Как найти допускаемое напряжение для стали

Версия для печати

Приложение 1. Допускаемые напряжения для разных видов сталей

Таблица 5. Допускаемые напряжения для углеродистых и низколегированных сталей

Расчет ная темпе ратура стенки сосуда или аппарата, °С Допускаемое напряжение [σ], МПа (кгс/см2), для сталей марок
  ВСт3 09Г2С, 16ГС 20, 20К 10 10Г2, 09Г2 17ГС, 17Г1С, 10Г2С1
  толщина, мм      
  до 20 свыше 20 до 32 свыше 32 до 160      
20 154 (1540) 140 (1400) 196 (1960) 183 (1830) 147 (1470) 130 (1300) 180 (1800) 183 (1830)
100 149 (1490) 134 (1340) 177 (1770) 160 (1600) 142 (1420) 125 (1250) 160 (1600) 160 (1600)
150 145 (1450) 131 (1310) 171 (1710) 154 (1540) 139 (1390) 122 (1220) 154 (1540) 154 (1540)
200 142 (1420) 126 (1260) 165 (1650) 148 (1480) 136 (1360) 118 (1180) 148 (1480) 148 (1480)
250 131 (1310) 120 (1200) 162 (1620) 145 (1450) 132 (1320) 112 (1120) 145 (1450) 145 (1450)
300 115 (1150) 108 (1080) 151 (1510) 134 (1340) 119 (1190) 100 (1000) 134 (1340) 134 (1340)
350 105 (1050) 98 (980) 140 (1400) 123 (1230) 106 (1060) 88 (880) 123 (1230) 123 (1230)
375 93 (930) 93 (930) 133 (1330) 116 (1160) 98 (980) 82 (820) 108 (1080) 116 (1160)
400 85 (850) 85 (850) 122 (1220) 105 (1050) 92 (920) 77 (770) 92 (920) 105 (1050)
410 81 (810) 81 (810) 104 (1040) 104 (1040) 86 (860) 75 (750) 86 (860) 104 (1040)
420 75 (750) 75 (750) 92 (920) 92 (920) 80 (800) 72 (720) 80 (800) 92 (920)
430 71* (710) 71* (710) 86 (860) 86 (860) 75 (750) 68 (680) 75 (750) 86 (860)
440 78 (780) 78 (780) 67 (670) 60 (600) 67 (670) 78 (780)
450 71 (710) 71 (710) 61 (610) 53 (530) 61 (610) 71 (710)
460 64 (640) 64 (640) 55 (550) 47 (470) 55 (550) 64 (640)
470 56 (560) 56 (560) 49 (490) 42 (420) 49 (490) 56 (560)
480 53 (530) 53 (530) 46* (460) 37 (370) 46** (460) 53 (530)
________________ * Для расчетной температуры стенки 425 °С.

** Для расчетной температуры стенки 475 °С.

Примечания:
1. При расчетных температурах ниже 20 °С допускаемые напряжения принимают такими же, как при 20 °С, при условии допустимого применения материала при данной температуре.
2. Для промежуточных расчетных температур стенки допускаемое напряжение определяют линейной интерполяцией с округлением результатов до 0,5 МПа (5 кгс/см2) в сторону меньшего значения.
3. Для стали марки 20 при R20e<220 МПа (2200 кгс/см2) допускаемые напряжения, указанные в табл.1, умножают на отношение R20e/220 (R20e/2200).
4. Для стали марки 10Г2 при R20p0,2 <270 МПа (2700 кгс/см2) допускаемые напряжения, указанные в табл.1, умножают на отношение R20p0,2 /270 (R20p0,2 <2700).
5. Для стали марок 09Г2С, 16ГС классов прочности 265 и 296 по ГОСТ 19281 допускаемые напряжения независимо от толщины листа принимают равными указанным в графе, соответствующей толщине свыше 32 мм.

Таблица 6. Допускаемые напряжения для теплоустойчивых хромистых сталей

Расчетная температура стенки сосуда или аппарата, °С Допускаемое напряжение [σ], МПа (кгс/см2), для сталей марок, МПа (кгс/см2), для сталей марок
  12ХМ 12МХ 15ХМ 15Х5М 15Х5М-У
20 147 (1470) 147 (1470) 155 (1550) 146 (1460) 240 (2400)
100 146,5 (1465) 146,5 (1465) 153 (1530) 141 (1410) 235 (2350)
150 146 (1460) 146 (1460) 152,5 (1525) 138 (1380) 230 (2300)
200 145 (1450) 145 (1450) 152 (1520) 134 (1340) 225 (2250)
250 145 (1450) 145 (1450) 152 (1520) 127 (1270) 220 (2200)
300 141 (1410) 141 (1410) 147 (1470) 120 (1200) 210 (2100)
350 137 (1370) 137 (1370) 142 (1420) 114 (1140) 200 (2000)
375 135 (1350) 135 (1350) 140 (1400) 110 (1100) 180 (1800)
400 132 (1320) 132 (1320) 137 (1370) 105 (1050) 170 (1700)
410 130 (1300) 130 (1300) 136 (1360) 103 (1030) 160 (1600)
420 129 (1290) 129 (1290) 135 (1350) 101 (1010) 150 (1500)
430 127 (1270) 127 (1270) 134 (1340) 99 (990) 140 (1400)
440 126 (1260) 126 (1260) 132 (1320) 96 (960) 135 (1350)
450 124 (1240) 124 (1240) 131 (1310) 94 (940) 130 (1300)
460 122 (1220) 122 (1220) 127 (1270) 91 (910) 126 (1260)
470 117 (1170) 117 (1170) 122 (1220) 89 (890) 122 (1220)
480 114 (1140) 114 (1140) 117 (1170) 86 (860) 118 (1180)
490 105 (1050) 105 (1050) 107 (1070) 83 (830) 114 (1140)
500 96 (960) 96 (960) 99 (990) 79 (790) 108 (1080)
510 82 (820) 82 (820) 84 (840) 72 (720) 97 (970)
520 69 (690) 69 (690) 74 (740) 66 (660) 85 (850)
530 60 (600) 57 (570) 67 (670) 60 (600) 72 (720)
540 50 (500) 47 (470) 57 (570) 54 (540) 58 (580)
550 41 (410) 49 (490) 47 (470) 52 (520)
560 33 (330) 41 (410) 40 (400) 45 (450)
570 35 (350) 40 (400)
580 30 (300) 34 (340)
590 28 (280) 30 (300)
600 25 (250) 25 (250)

Примечания:
1. При расчетных температурах ниже 20 °С допускаемые напряжения принимают такими же, как при 20 °С, при условии допустимого применения материала при данной температуре.
2. Для промежуточных расчетных температур стенки допускаемое напряжение определяют линейной интерполяцией с округлением результатов до 0,5 МПа (5 кгс/см2) в сторону меньшего значения.
3. При расчетных температурах ниже 200 °С сталь марок 12МХ, 12ХМ, 15ХМ применять не рекомендуется.

