С тех пор, как в обиходе школьника появились дроби, его жизнь стала куда интереснее! Вначале это были просто дроби, как нечто обособленное, а потом они стали становится частью чего-то более предметного. То есть не просто частью того примера, где объясняли, что дробь сама по себе уже какая-то часть от чего-то, а именно стали “инструментом” для расчета искомого числа, если известно исходное и его часть в виде дроби.
…что я вам собственно вам пудрю мозги, занимаюсь тавтологией, лучше уж сразу предметно о том, что если мы имеем какое-то число, знаем часть от него выраженную в дроби, то мы всегда найдем и количественное значение. Именно об этом и будет моя статья. Об этом я напишу, расскажу, “разжую”, а вот выводы останутся с вами! Начинаем!
Если у нас есть целое
Давайте наверное опять начну с аксиом (истин). Ведь строить выводы без догм (истин), это все равно, что дом без фундамента. Нам известно о том, что есть целое, то есть что-то единое, что мы привыкли считать по 1, применять к нему термин 100 процентов, представлять как нечто обособленное, отдельное если хотите.
Заметьте, что не смотря на то, что мы имеем что-то целое, это не значит, что его нельзя разобрать на части. Я думаю так делали многие дети, а в прошлом их родители, когда отрывали колесики от целой машинки или руки от пластиковых пупсиков… Ну, а опять же самый ходовой пример, это откусить часть от яблока.
И именно здесь пришло то самое время, дабы поговорить уже о частях целого!
Часть от целого
Итак, не смотря на то, что некоторые вещи мы привыкли видеть обособленно целыми, практически все можно разбить на части. Есть небольшие исключения для физического мира, о чем по программе начальной школы еще рано знать… А вот если чисто теоретически, то есть в математических подсчетах, то тут и вовсе без исключений! Любое из чисел можно всегда разбить на части, будь то 1, 100 или 25489.
Собственно именно для такого “расчленения”, ладно скажу более умеренно, для разделения на части, и применяются наши дроби! Если вы уже знаете, что 1/2 это половина, а 1/3 это третья часть то замечательно! Ведь теперь самое время перейти к логике нахождения, сколько же будет в количественном значении эта часть в виде дроби от целого.
Как найти значение дроби (части) от целого
Теперь, когда мы понимаем, что дробь нам указывает на какую-то часть от целого, то есть 1/2 читается как одна вторая, а 23/56, – как двадцать три пятьдесят шестых, то нам хотелось бы манипулировать не просто понятиями как частями от целого, а именно их количественным значением. То есть скажем ваши родители, когда им говорят, что они получат премию в размере 2/3 от оклада всегда хотят знать, а сколько это в рублях, а именно не в частях.
Когда вы слышите от бабушек, что часть своей пенсии она потратит на ваши услады, всегда хотите больше знать не то, что это 1/10 часть, а то сколько это будет в рублях, ведь именно на них вы сможете купить мороженое и проиграть в игровых автоматах.
Так вот и в этом случае, находим конечную часть именно выраженную в тех же значениях, что и целое. То есть если это были рубли в виде целого оклада, то нам интересны именно рубли, а не части. Если это была вишня в кг, то лучше знать сколько это именно килограммов вишни, а не часть от того. что было. Именно с такими знаниями и я бы сказал нашими хотелками, ладно желаниями, мы и подходим к апогею нашей статьи. Так как же посчитать значение части выраженной в дроби от целого!
Смотрите, опять к нашим яблокам. У нас есть корзинка с яблоками, и это условно целое, то есть корзинка это наша “полная часть”. И нам скажем необходимо найти 2/5 от нее.
При этом мы знаем, что в корзине 20 яблок или это можно сказать как 5 частей по 4 яблока. Все это показано на рисунке. Однако нам надо найти лишь 2 части из 5, те которые подчеркнуты красной линией. Вы визуально можете уже посчитать, что это будет 8 яблок. Однако как же это можно было найти не столь наглядным образом, а именно исходя из расчетов? Легко!
