Как найти дробные выражения деление

  1. Главная
  2. Справочники
  3. Справочник по математике 5-9 класс
  4. Обыкновенные дроби
  5. Деление и дроби

Не всегда можно одно натуральное число разделить на другое, так, например, 2 нельзя разделить на 3, в таком случае деление можно заменить дробью , т.е. 2 : 3 = .

 Пример:

= 3 : 5;       = 5 : 3.

В результате деления двух натуральных чисел может получится натуральное число или дробное число.

Пример:

20 : 4 = = 5;       13 : 25 = ;      45 : 4 =  .

Пример:

а) 1 = = = … = = …, т.к. = 2 : 2 = 1,   = 3 : 3 = 1, …,    = 100 : 100 = 1, ….

Получаем, что число 1 можно представить в виде дроби, у которой числитель и знаменатель равны.

б) 7 = = = = …, т.к. = 7 : 1 = 7,   = 14 : 2 = 7;   = 21 : 3 = 7 ….

Свойство деления суммы на число

Чтобы разделить сумму на число, можно разделить на это число каждое слагаемое и сложить полученные частные.

Пример:

(64 + 72) : 8 = 64 : 8 + 72 : 8 = 8 + 9 = 17.

Дробные выражения

Частное от деления одного выражения на другое можно записать с помощью черты дроби. Например, выражение (3,5 – 1,1) : (7,3 + 2,7) можно записать в виде . А выполнив действия в числителе и в знаменателе полученной дроби, найдем значение данного выражения: .

Частное двух чисел или выражений, в котором знак деления обозначен чертой, называют дробным выражением.

К дробным выражениям относятся:

Числитель дробного выражения – выражение, стоящее над чертой.

Знаменатель дробного выражения – выражение, стоящее под чертой.

Обратите внимание, в числителе и в знаменателе дробного выражения могут стоять любые числа (натуральные числа, обыкновенные дроби, десятичные дроби и т.д.), а также числовые или буквенные выражения (смотри примеры выше).

Если числитель и знаменатель дробного выражения разделить или умножить на одно и то же число отличное от нуля, то получим дробное выражение, равное данному. Данное свойство часто используют, когда преобразуют дробное выражение с десятичными дробями в обыкновенную дробь.

Пример:

, обычно запись упрощают, и пишут так: .

То есть, получается, что мы переносим запятую в числителе и знаменателе дробного выражения на одинаковое количество цифр вправо, при этом если в одном числе цифр после запятой больше, чем в другом, то переносим запятую на большее количество цифр, а там где цифр после запятой меньше дописываем нули.

Пример:

.

Советуем посмотреть:

Доли. Обыкновенные дроби

Сравнение дробей

Делители и кратные

Признаки делимости на 10, на 5 и на 2

Четные и нечетные числа

Признаки делимости на 9 и на 3

Простые и составные числа

Разложение на простые множители

Наибольший общий делитель

Наименьшее общее кратное

Сложение и вычитание дробей с одинаковыми знаменателями

Смешанное число

Сложение и вычитание смешанных чисел

Основное свойство дроби

Решето Эратосфена

Приведение дробей к общему знаменателю

Сравнение, сложение и вычитание дробей с разными знаменателями

Умножение обыкновенных дробей

Деление обыкновенных дробей

Обыкновенные дроби


Правило встречается в следующих упражнениях:

5 класс

Задание 1054,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1056,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1076,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1131,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1563,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1581,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1674,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 7,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник, часть 2

Задание 8,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник, часть 2

Номер 762,
Мерзляк, Полонский, Якир, Учебник

6 класс

Номер 443,
Мерзляк, Полонский, Якир, Учебник

Номер 580,
Мерзляк, Полонский, Якир, Учебник

Задание 732,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 759,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 993,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1204,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1279,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1461,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1503,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1517,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

7 класс

Номер 55,
Мерзляк, Полонский, Якир, Учебник

Номер 256,
Мерзляк, Полонский, Якир, Учебник

Номер 611,
Мерзляк, Полонский, Якир, Учебник

Номер 701,
Мерзляк, Полонский, Якир, Учебник

Номер 846,
Мерзляк, Полонский, Якир, Учебник

Номер 853,
Мерзляк, Полонский, Якир, Учебник

Номер 1157,
Мерзляк, Полонский, Якир, Учебник

Номер 1219,
Мерзляк, Полонский, Якир, Учебник

Номер 1234,
Мерзляк, Полонский, Якир, Учебник

Номер 4,
Мерзляк, Полонский, Якир, Учебник

8 класс

Номер 3,
Мерзляк, Полонский, Якир, Учебник

Номер 8,
Мерзляк, Полонский, Якир, Учебник

Номер 10,
Мерзляк, Полонский, Якир, Учебник

Номер 89,
Мерзляк, Полонский, Якир, Учебник

Номер 116,
Мерзляк, Полонский, Якир, Учебник

Номер 2,
Мерзляк, Полонский, Якир, Учебник

Номер 12,
Мерзляк, Полонский, Якир, Учебник

Номер 205,
Мерзляк, Полонский, Якир, Учебник

Номер 283,
Мерзляк, Полонский, Якир, Учебник

Номер 371,
Мерзляк, Полонский, Якир, Учебник


План урока:

Умножение обыкновенных дробей

Нахождение дроби от числа

Деление обыкновенных дробей

Нахождение числа по заданному значению его дроби

Дробные выражения

Умножение обыкновенных дробей

Разберем ситуацию.