Таблица 7 * Допускаемые напряжения для жаропрочных, жаростойких и коррозионностойких сталей аустенитного класса

Расчетная температура стенки сосуда или аппарата, °С Допускаемое напряжение[σ], МПа (кгс/см2), для сталей марок
  03Х21Н21М4ГБ 03Х18Н11 03Х17Н14М3 08Х18Н10Т,
08Х18Н12Т,
08Х17Н13М2Т,
08Х17Н15М3Т
12Х18Н10Т,
12Х18Н12Т,
10Х17Н13М2Т,
10Х17Н13М3Т
20 180 (1800) 160 (1600) 153 (1530) 168 (1680) 184 (1840)
100 173 (1730) 133 (1330) 140 (1400) 156 (1560) 174 (1740)
150 171 (1710) 125 (1250) 130 (1300) 148 (1480) 168 (1680)
200 171 (1710) 120 (1200) 120 (1200) 140 (1400) 160 (1600)
250 167 (1670) 115 (1150) 113 (1130) 132 (1320) 154 (1540)
300 149 (1490) 112 (1120) 103 (1030) 123 (1230) 148 (1480)
350 143 (1430) 108 (1080) 101 (1010) 113 (1130) 144 (1440)
375 141 (1410) 107 (1070) 90 (900) 108 (1080) 140 (1400)
400 140 (1400) 107 (1070) 87 (870) 103 (1030) 137 (1370)
410 107 (1070) 83 (830) 102 (1020) 136 (1360)
420 107 (1070) 82 (820) 101 (1010) 135 (1350)
430 107 (1070) 81 (810) 100,5 (1005) 134 (1340)
440 107 (1070) 81 (810) 100 (1000) 133 (1330)
450 107 (1070) 80 (800) 99 (990) 132 (1320)
460 98 (980) 131 (1310)
470 97,5 (975) 130 (1300)
480 97 (970) 129 (1290)
490 96 (960) 128 (1280)
500 95 (950) 127 (1270)
510 94 (940) 126 (1260)
520 79 (790) 125 (1250)
530 79 (790) 124 (1240)
540 78 (780) 111 (1110)
550 76 (760) 111 (1110)
560 73 (730) 101 (1010)
570 69 (690) 97 (970)
580 65 (650) 90 (900)
590 61 (610) 81 (810)
600 57 (570) 74 (740)
610 68 (680)
620 62 (620)
630 57 (570)
640 52 (520)
650 48 (480)
660 45 (450)
670 42 (420)
680 38 (380)
690 34 (340)
700 30 (300)

_______________ * Данные таблицы соответствует оригиналу. – Примечание изготовителя базы данных.

Примечания:
1. При расчетных температурах ниже 20 °С допускаемые напряжения принимают такими же, как и при 20 °С, при условии допустимого применения материала при данной температуре.
2. Для промежуточных расчетных температур стенки допускаемое напряжение определяют интерполяцией двух ближайших значений, указанных в таблице, с округлением результатов до 0,5 МПа (5 кгс/см2) в сторону меньшего значения.
3. Для поковок из стали марок 12Х18Н10Т, 10Х17Н13М2Т, 10Х17Н13М3Т допускаемые напряжения, приведенные в табл.7 при температурах до 550 °С, умножают на 0,83.
4. Для сортового проката из стали марок 12Х18Н10Т, 10Х17Н13М2Т, 10Х17Н13М3Т допускаемые напряжения, приведенные в табл.7 при температурах до 550 °С, умножают на отношение

,

где Rp0,2* – предел текучести материала сортового проката определен по ГОСТ 5949; для сортового проката из стали марки 03Х18Н11 допускаемые напряжения умножаются на 0,8.

5. Для поковок и сортового проката из стали марки 08Х18Н10Т допускаемые напряжения, приведенные в табл.7 при температурах до 550 °С, умножают на 0,95.
6. Для поковок из стали марки 03Х17Н14М3 допускаемые напряжения, приведенные в табл.7, умножают на 0,9.
7. Для поковок из стали марки 03Х18Н11 допускаемые напряжения, приведенные в табл.7, умножают на 0,9; для сортового проката из стали марки 03Х18Н11 допускаемые напряжения умножают на 0,8.
8. Для труб из стали марки 03Х21Н21М4ГБ (ЗИ-35) допускаемые напряжения, приведенные в табл.7, умножают на 0,88.
9. Для поковок из стали марки 03Х21Н21М4ГБ (ЗИ-35) допускаемые напряжения, приведенные в табл.7, умножают на отношение

,

где Rp0,2* – предел текучести материала поковок, определен по ГОСТ 25054 (по согласованию).

