Как найти дробь от целого числа видео

Содержание материала

  1. Правильная и неправильная дробь
  2. Видео
  3. Дроби
  4. Нахождение части от целого (дроби от числа)
  5. Вычитание дробей
  6. Нахождение целого числа по дроби
  7. Как перевести десятичную дробь в обыкновенную или смешанную
  8. Применение нахождения дроби от числа для решения задач
  9. Нахождение числа по значению дроби

Правильная и неправильная дробь

Дробь, в которой числитель меньше знаменателя, называется правильной, а дробь, где числитель больше или равен знаменателю, — неправильной.

Число, состоящее из целой и дробной частей, можно

Число, состоящее из целой и дробной частей, можно обратить в неправильную дробь. Для этого нужно умножить целую часть на знаменатель и к произведению прибавить числитель данной дроби. Полученная сумма будет числителем дроби, а знаменателем остается знаменатель дробной части.

Из любой неправильной дроби можно выделить целую ч

Из любой неправильной дроби можно выделить целую часть. Для этого нужно разделить с остатком числитель на знаменатель. Частное от деления — это целая часть, остаток — это числитель, делитель — это знаменатель.

Дроби

Дроби вида $frac{n}{m}$  называют «обыкновенные дроби». В дроби $frac{n}{m}$ число над чертой называют числителем дроби, а число под чертой – знаменателем дроби.

Знаменатель показывает, на сколько долей делят, а числитель — сколько таких долей взято.

Таким образом, если нам нужно обозначить не один «кусочек» числа, а больше, мы просто пишем в верхней части дроби не единицу, а другое число, например, так:

Рисунок 5

Рисунок 5

Дроби нужно уметь читать правильно: числитель читается как количественное числительное женского рода (одна, две и т.д.), а знаменатель как порядковое числительное (вторая, пятая) и согласуется с первым числительным.Например: $frac{1}{2}$  — одна вторая, $frac{2}{5}$ — две пятых,  $frac{6}{11}$  — шесть одиннадцатых.

На рисунке 6 изображён отрезок АВ, его длина 10 см, то есть 1 дм. Длина отрезка АС будет 1 см.

Рисунок 6

Рисунок 6

А какую долю составит сантиметр от метра?

Показать ответ

Скрыть

$frac{1}{100}$ 

А грамм от килограмма?

Показать ответ

Скрыть

$frac{1}{1000}$ 

Видео

Нахождение части от целого (дроби от числа)

Чтобы найти часть от целого, нужно число, соответствующее целому, разделить на знаменатель дроби, выражающей эту часть, и результат умножить на числитель той же дроби.

Задача нахождения части от целого по существу является задачей нахождения дроби от числа. Чтобы найти дробь (часть) от числа, необходимо число умножить на эту дробь.

Вычитание дробей

Алгоритм действий при вычитании двух дробей:

  1. Перевести смешанные дроби в обыкновенные (избавиться от целой части).
  2. Привести дроби к общему знаменателю. Для этого нужно числитель и знаменатель первой дроби умножить на знаменатель второй дроби, а числитель и знаменатель второй дроби умножить на знаменатель первой дроби.
  3. Вычесть одну дробь из другой, путем вычитания числителя второй дроби из числителя первой.
  4. Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
  5. Если числитель итоговой дроби больше знаменателя, то выделить целую часть.

Нахождение целого числа по дроби

Зная часть числа и сколько это составляет от целого числа, можно найти изначальное целое число. Это обратная задача к той, которую мы рассматривали в предыдущей теме. Там мы искали дробь от числа, деля это число на знаменатель дроби, и полученный результат умножая на числитель дроби.

А сейчас наоборот, зная дробь и сколько это составляет от числа, найти изначальное целое число.

Например, если Требуется найти длину всей линейки по дроби . Изве длины линейки составляют шесть сантиметров и нам говорят найти длину всей линейки, то мы должны понимать, что от нас требуют найти изначальное целое число (длину всей линейки) по дроби Требуется найти длину всей линейки по дроби . Изве. Давайте решим эту задачу.

Требуется найти длину всей линейки по дроби Мы уже знаем каким образом получились эти 6 см. Им. Известно, что Мы уже знаем каким образом получились эти 6 см. Им длины всей линейки составляют 6 см.

Мы уже знаем каким образом получились эти 6 см. Имелась какая-то длина, её разделили на пять частей, поскольку знаменатель дроби Чтобы узнать длину всей линейки, сначала нужно узн это число 5. Затем было взято две части от пяти частей, поскольку числитель дроби Чтобы узнать длину всей линейки, сначала нужно узн это число 2.