На уроке технологии девочки занимались выпечкой. Они готовили печенье. По рецепту на изготовление одного килограмма печенья уходит 3/8 килограмма сахара. Сколько сахара необходимо принести детям, чтобы приготовить 1/2 килограмма печенья?

1adghshf

Чтобы ответить на главный вопрос задачи, нам необходимо узнать количество сахара нужное для изготовления 1/2 килограмма печенья. По условию, мы знаем, что для выпечки 1 кг лакомства требуется 3/8 кг сахара. Следовательно, чтобы вычислить требуемую массу сахарного песка необходимо найти произведение 3/8 и 1/2 . Известные множители представлены в виде обыкновенных дробей. Чтобы выполнить умножение обыкновенных дробей нужно использовать правило:

2wetwry

числитель умножаем на числитель, а знаменатель на знаменатель. Первый результат пишем над чертой дроби, второй под чертой:

d1wetwry

Получается, чтобы испечь нужное количество печенья школьницы должны подготовить  3/16 килограмма сахарного песка.

Нахождение дроби от числа

Разберем следующую ситуацию и узнаем, как найти дробь от числа.

Вениамин очень любит уроки изобразительного искусства. В его альбоме для рисования 48 листов. Мальчик удивленно заметил, что своими рисунками уже заполнил 7/8 альбома. Сколько всего рисунков получилось у школьника?

3wetwry

Задачу можно решить двумя способами. Подробно рассмотрим каждый из них.

Способ 1.

Чтобы ответить на главный вопрос задачи нам нужно узнать, сколько листов соответствует записи 7/8. Для этого давайте вспомним, о чем нам говорят компоненты дробных выражений:

4wetwry

Теперь, можно сказать, что весь альбом разделили на 8 частей, а использовали только 7. Попробуем посчитать. Вначале, делим 48 на 8:

48 : 8 = 6.

6 листов приходится на 1/8 часть альбома. Зная, что таких частей было взято 7, найдем произведение 6 и 7 :

6 × 7 = 42.

Мы выяснили, что Вениамин нарисовал 42 рисунка.

Для решения задачи таким способом, нужно выполнить два действия, а это не всегда удобно. Так же, такой способ может вызывать трудности при вычислениях, если компоненты не делятся нацело.

В таких ситуациях, логичнее будет использование второго способа.

Способ 2.

По условию нам известно число и часть этого числа, выраженная обыкновенной дробью. Нужно найти числовое значение соответствующее данной дроби. Задания такого вида имеют собственное название «Нахождение дроби от числа» и правило, используя, которое можно с легкостью вычислить любое числовое значение соответствующее дробному выражению:

5wetwry

Применим изученное правило на практике. Чтобы найти 7/8 от 48 нам нужно, просто умножить 7/8 на 48:

d2wetwry

Мальчик нарисовал 42 рисунка.

Запомните оба способа, и применяйте их для решения различных заданий.

Деление обыкновенных дробей

Разберем пример.

Строительная бригада выполняла ремонт городской дороги.На ремонт определенного участка дороги, рабочие потратили 7/9 тонны асфальта. Определите, сколько километров дороги отремонтировали рабочие, если на ремонт одного километра уходит 3/7 тонны строительного материала.

6hsfhd

По условию нам известно, что всего было использовано 7/9 тонны материала, при этом мы знаем, что на один километр требуется 3/7 тонны. Чтобы ответить на главный вопрос задачи нужно количество использованного асфальтаразделить на количество строительного материала, необходимое для починки одного километра. В результате мы получим число отремонтированных километров. В данном случае, в качестве делимого и делителя выступают обыкновенные дроби. И перед нами возникает проблема «Как же выполнить деление обыкновенных дробейс разными знаменателями?».

В арифметике на этот случай имеется определенное правило, которое расскажет, как выполнить деление обыкновенных дробей.

Выполним деление имеющихся чисел с применением рассмотренного правила

7wetwry

Выполним деление, имеющихся дробных чисел с применением рассмотренного правила. Разделим 7/9 на 3/7. Делимое 7/9 оставляем без изменений, а делитель 3/7 переворачиваем, и получаем 7/3. Находим произведение данных выражений:

d3wetwry

Все очень просто. Главное помните, что при выполнении деления дробей с разными знаменателями делитель переворачиваем и находим произведение перевернутого делителя и делимого!

Нахождение числа по заданному значению его дроби

В школе проходила неделя экологии. Учащиеся шестого класса были приглашены лесничеством на высадку деревьев. До обеда, ребята высадили 6/11 всех саженцев. Сколько растений осталось высадить школьникам, если до обеда дети высадили 54 дерева?