Таблица 8. Допускаемые напряжения для жаропрочных, жаростойких и коррозионностойких сталей аустенитного и аустенито-ферритного класса

Расчетная температура стенки сосуда или аппарата, °С Допускаемое напряжение [σ], МПа (кгс/см2), для сталей марок
  08Х18Г8Н2Т (КО-3) 07Х13АГ20 (ЧС-46) 02Х8Н22С6 (ЭП-794) 15Х18Н12С4ТЮ (ЭИ-654) 06ХН28МДТ, 03ХН28МДТ 08Х22Н6Т, 08Х21Н6М2Т
20 230 (2300) 233 (2330) 133 (1330) 233 (2330) 147 (1470) 233 (2330)
100 206 (2060) 173 (1730) 106,5 (1065) 220 (2200) 138 (1380) 200 (2000)
150 190 (1900) 153 (1530) 100 (1000) 206,5 (2065) 130 (1300) 193 (1930)
200 175 (1750) 133 (1330) 90 (900) 200 (2000) 124 (1240) 188,5 (1885)
250 160 (1600) 127 (1270) 83 (830) 186,5 (1865) 117 (1170) 166,5 (1665)
300 144 (1440) 120 (1200) 76,5 (765) 180 (1800) 110 (1100) 160 (1600)
350 113 (1130) 107 (1070)  
375 110 (1100) 105 (1050)  
400 107 (1070) 103 (1030)  

Примечания:
1. При расчетных температурах ниже 20 °С допускаемые напряжения принимают такими же, как и при 20 °С, при условии допустимого применения материала при данной температуре.
2. Для промежуточных расчетных температур стенки допускаемое напряжение определяют интерполяцией двух ближайших значений, указанных в таблице, с округлением до 0,5 МПа (5 кгс/см2) в сторону меньшего значения.

<< назад / к содержанию ГОСТ 14249-89 / вперед >>

Допустимым (допускаемым) напряжением называется величина, ограничивающая верхний предел рабочих напряжений возникающих под действием заданных нагрузок.

Превышение этого предела может привести к нарушению прочности элементов и конструкций.

Обозначаются [σ] – нормальные и [τ] – касательные д.н.

Так же можно встретить такие обозначения допустимых напряжений: σadm, τadm.

Рассчитывается по формуле:

Допустимые напряжения (расчет)

где
σпред – предельное напряжение, вызывающее разрушение элемента либо значительные остаточные деформации.

Для пластичных материалов (сталь, бронза, латунь и т.д.) за предельное напряжение принимается предел текучести

σпред=σТ

Для хрупких материалов (чугун, цемент) предельным напряжением является предел прочности

σпред=σпч

n – нормативный запас прочности.

Запас прочности необходим для обеспечения бесперебойной работы элементов конструкций при непредвиденных временных перегрузках, возможных ошибках в расчетах либо вследствие изменений размеров элемента в процессе эксплуатации.

Расчет допустимых касательных напряжений

По второй теории прочности

Допустимые касательные напряжения (расчет)

здесь ν — коэффициент Пуассона для материала элемента.

Для металлов ν=0,25…0,42, поэтому

[τ]=(0,7…0,8)[σ]

По третьей теории

Допустимые касательные напряжения по третьей теории прочности

По четвертой теории

Допустимые касательные напряжения по четвертой теории прочности

Условие прочности >
Примеры решения задач >

Сохранить или поделиться с друзьями

Вы находитесь тут:

На нашем сайте Вы можете получить решение задач и онлайн помощь

Подробнее

Решение задач и лекции по технической механике, теормеху и сопромату

1.1. Общие сведения

Работоспособность
деталей машин оценивают по прочности,
износостойкости, жесткости, теплостойкости,
виброустойчивости, надежности. Выбор
того или иного критерия основывается
на условиях работы конструкции. А расчет
ведется по одному или нескольким из
них. При этом для большинства деталей
машин главным критерием работоспособности
является прочность.

При
расчете на прочность различают:

а)
проектный
расчет, в котором по значению допускаемого
напряжения находят основные размеры
какой-либо детали;

б)
проверочный
расчет, когда производится оценка
прочности сравнением расчетных напряжений
с допускаемыми для сконструированной
детали или расчетного коэффициента
безопасности с допустимым коэффициентом
безопасности.

Условия
прочности записывают следующим образом:

()
или, (1.1)

где
()
– соответственно расчетные нормальные
(касательные) напряжения;()
– нормальные (касательные) предельные
напряжения;,– расчетный и допускаемый коэффициенты
безопасности.

Расчетные
напряжения, или основные размеры детали,
определяют из условий прочности

на
растяжение-сжатие:

,
(1.2)

где


– сила растяжения-сжатия, Н;

– площадь поперечного сечения, м2;

на
смятие:

,
(1.3)

где


– сила смятия, Н;

– площадь поперечного сечения, м2;

на
срез:

,
(1.4)

где


– сила среза, Н;

– площадь поперечного сечения, м2;

на
изгиб:

,
(1.5)

где


– изгибающий момент, Нм;


– момент сопротивления изгибу, м3;

на
кручение:

,
(1.6)

где


– крутящий момент, Нм;


– момент сопротивления кручению, м3.

1.2. Допускаемые напряжения

Допускаемые
напряжения находят как часть предельных
напряжений, при которых происходит
разрушение деталей или нарушение
нормальных условий их взаимодействия
вследствие недопустимо больших остаточных
деформаций:

или
. (1.7)

При
статических
нагрузках

предельным напряжением для пластичных
материалов является предел текучести
(),
для хрупких
– предел прочности
()
(рис.1.1
и
табл. 1.1, 1.2). Таким образом, с учетом
масштабного фактора
и эффективного коэффициента концентрации
напряжений при статических грузках

для
пластичных материалов:

, (1.8)

для
хрупких материалов:

, (1.9)

где

допустимый коэффициент безопасности.

Рис.
1.1.
Диаграмма
растяжения:

a)
– для пластичного материала (сталь); б)
– для хрупкого (чугун)

Таблица
1.1.

Допускаемые напряжения для углеродистых сталей обыкновенного качества в горячекатаном состоянии

Марка
стали (ГОСТ 380-88)

Допускаемые
напряжения*, МПа

при
растяжении [σр]

при
изгибе

из]

при
кручении

кр]

при
срезе

ср]

при
смятии

см]

I

II

III

I

II

III

I

II

III

I

II

III

I

II

Ст2

115

80

60

140

100

80

85

65

50

70

50

40

175

120

Ст3

125

90

70

150

110

85

95

65

50

75

50

40

195

135

Ст4

140

95

75

170

120

95

105

75

60

85

65

50

210

145

Ст5

165

115

90

200

140

110

125

90

70

100

65

55

250

175

Ст6

195

140

110

230

170

135

145

105

80

115

85

65

290

210

*
Римскими цифрами обозначен вид нагрузки:
I
– статическая; II
– переменная, действующая от нуля до
максимума, от максимума до нуля
(пульсирующая); III
– знакопеременная (симметричная).