Чтобы узнать длину всей линейки, сначала нужно узнать длину одной части. Как это узнать? Попробуем догадаться, внимательно изучив следующий рисунок:

Если две части длины линейки составляют 6 см, то н

Если две части длины линейки составляют 6 см, то нетрудно догадаться, что одна часть составляет 3 см. А чтобы получить эти 3 см, надо 6 разделить на 2

6 см : 2 = 3 см

Итак, мы нашли длину одной части. Одна часть из пяти или 3 см × 5 = 15  длины линейки составляет 3 см. Если частей всего пять, то для нахождения длины линейки, нужно взять три сантиметра пять раз. Другими словами, умножить 3 см на число 5

3 см × 5 = 15

Мы нашли длину линейки. Она составляет 15 сантиметров. Это можно увидеть на следующем рисунке.

Видно, что пять частей из пяти или  составляют пят

Видно, что пять частей из пяти или Чтобы легче было находить число по его дроби, можн составляют пятнадцать сантиметров.

Чтобы легче было находить число по его дроби, можно пользоваться следующим правилом:

Чтобы найти число по его дроби, нужно известное число разделить на числитель дроби, и полученный результат умножить на знаменатель дроби.

Пример 2. Число 20 это Знаменатель дроби  показывает, что число, которое  от всего числа. Найдите это число.

Знаменатель дроби 20 : 4 = 5  показывает, что число, которое мы должны найти, разделено на пять частей. Если 20 : 4 = 5  этого числа составляет число 20, то для нахождения всего числа, сначала нужно найти 20 : 4 = 5  (одну часть из пяти) от всего числа. Для этого 20 надо разделить на числитель дроби 20 : 4 = 5

20 : 4 = 5

Мы нашли 5 × 5 = 25  от всего числа. Эта часть равна 5. Чтобы найти всё число, нужно полученный результат 5 умножить на знаменатель дроби 5 × 5 = 25

5 × 5 = 25

Мы нашли Пример 3. Десять минут это  времени приготовления  от всего числа. Другими словами, нашли всё число, которое от нас требовали найти. Это число 25.

Пример 3. Десять минут это Знаменатель дроби  показывает, что общее время при времени приготовления каши. Найдите общее время приготовления каши.

Знаменатель дроби 10 мин : 2 = 5 мин  показывает, что общее время приготовления каши разделено на три части. Если 10 мин : 2 = 5 мин  времени приготовления каши составляет десять минут, то для нахождения общего времени приготовления, нужно сначала найти 10 мин : 2 = 5 мин  времени приготовления. Для этого 10 нужно разделить на числитель дроби 10 мин : 2 = 5 мин

10 мин : 2 = 5 мин

Мы нашли 5 мин × 3 = 15 мин  времени приготовления каши. 5 мин × 3 = 15 мин  времени приготовления каши составляют пять минут. Для нахождения общего времени приготовления, нужно 5 минут умножить на знаменатель дроби 5 мин × 3 = 15 мин

5 мин × 3 = 15 мин

Мы нашли Пример 4.     массы мешка цемента составляет 30 кг времени приготовления каши, то есть нашли общее время приготовления. Оно составляет 15 минут.

Пример 4.   Знаменатель дроби  показывает, что общая масса меш  массы мешка цемента составляет 30 кг. Найти общую массу мешка.

Знаменатель дроби 30кг : 2 = 15кг показывает, что общая масса мешка разделена на четыре части. Если 30кг : 2 = 15кг массы мешка составляет 30 кг то для того, чтобы найти общую массу мешка нужно сначала найти 30кг : 2 = 15кг массы мешка. Для этого 30 надо разделить на числитель дроби 30кг : 2 = 15кг.

30кг : 2 = 15кг

Мы нашли 15кг × 4 = 60кг массы мешка. 15кг × 4 = 60кг массы мешка составляет 15 кг. Теперь, чтобы найти общую массу мешка, надо 15кг умножить на знаменатель дроби 15кг × 4 = 60кг

15кг × 4 = 60кг

Мы нашли 
массы мешка. Другими словами, нашли общую массу мешка. Общая масса мешка цемента составляет 60 кг.

Как перевести десятичную дробь в обыкновенную или смешанную

Для того, чтобы перевести десятичную дробь в обыкновенную, необходимо:

  1. Записать дробь в виде десятичная дробь1
  2. Умножать числитель и знаменатель на 10 до тех пор, пока числитель не станет целым числом.
  3. Найти наибольший общий делитель и сократить дробь.