Необходимо было наше целое, то есть 20 яблок, разделить на 5 частей, так как мы ищем значение именно из 5 частей и умножить на 2, так как именно две части нас интересуют.То есть 2/5 от 20 это 20/5*2=8 яблок.
Мне кажется все понятно. Теперь немного практики, в виде задачи, а потом перейдем к наглядным обучающим пособиям в виде онлайн – калькулятора для нахождения значения части в виде дроби от какого-то числа условно нашего целого.
Задачи на нахождение значения дроби от числа
Первую задачу можно сказать мы уже разобрали выше. Это с корзинкой и яблоками. Теперь давайте другую.
Задача:
Туристы за 2 дня прошли 25 км по маршруту, при этом в первый день они прошли 3/5 пути. Сколько км туристы прошли в первый день?
Решение:
25:5*3=5*3=15 (км) – прошли туристы в первый день.
Ответ: 15 км.
Онлайн калькулятор нахождения значения дроби от числа
Хорошо, очень надеюсь, что вы поняли о чем я вам объяснял. Теперь же хочу представить вам онлайн калькулятор, который поможет вам очень быстро исходя из значения исходного числа и из его части в виде дроби, найти эту самую часть в виде значений эквивалентных исходному числу! Пробуем!
Введите значения дроби для вычисления ее в виде части от исходного:
Дробь
Находим то число, где дробь часть от “исходного числа”
Находим то число, где известно, что его часть равна дроби, а дробь по количественному значению -“исходному числу”
- Категория: Математика
Чтобы найти дробь от числа, нужно это число разделить на знаменатель дроби и умножить на числитель. Чтобы найти число по его дроби, нужно число разделить на числитель и умножить на знаменатель.
Разберем на примере задачи нахождение дроби от числа.
От дома до школы 560 м. Саша прошел 2/5 этого пути. Сколько метров прошел Саша?
Весь путь – это 5 частей или одно целое (5/5). Найдем одну часть:
1) 560 : 5 = 112 (м) – составляет одна часть Сашиного пути. А он прошел 2 таких части
2) 112 * 2 = 224 (м) – составляет 2/5 пути.
Ответ: 224 м.
А теперь ту же задачу превратим в нахождение числа по его дроби.
Саша прошел 224 м, что составляет 2/5 всего пути от дома до школы. Найди расстояние от дома до школы?
224 м – это часть пути, значит весь путь будет больше. Эта информация нужна для самопроверки. Найдем сначала 1/5 пути
1) 224 : 2 = 112 (м) – составляет 1/5 пути
2) 112 * 5 = 560 (м) – составляет весь путь
Ответ: 560 м.
Проверим себя. При нахождении дроби от числа результат будет меньше этого числа, если у нас правильная дробь, и больше, если неправильная (то есть целое + еще какая-то часть).
При нахождении числа от дроби – все наоборот, результат будет больше этого числа, если у нас правильная дробь, и меньше, если неправильная.
Калькулятор на нахождения дроби от числа и числа по его дроби
Онлайн калькулятор поможет определить долю от числа. Для вычисления доли из числа, необходимо разделить число на знаменатель, а затем умножить на числитель.
Или чтобы найти часть от числа, необходимо разделить это число на значение, находящееся под чертой, и умножить на значение, находящееся над чертой.
Формула для нахождения доли от числа: [ x = frac{c}{b} sdot a ]
Где: [ frac{a}{b} ] – доля, а с – число.
AC | 7 | 8 | 9 | ← |
C | 4 | 5 | 6 | / |
% | 1 | 2 | 3 | × |
xy | . | 0 | = | – |
x2 | √ | ( | ) | + |
Пример: продолжительность жизни собкаи – 15 лет. [ frac{1}{5} ] часть жизни она растёт. Сколько лет растёт собака?