Таблица
1.2.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

7. Допускаемые напряжения и ме­ханические свойства материалов

Для определения допускаемых напряжений в машиностроении применяют следующие основные методы.

1. Дифференцированный запас прочности находят как произведение ряда частных коэффициентов, учитывающих надежность материала, степень ответственности детали, точность расчетных формул и действующие силы и другие факторы, опреде­ляющие условия работы деталей.

2. Табличный – допускаемые на­пряжения принимают по нормам, систематизированным в виде таблиц (табл. 13 – 19). Этот метод менее точен, но наиболее прост и удо­бен для практического пользования при про­ектировочных и проверочных прочностных расчетах.

 В работе конструкторских бюро и при расчетах деталей машин в данном справочнике применяются как дифференцированный, так и. табличный методы, а также их комбинация. В табл. 16-18 приведены допускаемые напряжения для нетиповых литых деталей, на которые не разработаны специальные методы расчета и соответствующие им допускаемые напряжения. Типовые детали (например, зубчатые и червячные колеса, шкивы) следует рассчитывать по методикам, приводимым в соответствующем разделе справочника или специальной литературе.

 Приведенные допускаемые напряжения предназначены для приближенных расчетов только на основные нагрузки. Для более точных расчетов с учетом дополнительных нагрузок (например, динамических) табличные значения следует увеличивать на 20 – 30 %.

  Допускаемые напряжения даны без учета концентрации напряжений и размеров детали, вычислены для стальных гладких полирован­ных образцов диаметром 6- и для необработанных круглых чугунных отливок диа­метром. При определении наибольших напряжений в рассчитываемой детали нужно номинальные напряжения σном и τном умно­жать на коэффициент концентрации kσ или kτ:

σmax= kσ σном; τmax = kττном

13. Допускаемые напряжения для углеродистых сталей обыкновенного качества в горячекатаном состоянии

 Марка стали 

Допускаемые напряжения, МПа

при растяжении [σр]

при изгибе [σиз]

при кручении [τкр]

при срезе [τcp]

при смятии [σсм]

I

II

III

I

II

III

I

II

III

I

II

III

I

II

Ст2

115

80

60

140

100

80

85

65

50

70

50

40

175

120

Ст3

125

90

70

150

110

85

95

65

50

75

50

40

190

135

Ст4

140

95

75

170

120

95

105

75

60

85

65

50

210

145

Ст5

165

115

90

200

140

110

125

90

70

100

65

55

250

175

Ст6

195

140

110

230

170

135

145

105

80

115

85

65

290

210

Римскими цифрами обозначен вид нагрузки: I – статическая; II – переменная, дейст­вующая от нуля до максимума, от максимума до нуля (пульсирующая); III – знакопеременная (симметричная).

14. Механические свойства и допускаемые напряжения углеродистых качественных конструкционных сталей

Мар­ка

стали

Термообра­ботка

Вре­мен­ное соп-ро-тив-ле-ние

σв

Пре­дел теку­чести

σт

Предел выносливости

Допускаемые напряжения, МПа

при рас­тя-же-нии

σ-1р

при изгибе

σ-1

при кру­чении

τ-1

при растяжении [σр]

при изгибе [σиз]

при кручении [τкр]

при срезе [τcp]

при смятии [σсм]

