times1) (3times1) (4times1) (5times1) (6times1) (7times1)
mathrm{Радианы} mathrm{Степени} square! ( ) % mathrm{очистить}
arcsin sin sqrt{square} 7 8 9 div
arccos cos ln 4 5 6 times
arctan tan log 1 2 3
pi e x^{square} 0 . bold{=} +

Подпишитесь, чтобы подтвердить свой ответ

Подписаться

Войдите, чтобы сохранять заметки

Войти

Номер Строки

Примеры

  • extreme:f(x,y)=3x^{2}y+y^{3}−3x^{2}−3y^{2}+2

  • extreme:f(x,y)=x^{2}+y^{2}

Описание

Шаг за шагом найдите экстремальные и седловые точки функций с несколькими переменными

multi-var-function-extreme-points-calculator

ru

Блог-сообщения, имеющие отношение к Symbolab

  • High School Math Solutions – Derivative Calculator, the Basics

    Differentiation is a method to calculate the rate of change (or the slope at a point on the graph); we will not…

    Read More

  • Введите Задачу

    Сохранить в блокнот!

    Войти

    Здесь приведены примеры команд для решения задач по методам оптимизации с использованием специального калькулятора. Также можно находить минимум и максимум функции, стационарные точки для функций одной или двух переменных. Калькулятор пригодится студентам, изучающим методы оптимизации и высшую математику.

    Найти минимум функции одной переменной (y=x^4-x)

    minimize x^4-x

    Найти максимум функции одной переменной (y=x(1-x)e^x)

    maximize x(1-x)e^x

    Найти максимум функции двух переменных (z=5 + 3x – 4y – x^2 + x y – y^2)

    maximize 5 + 3x - 4y - x^2 + x y - y^2

    Найти минимум функции двух переменных (z=(4 – x^2 – 2y^2)^2)

    minimize (4 - x^2 - 2y^2)^2

    Найти минимум функции (y= x^5 – 3x^4 + 5) на отрезке ([0,4])

    minimize x^5 - 3x^4 + 5 over [0,4]

    Найти максимум функции (z=e^x cdot sin(y) ) в области (x^2+y^2=1)

    maximize e^x sin y on x^2+y^2=1

    Найти максимум функции (v=xyz) в объеме (x^2+2y^2+3z^2<=1)

    maximize xyz in x^2+2y^2+3z^2<=1

    Найти локальный максимум функции (y=x^5 – 10x^3 + 30x)

    local maximum x^5 - 10x^3 + 30x

    Найти локальные экстремумы функции (y=sin x^2)

    local extrema sin x^2

    Найти стационарные точки функции (y=(x^5+x^9-x-1)^3):

    stationary points of (x^5+x^9-x-1)^3

    Найти стационарные точки функции двух переменных (z=(3x+1)y^3 + x^2 y):

    stationary points (3x+1)y^3 + x^2 y

    Найти стационарные точки функции (f(t)=sin^2(t)cos(t))

    stationary points f(t)=sin^2(t)cos(t)

    Найти стационарные точки функции (y=cos(x)) на интервале (|x|<10)

    stationary points of cos x with |x|<10

    Найти стационарные точки функции (y=(sin t)/t) в окрестности точки (t=4)

    stationary point of (sin t)/t near t=4

    Похожие публикации

    2016-03-30 • Просмотров [ 14780 ]


    Добавить комментарий