Решение: разделим пятнадцать на пять и умножим на один: 15 : 5 × 1 = 3 года.
×
Пожалуйста напишите с чем связна такая низкая оценка:
×
Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»
Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»
Смотрите также
Есть 2 комнаты и 4 собственника , в одной комнате у каждого по 1/3 доли , во второй комнате у каждого по 1/4 , сейчас хотим объединить эти комнаты в одну квартиру , как правильно выделить доли всем , хотели по 1/4 каждому , но нам сказали , что так нельзя , т.к один из собственников имеет долю только в одной комнате , а в другой не имеет .
Участок 700 кв.м. имею от этого участка 300 кв.м., какая это доля?
Есть доля 3/8 из 137.8 кв.м нужна помощь для подс
чета. Спасибо
сначала выполняете деление, потом сложение. . вышло 1,041
Помогите решить. Я имею 1/9 часть доли Если я выкуплю у человека еще 1/9 часть, сколько долей из общей у меня выйдет
Какие фильмы снял режисер Сидоров и видел ли его кто?
помогите пожалуйста определить доли этих сумм 3726954 и 2752860, при этом первая сумма состоит из 2 равных частей
Здравствуйте. Помогите мне пожалуйста сложить все эти доли:
1/10
1/10
1/10
1/6
1/6
Все надо привести к общему знаменателю. 5 класс
Рад, что Вам понравилось!
комнаты в совокупности 36,60, нужно высчитать 2 доли (18,94 и 19,94), помогите понять
Повезло Маше… Наверное )))
Здравствуйте! подскажите доля в доме может быть 8,43/25? то-есть не целое число?
Здравствуйте! квартира площадь 68 кв.м. У мужа 1/3 часть квартиры до брака, в браке выкупи ли 2/3 доли у его родителей и участвовал мат капитал, после чего выделили доли жене 11/21, мужу 1/21, и детям сыну 1/21 и дочери 1/21. Сколько у мужа и у жены долей после развода, кому сколько полагается?
Здравствуйте! квартира площадь 68 кв.м. У мужа 1/3 часть квартиры до брака, в браке выкупи ли 2/ доли у его родителей и участвовал мат капитал, после чего выделили доли жене 11/21, мужу 1/21, и детям сыну 1/21 и дочери 1/21. Сколько у мужа и у жены долей после развода, кому сколько полагается?
Помогите, пожалуйста, высчитать три неравные доли площадью 19,4кв/м, 19,4кв/м ии8кв/м в квартире общей площадью 46,8кв/м
Калькулятор дробей
- Главная
- /
- Математика
- /
- Арифметика
- /
- Калькулятор дробей
Если вам необходимо произвести математические операции с дробями воспользуйтесь нашим онлайн калькулятором:
Просто заполните необходимые поля и получите ответ и подробное решение.
Данный калькулятор может работать как с положительными, так и с отрицательными дробями.
При этом нужно помнить, что:
− ac = a− c = − ac
Всегда нужно использовать только последний вариант.
Сложение дробей
С одинаковыми знаменателями
При сложении дробей с одинаковыми знаменателями складываются только числители, а знаменатель остаётся прежним.
Формула
ac + bc = a + bc
Пример
Для примера сложим следующие дроби с равными знаменателями:
27 + 47 = 2 + 47 = 67
С разными знаменателями
При сложении дробей с разными знаменателями для начала необходимо привести дроби к общему знаменателю. А затем сложить числители.
Формула (универсальная)
ac + bd = a⋅d + b⋅cc⋅d
Пример №1
Для примера сложим следующие дроби с разными знаменателями:
12+13=1⋅32⋅3+1⋅23⋅2=36+26=3+26=56
Пример №2
Существуют также частные случаи, когда знаменатель одной дроби можно привести к знаменателю второй. Например:
12+14=1⋅22⋅2+14=24+14=2+14=34
Этот же пример можно решить и применяя вышеуказанную универсальную формулу:
12+14=1⋅42⋅4+1⋅24⋅2=48+28=4+28=68=34
Обратите внимание, что мы сократили дробь:
68=3 ⋅ 24 ⋅ 2=34
Сложение смешанных чисел
Смешанные числа – это такие числа, у которых есть как дробная часть, так и целая.