МПа

I

II

III

I

II

III

I

II

III

I

II

III

I

II

08

Н

330

200

120

150

90

110

80

60

130

95

75

80

60

45

60

45

35

165

120

10

Н

340

210

125

155

95

110

80

60

145

100

75

80

60

45

65

45

35

165

120

Ц-В59

400

250

145

180

110

130

90

70

155

115

90

100

65

55

70

50

40

195

135

15

Н

380

230

135

170

100

125

85

65

150

110

85

95

65

50

75

50

40

185

125

Ц-В59

450

250

160

200

120

145

50

80

175

125

100

110

80

60

85

60

45

210

175

20

Н

420

250

150

190

115

140

115

95

170

120

95

105

70

55

85

60

45

210

175

Ц-В59

500

300

180

225

135

165

115

90

200

140

110

125

75

55

100

60

45

240

175

25

Н

460

280

170

210

125

150

110

85

180

130

105

110

80

60

90

65

50

220

165

Ц-В58

550

350

200

250

155

180

130

100

210

160

125

135

95

75

110

80

60

270

195

30

Н

500

300

180

225

135

165

115

90

200

140

110

125

90

70

100

65

55

240

175

У

600

350

215

270

160

200

140

105

240

175

135

150

105

80

120

85

65

300

210

35

Н

540

320

190

240

145

180

125

95

210

155

120

135

90

70

110

75

55

270

190

У

650

380

230

290

175

210

150

115

260

185

145

160

110

85

130

90

70

520

220

В35

1000

650

360

450

270

330

230

180

400

290

220

250

165

135

200

140

110

500

350

40

Н

580

340

210

260

155

190

130

105

230

165

130

140

100

75

115

80

60

280

200

У

700

400

250

315

190

230

160

125

270

200

155

170

120

95

140

100

80

340

240

В35

1000

650

360

450

270

340

230

180

400

290

220

250

175

135

200

140

110

500

350

45

Н

610

360

220

275

165

200

140

110

240

175

135

150

105

80

125

85

65

300

210

У

750

450

270

345

205

240

170

135

290

215

170

185

130

100

145

105

80

360

260

М35

900

650

325

405

245

300

210

160

360

260

200

230

165

120

185

125

95

450

310

В42

1000

700

325

405

245

300

210

160

360

260

200

230

160

120

185

125

95

450

310

В48

1200

950

430

540

325

400

280

210

480

340

270

300

210

160

240

170

130

600

420

ТВЧ56

750

450

270

340

205

240

170

135

290

210

170

185

130

100

145

105

80

360

260

50

Н

640

380

230

290

175

210

140

115

250

185

145

160

110

85

125

85

65

310

220

У

900

700

325

405

245

300

210

160

360

260

200

230

180

120

185

125

95

450

310

20Г

Н

460

280

165

205

125

150

100

80

180

130

100

110

80

60

90

65

50

220

160

В

570

420

205

255

150

195

130

100

230

165

125

145

100

75

115

80

60

290

190

30Г

Н

550

320

200

250

150

180

130

100

210

160

125

135

95

75

110

80

60

270

190

В

680

560

245

305

180

230

160

120

270

195

150

170

120

90

140

100

75

340

240

40Г

Н

600

360

220

270

160

200

140

110

240

175

135

150

105

80

120

85

65

300

210

В45

840

590

350

380

230

280

190

150

330

240

190

210

150

115

170

120

95

420

290

50Г

Н

660

400

235

295

175

210

150

115

260

185

145

160

110

75

130

90

70

320

220

В

820

560

300

370

220

270

190

150

330

250

185

250

155

110

165

105

75

410

290

65Г

Н

750

440

270

340

200

240

175

135

290

210

170

185

130

100

145

105

80

360

260

У

900

700

325

405

245

300

210

160

360

260

200

230

160

120

185

125

95

450

310

М45

1500

1250

530

670

400

500

350

260

600

430

330

380

260

200

300

210

160

760

520

 Условные обозначения термической обработки в табл. 14 – 16: О – отжиг; Н – нормализация; У – улучшение; Ц -цементация; ТВЧ – закалка с нагревом ТВЧ; В – закалка с охлаждением в воде; М – закалка с охлаждением в масле; НВ – твердость по Бринеллю. Число после М, В, Н или ТВЧ – среднее значение твердости по HRC.

 Римскими цифрами обозначен вид нагрузки, см. табл. 13.

Примечание. Марки стали 20Г, 30Г, 40Г, 50Г, 65Г являются старыми марками, действующими до 1988 г. Буква Г в них обозначала содержание марганца около 1 %.

15. Механические свойства и допускаемые напряжения легированных конструкционных сталей

Марка стали

ГОСТ

Термообра­ботка

Вре­мен­ное сопро-тивле-ние

σв

Пре­дел теку­чести

σт

Предел выносливости

Допускаемые напряжения, МПа

при рас­тя-же-нии

σ-1р

при изгибе

σ-1

при кру­чении

τ-1

при растяжении [σр]

при изгибе [σиз]

при кручении [τкр]

при срезе [τcp]

при смятии [σсм]