Например, переведем 0.36 в обыкновенную дробь:

  1. Записываем дробь в виде: 0.361
  2. Умножаем на 10 два раза, получим 36100
  3. Сокращаем дробь 36100 = 925

Применение нахождения дроби от числа для решения задач

В начале урока мы уже разобрали пример с тортом, сейчас посмотрим на другие примеры.

Задача 1

Остап зарабатывает 40 000 рублей в месяц.

Из них (mathbf{frac{1}{4}}) это подработка.

Сколько рублей Остапу приносит подработка?

Решение:

В данной случае числом будет являться сумма заработка за месяц — 40 000

Ну а дробью, очевидно, будет (mathbf{frac{1}{4}}).

Тогда, чтобы найти прибыль от подработки, надо просто умножить дробь на число.

(mathbf{40000cdotfrac{1}{4}=frac{40000}{4}=10000})

Ответ: 10 000 рублей.

Теперь рассмотрим что-нибудь посложнее.

Задача 2

Порфирий живет в комнате площадью 18 квадратных метров.

3 кровати занимают (mathbf{frac{1}{3}}) площади комнаты.

Какую площадь занимает одна кровать?

Решение:

Сначала найдем, какую площадь занимают 3 кровати, затем разделим это число на 3, чтобы получить площадь одной кровати.

1) (mathbf{18cdotfrac{1}{3}=frac{18}{3}=6}) (квадратных метров) занимают 3 кровати

2) (mathbf{6div3=2}) (квадратных метра) занимает одна кровать

Ответ: 2 квадратных метра.

Теперь посмотрим, как в задачах применяются проценты.

Задача 3

Пересвет работает на заводе и производит 100 деталей в день.

Начальник Елисей пообещал Пересвету выдать премию, если он будет делать на 20% деталей больше.

Сколько деталей в день должен делать Пересвет, чтобы получить премию?

Решение:

Для начала надо понять, на сколько в количественном измерении больше деталей нужно выпустить Пересвету, чтобы получить премию.

Для этого домножим текущее количество деталей на процент или долю, учитывая, что 20% — это 20 частей из 100, или иначе 0,20, и получим искомую прибавку.

1) (mathbf{20%=20div100=0.2})

2) (mathbf{100cdot0.2=20}) (деталей)- то, насколько больше деталей нужно производить

Теперь, чтобы найти общее количество деталей, надо прибавить эту прибавку к тому, что Пересвет производит уже сейчас.

3) (mathbf{100+20=120}) (деталей) в день нужно производить для получения премии

Ответ: 120 деталей.

В некоторых задачах нужно несколько раз применять нахождение процентов от числа.

Задача 4

Глубина реки в начале мая была равна 10 метрам, к началу июня она обмелела на 10%, а к началу июля еще на 15% относительно показателей начала июня. Вычислите, какая глубина реки была в начале июля.

Решение:

Исходное число- 10 метров, дробь задана в виде процентов.

Первым действием нужно будет найти глубину реки в начале июня.

Здесь можно пойти двумя разными путями:

I. Посчитаем, на сколько метров опустился уровень воды, а затем вычтем это из исходных показателей.

0) (mathbf{10%=10div100=0.1})

1) (mathbf{10-10cdot0.1=10-1=9}) (метров)- глубина реки в начале июня

II. Можно вместо того, чтобы считать разницу и вычитать ее, посчитать сколько процентов останется и найти сразу именно эту часть от исходного числа.

Учитывая, что всего у нас 100%, да если глубина уменьшилась на 10%, то осталось 90%.

0) (mathbf{100-10=90}) (процентов) останется

1) (mathbf{90%=90div100=0.9})

2) (mathbf{10cdot0.9=9}) (метров)- глубина реки в начале июня

Как мы видим, эти два подхода дают одинаковый результат.

Поэтому вы можете выбирать любой из них в зависимости от задачи и ваших предпочтений.

Таким образом, мы посчитали глубину в начале июня. Теперь нужно понять, какая будет глубина в начале июля, когда глубина уменьшится еще на 15 процентов.

Используем в этом случае второй способ.

3) (mathbf{100-15=85}) (процентов) останется в июле от уровня июня

4) (mathbf{85%=85div100=0.85})

5) (mathbf{0.85cdot9=7.65}) (метров) составит глубина реки в начале июля

Ответ: 7.65 метра.