Преобразуя в неправильную дробь
Для начала смешанное число (дробь) нужно преобразовать в неправильную дробь, а потом можно складывать как в предыдущих примерах.
Формула
a bc + d ef = b + a ⋅ cc + e + d ⋅ ff
Пример
Для примера сложим два смешанных числа:
312+123=1+3⋅22+2+1⋅33=72+53=7⋅32⋅3+5⋅23⋅2=216+106=21+106=316=5⋅6+16=5⋅66 + 16=516
Обратите внимание, что из полученной неправильной дроби мы выделили целую часть:
316=5⋅6+16=5⋅66 + 16=516
Складывая целую и дробную части отдельно
Целую и дробную части смешанных чисел можно складывать по отдельности.
Формула
a bc + d ef = (a + d) + (bc + ef)
Пример
Решим предыдущий пример этим способом:
3 12 + 1 23 = (3+1)+(12+23) = 4+1⋅32⋅3+2⋅23⋅2=4+36+46=4+3+46=4+76=4+116 = 516
Вычитание дробей
Вычитание дробей происходит по тем же принципам, что и сложение.
С одинаковыми знаменателями
Формула
ac − bc = a − bc
Пример
Для примера вычтем одну дробь из другой с равными знаменателями:
35−25=3−25=15
С разными знаменателями
Тут также, как и при сложении, дроби нужно подвести под общий знаменатель, а затем вычитать.
Формула
ac − bd = a⋅d − b⋅cc⋅d
Пример
Для примера вычтем одну дробь из другой, с разными знаменателями:
34−13=3⋅34⋅3−1⋅43⋅4=912−412=9−412=512
Вычитание смешанных чисел
Для начала смешанные числа преобразуем в неправильные дроби, потом приводим полученные дроби к общему знаменателю, а затем вычтем одну из другой. Далее выделяем целую часть если она есть.
Формула
a bc − d ef = b + a ⋅ cc − e + d ⋅ ff
Пример
312−123=1+3⋅22−2+1⋅33=72−53=7⋅32⋅3−5⋅23⋅2=216−106=21−106=116=1⋅6+56=1⋅66 + 56=156
Умножение дробей
При умножении дробей неважно одинаковые или разные у них знаменатели. Числитель одной дроби умножается на числитель другой, а знаменатели тоже перемножаются между собой.
Формула
ac ⋅ be = a ⋅ bc ⋅ e
Давайте рассмотрим несколько примеров:
Пример №1
Умножим дроби с одинаковыми знаменателями:
13⋅23=1⋅23⋅3=29
Пример №2
Умножим дроби с разными знаменателями:
13⋅24=1⋅23⋅4=212=1⋅26⋅2=16
Пример №3
Умножим смешанные числа:
112⋅223=1+1⋅22⋅2+2⋅33=32⋅83=3⋅82⋅3=246=4
Деление дробей
При делении одной дроби на другую также неважно одинаковые или разные у них знаменатели. Чтобы разделить одну дробь на другую нужно перемножить числитель первой дроби и знаменатель второй, а знаменатель первой умножить на числитель второй.
Формула
ac : be = a ⋅ ec ⋅ b
Давайте рассмотрим несколько примеров:
Пример №1
Разделим одну дробь на другую с таким же знаменателем:
23:13=23⋅31=2⋅33⋅1=63=2
Пример №2
Делим дроби с разными знаменателями:
12:23=12⋅32=1⋅32⋅2=34
Пример №3
Деление смешанных чисел:
412:223=1+4⋅22:2+2⋅33=92:83=92⋅38=9⋅32⋅8=2716=1⋅16+1116=1⋅1616 + 1116=11116