МПа

I

II

III

I

II

III

I

II

III

I

II

III

I

II

10Г2

4543-71

Н

430

250

175

220

125

140

110

90

170

135

110

105

75

60

85

65

50

210

165

09Г2С

19281-89

500

350

190

240

140

170

120

95

200

150

120

125

90

70

100

70

55

250

180

10ХСНД

19281-89

540

400

215

270

155

185

140

110

220

160

135

140

100

80

110

80

65

280

210

20Х

4543-71

Н

600

300

210

260

150

190

135

105

230

165

130

140

100

75

115

85

60

280

200

У

700

500

280

350

200

240

175

140

290

220

175

180

130

100

145

105

80

360

260

М59

850

630

340

420

240

290

210

170

350

145

210

220

155

120

175

125

95

430

320

40Х

Н

630

330

250

310

180

200

155

125

240

190

155

150

115

90

120

95

75

300

230

У

800

650

320

400

230

270

200

160

320

250

200

200

150

115

160

115

90

400

300

М39

1100

900

440

550

320

380

280

220

450

340

270

280

200

160

230

165

130

560

420

М48

1300

1100

520

650

380

440

330

260

530

410

320

330

240

190

270

195

150

670

490

45Х

Н

650

350

260

320

185

210

160

130

250

195

160

155

115

90

125

95

75

310

240

У

950

750

380

470

270

320

240

190

380

290

230

240

175

135

190

135

105

480

360

М48

1400

1200

560

700

400

480

350

280

570

430

350

360

260

200

290

200

160

720

520

50Х

Н

650

350

260

325

185

210

160

130

250

200

160

160

120

90

125

90

70

360

240

М48

1500

1300

600

750

430

500

370

300

600

460

370

370

270

210

300

220

170

750

550

35Г2

Н

630

370

250

315

180

200

155

125

240

190

160

150

115

90

120

95

75

330

230

В, НВ249

800

650

320

400

230

270

200

160

320

250

200

200

145

115

160

115

90

400

300

40Г2

Н

670

390

270

335

195

220

170

135

260

210

170

165

120

95

130

95

75

330

250

М. НВ33

1120

950

540

660

380

380

310

270

460

380

330

290

230

190

230

180

150

580

460

45Г2

Н

700

410

280

350

200

230

175

140

270

210

175

175

125

100

140

100

80

340

260

М, НВ295

850

700

340

425

245

290

210

170

350

145

210

220

155

120

175

125

95

440

330

33хс

Н

600

300

210

260

150

190

135

105

230

165

130

140

100

75

115

65

60

280

200

М

900

700

360

450

260

300

220

180

360

280

220

230

165

130

180

135

105

450

330

38ХС

У

950

750

370

470

280

320

230

185

390

290

230

240

175

140

190

140

110

480

350

18XГТ

Н

700

430

280

350

200

230

175

140

270

210

175

170

125

100

140

100

80

340

260

Ц-М59

1000

800

400

500

290

330

250

200

400

310

250

250

185

145

200

145

115

490

380

30хгт

М43

1250

1050

500

620

360

430

310

250

510

390

310

320

230

180

260

185

140

640

460

Ц-М59

1100

800

440

550

320

370

270

220

440

340

270

280

200

160

220

160

125

550

410

20ХГНР

М40

1300

1200

520

650

375

450

330

260

540

410

320

340

230

170

270

180

135

680

500

М50

1450

1400

580

725

420

500

360

290

600

450

360

380

270

210

300

215

170

750

540

40ХФА

М30

900

750

360

450

260

320

230

180

380

280

220

240

170

130

190

135

105

480

340

М50

1600

1300

640

800

480

550

410

320

660

500

400

410

310

240

330

240

195

820

610

30хм

М

950

750

380

475

230

320

240

190

390

300

240

240

155

115

190

125

90

480

360

35ХМ

М, НВ270

1000

850

400

500

290

340

250

200

410

310

250

260

185

145

200

130

95

520

380

М50

1600

1400

640

800

480

550

410

320

660

500

400

420

310

240

330

250

200

820

610

40ХН

Н

780

460

310

390

225

260

195

160

310

240

195

190

140

110

155

115

90

390

290

М43

1200

1000

480

600

345

410

310

240

490

370

300

310

220

170

250

175

135

620

460

12ХН2

М

800

600

320

400

230

270

200

160

320

250

200

200

145

115

160

115

90

400

300

Ц-М59

800

600

320

400

230

270

200

160

320

250

200

200

145

115

160

115

90

400

300

12ХН3А

У

950

700

380

470

270

320

240

190

380

280

230

240

175

140

190

140

110

480

300

ГВЧ59

1000

850

400

500

300

340

260

200

410

310

250

250

190

150

200

150

120

510

380

20Х2Н4А

ТВЧ59

680

450

270

340

200

230

170

135

270

210

170

170

125

100

140

100

80

340

260

Ц-М59

1100

850

440

550

320

370

270

220

440

340

270

280

200

160

220

160

125

550

410

М

1300

1100

520

650

375

440

330

260

530

400

320

330

240

190

260

190

150

660

500

20ХГСА

М

800

650

320

400

230

270

200

160

330

250

200

200

145

115

160

115

90

410

300

30XГC

О

600

360

240

300

170

200

150

120

240

185

150

150

110

85

120

90

70

300

220

30XГСА

У

1100

850

440

550

320

370

270

220

440

340

270

280

200

160

220

160

125

550

410

М46

1500

1300

600

750

430

510

380

300

620

470

380

390

270

210

310

220

170

760

570

38X210

М

800

700

320

400

230

280

200

160

330

250

200

200

150

115

170

120

95

410

300

М

900

750

360

450

260

310

240

190

370

290

240

230

170

135

185

140

110

460

360

50ХФА

14959-79

М

1300

1100

520

650

340

440

330

260

540

400

320

340

220

170

260

180

135

660

500

М46

1500

1300

600

750

360

520

380

300

620

470

380

390

240

180

310

200

145

770

570

60С2

М, НВ269

1300

1200

520

650

340

440

330

260

540

400

320

340

220

170

260

180

135

670

500

60С2А

М, НВ269

1600

1400

640

800

465

550

400

320

660

500

400

410

300

230

330

240

185

820

600

ШХ15

801-78

О

600

380

240

300

180

200

150

120

240

180

150

150

110

90

120

90

75

300

220

М62

2200

1700

460

660

330

740

350

230

890

480

330

550

250

165

440

200

130

1100

520

 Условные обозначения термообработки указаны в конце табл. 14.

 Римскими цифрами обозначен вид нагрузки, см. табл. 13.

16. Механические свойства и допускаемые напряжения для отливок из углеродистых и легированных сталей

Марка стали

ГОСТ

Термообра­ботка

Вре­мен­ное сопро-тивле-ние

σв

Пре­дел теку­чести

σт

Предел выносливости

Допускаемые напряжения, МПа

при рас­тя-жении

σ-1р

при изгибе

σ-1

при кру­чении

τ-1

при растяжении [σр]

при изгибе [σиз]

при кручении [τкр]

при срезе [τcp]

при смятии [σсм]

МПа

I

II

III

I

II

III

I

II

III

I

II

III

I

II

20Л

977-88

Н

412

216

120

170

100

90

63

48

110

84

68

63

50

40

50

40

32

135

95

25Л

441

235

125

180

110

95

65

50

115

90

72

65

52

44

52

42

35

145

105

30Л

471

255

135

190

115

100

70

53

120

93

76

70

55

46

55

44

36

150

110

35Л

491

275

140

200

120

110

74

56

130

100

80

75

60

48

60

47

38

165

120

45Л

540

314

155

220

130

125

84

63

150

110

88

87

65

52

70

53

42

190

125

50Л

569

334

170

240

145

140

92

68

170

125

96

100

74

58

75

55

43

210

150

20ГЛ

540

275

155

220

130

120

83

63

145

110

88

85

65

52

65

50

40

180

125

35ГЛ

Н

540

294

155

220

130

120

83

63

145

105

88

85

65

52

65

50

40

180

125

В

589

343

170

240

145

140

92

68

170

125

96

100

74

58

75

55

43

210

150

30ГСЛ

Н

589

343

170

240

145

140

92

68

170

125

96

100

74

58

75

55

43

210

150

В

638

392

180

260

155

160

100

72

190

135

105

110

79

62

88

64

50

240

155

40ХЛ

М

638

491

180

260

160

165

100

72

200

140

105

115

82

64

90

64

50

250

165

35ХГСЛ

Н

589

343

170

240

145

140

92

68

170

125

96

100

74

58

75

55

43

210

150

В

785

589

225

320

190

200

125

90

240

170

130

140

98

76

110

78

60

300

200

35ХМЛ

Н

589

392

170

240

145

160

95

68

190

130

96

110

76

58

88

60

46

240

150

 Условные обозначения термообработки указаны в конце табл. 14.

 Римскими цифрами обозначен вид нагрузки, см. табл. 13.