Пройти тест Закрыть тест

Пройти тест и получить оценку можно после входа или регистрации Вход Регистрация

Нахождение числа по значению дроби

Если известно сколько число n занимает в числе m, и эта доля выражена в виде дроби, то для нахождения числа m используется формула:

m = m : a / b

 Пример:

Один ряд кинозала вмещает 20 кресел, что составляет2 / 5

от всей вместимости зала. Определите, сколько всего посадочных мест в зале.

 Решение

Общее количество кресел равняется:

20 :2 / 5

= 20 ⋅5 / 2

=20 ⋅ 5 / 2

= 50

Теги

Как найти дробь от числа видеоурок

6 класс, 14 урок, Нахождение дроби от числа

6 класс, 14 урок, Нахождение дроби от числа

МАТЕМАТИКА 6 класс: Нахождение дроби от числа

МАТЕМАТИКА 6 класс: Нахождение дроби от числа

Математика 6 класс. Нахождение дроби от числа

Математика 6 класс. Нахождение дроби от числа

Как найти дробь от числа

Канал видеоролика: Математика без проблем

Как найти дробь от числа

Смотреть видео:

Свежая информация для ЕГЭ и ОГЭ по Математике (листай):

С этим видео ученики смотрят следующие ролики:

КАК НАЙТИ ДРОБЬ ОТ ЦЕЛОГО ЧИСЛА? КАК НАЙТИ ДРОБЬ ОТ ДЕСЯТИЧНОЙ ДРОБИ? Примеры | МАТЕМАТИКА 6 класс

КАК НАЙТИ ДРОБЬ ОТ ЦЕЛОГО ЧИСЛА? КАК НАЙТИ ДРОБЬ ОТ ДЕСЯТИЧНОЙ ДРОБИ? Примеры | МАТЕМАТИКА 6 класс

Математика online

КАК НАЙТИ ДРОБЬ ОТ СМЕШАННОГО ЧИСЛА? Примеры | МАТЕМАТИКА 6 класс

КАК НАЙТИ ДРОБЬ ОТ СМЕШАННОГО ЧИСЛА? Примеры | МАТЕМАТИКА 6 класс

Математика online

КАК НАЙТИ ДРОБЬ ОТ ЧИСЛА? Примеры | МАТЕМАТИКА 5 класс

КАК НАЙТИ ДРОБЬ ОТ ЧИСЛА? Примеры | МАТЕМАТИКА 5 класс

Математика online

Задачи на проценты. Как найти процент от числа, как найти процент. ОГЭ математика

Задачи на проценты. Как найти процент от числа, как найти процент. ОГЭ математика

Математика для всех

Облегчи жизнь другим ученикам – поделись! (плюс тебе в карму):

20.11.2019

  • Комментарии

RSS

Написать комментарий

Нет комментариев. Ваш будет первым!

Ваше имя:

Загрузка…

Войдите в ОК

Войдите в ОК, чтобы видеть больше.

Войти через

Популярные видео

Как решать задачи с дробями? Как найти дробь от числа? Как объяснить ребенку задачи на дроби?

1 410 просмотров

Ищите меня в соц сетях!
https://www.facebook.com/prostoosloznomns
https://vk.com/prosto.o.sloznom

Как объяснить дроби? Что такое дробь? простое объяснение дробей. Как объяснить ребенку доли? https://youtu.be/dCAXxBBVa3U

Здравствуйте, друзья с вами Ирина Александровна, и мой канал Просто о сложном начальная школа. Это второе видео про дроби, и первое про Задачи с дробями. В этом видео мы с вами разберемся, как решать задачи с дробями. Сегодня я постараюсь вам объяснить задачи на дроби и Как найти дробь от числа. Что бы Решение задач с дробями проходило легко и быстро нам нужно понять такой момент, как Изображение дроби на луче или Графическое изображение дробей. Сначала мы поговорим про изображение дробей и вы узнаете про единичный отрезок дроби. Вспомним Что такое числитель и знаменатель. И затем на примерах посмотрим, как правильно решать задачи с дробями. В этом видео мы затронем Задачи на дроби для 3 класса, а также некоторые задачи на дроби 4 класс. Надеюсь, после просмотра этого видео вы поймете, как объяснить ребенку задачи на дроби. И если видео оказалось для вас полезным, не забудьте поделиться им в родительских чатах и соц сетях. А также подписывайтесь на канал, чтобы получать новые полезные видео!

Добавить комментарий