17. Механические свойства и допускаемые напряжения для отливок из серого чугуна

Марка чугуна (ГОСТ 1412-85)

Вре­мен­ное сопро-тивле-ние

σв

Предел прочности

Предел выносливости

Форма сечения

Допускаемые напряжения, МПа

при изгибе

σиз

при сжатии

σсж

при кру­чении

τ-1

при изгибе

σ-1

при кру­чении

τ-1

при изгибе [σиз]

при кручении [τкр]

при растяжении [σр]

при сжатии

сж]

МПа

I

II

III

I

II

III

I

II

III

I

II

III

СЧ15

150

320

650

240

70

50

70

40

30

53

30

22

33

20

14

145

83

14

рисунок

60

35

25

40

23

16

рисунок

50

29

21

33

18

13

СЧ18

180

360

700

260

80

60

рисунок

80

50

35

58

36

26

40

25

18

155

95

18

рисунок

66

41

30

43

27

20

рисунок

56

35

25

37

23

16

СЧ20

200

400

750

280

100

80

рисунок

88

57

43

62

45

35

45

30

22

165

110

22

рисунок

73

47

35

45

33

25

рисунок

60

40

30

40

28

22

СЧ25

250

460

850

300

120

100

рисунок

97

67

52

65

52

43

53

35

28

185

125

28

рисунок

80

55

43

50

38

32

рисунок

68

47

35

40

32

27

СЧ30

300

500

1100

390

140

110

рисунок

115

80

60

85

60

48

70

48

37

240

165

37

рисунок

95

65

50

65

45

35

рисунок

80

55

42

55

37

30

СЧ35

350

550

1200

400

150

115

рисунок

125

85

65

90

65

50

78

55

42

260

185

42

100

70

55

65

47

37

рисунок

87

60

45

55

40

30

СЧ40

400

600

1300

460

150

115

рисунок

130

85

65

100

65

50

85

57

43

280

190

43

рисунок

100

70

55

75

47

37

рисунок

90

60

45

63

40

30

СЧ45

450

650

1400

500

200

150

рисунок

140

105

85

110

.80

65

100

75

60

310

190

60

рисунок

115

85

70

80

60

50

рисунок

100

75

60

75

55

45

 Римскими цифрами обозначен вид нагрузки, см. табл. 13.

18. Механические свойства и допускаемые напряжения для отливок из ковкого чугуна

Марка чугуна

Вре­мен­ное сопро-тивле-ние

σв

Предел прочности

Предел

текучести

σт

Предел выносливости

Форма сечения

Допускаемые напряжения, МПа

при изгибе [σиз]

при кручении [τкр]

при растяжении [σр]

при сжатии

сж]

при смятии [σсм]

при изгибе

σиз

при кру­чении

τкр

при срезе

τср

при изгибе

σ-1

при растя-женииσ-1р

при кру­чении

τ-1

МПа

I

II

III

I

II

III

I

II

III

I

II

III

I

II

КЧ 30 – 6

300

490

340

270

190

90

55

80

рисунок

105

58

40

65

40

36

85

39

25

95

40

25

125

58

рисунок

100

55

37

52

37

29

рисунок

95

50

35

45

32

25

рисунок

80

43

30

45

32

25

КЧ 33-8

330

530

345

290

210

100

60

90

рисунок

115

65

45

70

50

40

95

42

27

105

43

27

140

63

рисунок

110

60

42

56

40

32

рисунок

100

58

40

50

35

28

рисунок

85

50

34

50

35

28

КЧ 35- 10

350

570

350

300

220

105

65

95

рисунок

120

70

50

75

55

43

100

45

30

110

47

30

150

67

рисунок

110

65

47

60

44

34

рисунок

105

60

45

52

38

30

рисунок

90

52

38

52

38

30

КЧ37- 12

370

580

370

320

230

110

65

100

рисунок

125

72

50

80

57

45

105

47

30

115

48

30

155

70

рисунок

115

65

47

64

45

36

рисунок

110

63

45

55

40

31

рисунок

95

55

38

55

40

31

КЧ 45 – 7

450

660

440

340

250

135

80

120

рисунок

130

80

60

85

65

55

110

53

35

125

55

35

165

80

рисунок

120

75

55

68

52

44

рисунок

115

70

53

60

45

38

рисунок

100

60

45

60

45

38

 Римскими цифрами обозначен вид нагрузки, см. табл. 13.

 Примечание. Ковкий чугун марок КЧ 30 – 6, КЧ 33 – 8, КЧ 35-10, КЧ 37 – 12 относится к ферритному классу; ковкий чугун КЧ 45-7 относится к перлитному классу.

19. Допускаемые напряжения для пластмассовых деталей

Пластмассы

Разрушающее напряжение при кратковременных статических испытаниях по стандартной методике, МПа

Рекомендуемые допускаемые напряжения при кратковременных нагрузках, МПа

σр

σр

σи

р]

р]

и]

Текстолиты

220

70

100

150

45

65

Стеклотекстолит

30

45

65

60

35

48

Капрон

70

60

80

35

30

40

Поливинилхлорид

85

50

100

42

25

50

Полиформальдегид

130

60

100

65

36

50

Поликарбонат (дифлон)

80

70

85

37

35

42

Полипропилен

60

35

50

25

17

22

Фторопласт Ф-4

20

16

18

8

6

7

Для пластичных (незакаленных) сталей при статических напряжениях (Iвид нагрузки) коэффициент концентрации не учитывают. Для однородных сталей (σв > 1300 МПа, а также в случае работы их при низких темпера­турах) коэффициент концентрации, при нали­чии концентрации напряжения, вводят в рас­чет и при нагрузках Iвида (k > 1). Для пла­стичных сталей при действии переменных нагрузок и при наличии концентрации напря­жений эти напряжения необходимо учитывать.

 Для чугунов в большинстве случаев коэф­фициент концентрации напряжений прибли­женно принимают равным единице при всех видах нагрузок (I- III).

При расчетах на прочность для учета раз­меров детали приведенные табличные допус­каемые напряжения для литых деталей следует умножать на коэффициент масштабного фак­тора, равный 1,4…5.

 Приближенные эмпирические зависимости пределов выносливости для случаев нагружения с симметричным циклом:

для углеродистых сталей:

при изгибе

σ-1 =  (0,40 ÷ 0,46)σв;

при растяжении или сжатии

σ-1р = (0,65 ÷0,75)σ-1;

при кручении

τ-1 = (0,55 ÷0,65)σ-1;

для легированных сталей:

при изгибе

σ-1 = (0,45 ÷0,55) σв;

при растяжении или сжатии

σ-1p= (0,7 ÷0,9) σ-1;

при кручении

τ-1 = (0,5 ÷ 0,65) σ-1;

для стального литья:

при изгибе

σ-1 = (0,35 ÷ 0,45) σв;

при растяжении или сжатии

σ-1p= (0,65 ÷ 0,75) σ-1;

при кручении

τ-1 = (0,55 ÷ 0,65) σ-1.

  Механические свойства и допускаемые на­пряжения антифрикционного чугуна;

предел прочности при изгибе 250 – 300 МПа;

допускаемые напряжения при изгибе: 95 МПа для I; 70 МПа – II: 45 МПа – III, где I. II, III- обозначения видов нагрузки, см. табл. 13. 

  Ориентировочные допускаемые напряжения для цветных металлов на растяжение и сжатие, МПа:

30…110 – для меди;

60…130 – латуни;

50…110 – бронзы;

25…70 – алюминия;

70…140 – дюралюминия.

Для определения допускаемых напряжений в машиностроении применяют следующие основные методы.
1. Дифференцированный запас прочности находят как произведение ряда частных коэффициентов, учитывающих надежность материала, степень ответственности детали, точность расчетных формул и действующие силы и другие факторы, определяющие условия работы деталей.
2. Табличный — допускаемые напряжения принимают по нормам, систематизированным в виде таблиц
(табл. 1 — 7). Этот метод менее точен, но наиболее прост и удобен для практического пользования при проектировочных и проверочных прочностных расчетах.

В работе конструкторских бюро и при расчетах деталей машин применяются как дифференцированный, так и. табличный методы, а также их комбинация. В табл. 4 — 6 приведены допускаемые напряжения для нетиповых литых деталей, на которые не разработаны специальные методы расчета и соответствующие им допускаемые напряжения. Типовые детали (например, зубчатые и червячные колеса, шкивы) следует рассчитывать по методикам, приводимым в соответствующем разделе справочника или специальной литературе.

Приведенные допускаемые напряжения предназначены для приближенных расчетов только на основные нагрузки. Для более точных расчетов с учетом дополнительных нагрузок (например, динамических) табличные значения следует увеличивать на 20 — 30 %.

Допускаемые напряжения даны без учета концентрации напряжений и размеров детали, вычислены для стальных гладких полированных образцов диаметром 6-12 мм и для необработанных круглых чугунных отливок диаметром 30 мм. При определении наибольших напряжений в рассчитываемой детали нужно номинальные напряжения σном и τном умножать на коэффициент концентрации kσ или kτ:

свойство материалов1. Допускаемые напряжения*
для углеродистых сталей обыкновенного качества в горячекатаном состоянии

 Допускаемые напряжения* для углеродистых сталей обыкновенного качества в горячекатаном состоянии

Допускаемые напряжения* для углеродистых сталей обыкновенного качества в горячекатаном состоянии
2. Механические свойства и допускаемые напряжения
углеродистых качественных конструкционных сталей

Механические свойства и допускаемые напряжения углеродистых качественных конструкционных сталей
Механические свойства и допускаемые напряжения углеродистых качественных конструкционных сталей
3. Механические свойства и допускаемые напряжения
легированных конструкционных сталей

 Механические свойства и допускаемые напряжения легированных конструкционных сталей
Механические свойства и допускаемые напряжения легированных конструкционных сталей
4. Механические свойства и допускаемые напряжения
для отливок из углеродистых и легированных сталей

Механические свойства и допускаемые напряжения для отливок из углеродистых и легированных сталей
Механические свойства и допускаемые напряжения для отливок из углеродистых и легированных сталей
5. Механические свойства и допускаемые напряжения
для отливок из серого чугуна

Механические свойства и допускаемые напряжения для отливок из серого чугуна
Механические свойства и допускаемые напряжения для отливок из серого чугуна
6. Механические свойства и допускаемые напряжения
для отливок из ковкого чугуна

Механические свойства и допускаемые напряжения для отливок из ковкого чугуна
Механические свойства и допускаемые напряжения для отливок из ковкого чугуна
7. Допускаемые напряжения для пластмассовых деталей
Допускаемые напряжения для пластмассовых деталей
Допускаемые напряжения для пластмассовых деталей

Для пластичных (незакаленных) сталей при статических напряжениях (I вид нагрузки) коэффициент концентрации не учитывают. Для однородных сталей (σв > 1300 МПа, а также в случае работы их при низких температурах) коэффициент концентрации, при наличии концентрации напряжения, вводят в расчет и при нагрузках I вида (k > 1). Для пластичных сталей при действии переменных нагрузок и при наличии концентрации напряжений эти напряжения необходимо учитывать.

Для чугунов в большинстве случаев коэффициент концентрации напряжений приближенно принимают равным единице при всех видах нагрузок (I — III). При расчетах на прочность для учета размеров детали приведенные табличные допускаемые напряжения для литых деталей следует умножать на коэффициент масштабного фактора, равный 1,4 … 5.

Приближенные эмпирические зависимости пределов выносливости для случаев нагружения с симметричным циклом:

для углеродистых сталей:
— при изгибе, σ-1=(0,40÷0,46)σв;
— при растяжении или сжатии, σ-1р=(0,65÷0,75)σ-1;
— при кручении, τ-1=(0,55÷0,65)σ-1;

для легированных сталей:
— при изгибе, σ-1=(0,45÷0,55)σв;
— при растяжении или сжатии, σ-1р=(0,70÷0,90)σ-1;
— при кручении, τ-1=(0,50÷0,65)σ-1;

для стального литья:
— при изгибе, σ-1=(0,35÷0,45)σв;
— при растяжении или сжатии, σ-1р=(0,65÷0,75)σ-1;
— при кручении, τ-1=(0,55÷0,65)σ-1.

Механические свойства и допускаемые напряжения антифрикционного чугуна:
— предел прочности при изгибе 250 — 300 МПа,
— допускаемые напряжения при изгибе: 95 МПа для I; 70 МПа — II: 45 МПа — III, где I. II, III — обозначения видов нагрузки, см. табл. 1.

Ориентировочные допускаемые напряжения для цветных металлов на растяжение и сжатие. МПа:
— 30…110 — для меди;
— 60…130 — латуни;
— 50…110 — бронзы;
— 25…70 — алюминия;
— 70…140 — дюралюминия.

Добавить комментарий