8fjdgjdjg0

Чтобы ответить на главный вопрос задачи, нужно определить число по заданному значению его дроби. В арифметике существует правило, используя, которое возможно с легкостью найти любое число по значению его дроби:

9wetwry

Теперь мы знаем, что для вычисления общего количества саженцев, нужно известное значение дроби разделить на саму дробь. Зная, что число – 54, а дробь – 6/11, имеем:

d5wetwry

В результате получили неправильную дробь. Выделим из полученного произведения целую часть.Для этого разделим числитель на знаменатель:

594 : 6 = 99.

Выходит, что за целый день школьникам нужно высадить 99 растений.

В математике часто встречаются задания, в которых требуется вычислить значение «многоэтажных» дробей. Как называются такие дробные выражения, каким способом их вычислять рассмотрим далее.

Дробные выражения

Когда ученик видит в учебнике задание в виде выражения: 

d6wetwry

то желание заниматься математикой сразу пропадает. Сегодня мы узнаем,как решать дробные выражения и докажем, что даже такие выражения совершенно не сложные, и выполнить вычисления сможет каждый желающий после изучения нашего урока!

Никого не пугает запись обыкновенной дроби – 3/7, 4/15, 8/14.

Каждый понимает, что дробная черта заменяет привычный знак деления – : .

Например:

10/21 = 10 : 21 или 7/18 = 7 : 18.

Выходит, что частное чисел или выражений, в случае замены знака деления чертой дроби, называют дробным выражением.

d7f10wetwry

Вот так, проведя два простых вычисления, мы выполнили задание, вызывающее недоумение у школьников. Математика интересная и простая наука. Если приложите немного внимания и терпения, то результат не заставит себя ждать!

Знаешь ли ты?

1) Ученые – селекционеры вывелиновый вид яблонь. Удивительным является то, что корни растения уходит в землю более чем на 49/50километра (около 980 метров), а общая длина корневища достигает 4000 метров.

2) За всю жизнь человек выпивает примерно 75 тонн воды. Подсолнечнику, например, достаточно 1/4 тонны(250 литров), чтобы вырасти и принести семена.

3) Италия в который раз удивила весь мир. Около вулкана Этна растет каштан, диаметр ствола которого, составляет,3/50 километра (около 60 метров),это чуть ли не половина футбольного стадиона.

4) Пальма Рафия Тедигера встречается только в Бразилии. Она интересна тем, что её листья имеют гигантские размеры. Черенок листка достигает1/200 километра (5 метров), длина листика – более1/50 километра (более 20 метров), ширина – более 5 метров (1/200 километра).

5) По сообщениям ихтиологов(ученых, занимающихся изучением рыб), самую большую длину в мире,имеют ремень-рыбы. Во взрослом возрасте они достигают длины более 1/100километра(более 10 метров), а длина молодых особей находится в пределах 0,003 километра или 3 метров.

Формулировка задачи: Найдите значение выражения (деление дробей).

Задача входит в состав ЕГЭ по математике базового уровня для 11 класса под номером 1 (Действия с дробями).

Рассмотрим, как решаются подобные задачи на примерах.

Пример задачи 1:

Найдите значение выражения:

Решение:

Вычислим значение выражения. Для этого преобразуем смешанные числа в неправильные дроби, перевернем вторую дробь и изменим знак деления на умножение, сократим дроби и выполним умножение:

Ответ: 10

Пример задачи 2:

Найдите значение выражения 0,86: 43/20.

Решение:

Вычислим значение выражения. Для этого переведем обе дроби в обыкновенные или десятичные, перевернем вторую дробь и изменим знак деления на умножение, сократим дроби и выполним умножение. При необходимости переведем результат в десятичную дробь:

Ответ: 0,4

С дробями можно выполнять все действия, в том числе и деление. Данная статья показывает деление обыкновенных дробей. Будут даны определения, рассмотрены примеры. Подробно остановимся на делении дробей на натуральные числа и наоборот. Будет рассмотрено деление обыкновенной дроби на смешанное число.

Деление обыкновенных дробей

Деления является обратным умножению. При делении неизвестный множитель  находится при известном произведении и другого множителя, где и сохраняется его данный смысл с обыкновенными дробями.

Если необходимо произвести деление обыкновенной дроби ab на cd, тогда для определения такого числа нужно произвести умножение на делитель cd, это даст в итоге делимое ab. Получим число и запишем его ab·dc, где dc является обратным cd числу. Равенства можно записать при помощи свойств умножения, а именно: ab·dc·cd=ab·dc·cd=ab·1=ab, где выражение ab·dc является частным от деления ab на cd.

Отсюда получим и сформулируем правило деления обыкновенных дробей:

Определение 1

Чтобы разделить обыкновенную дробь ab на cd, необходимо делимое умножить на число, обратное делителю.

Запишем правило в виде выражения: ab:cd=ab·dc

Правила деления сводятся к умножению. Чтобы придерживаться его, нужно хорошо разбираться в выполнении умножения обыкновенных дробей.

Перейдем к рассмотрению деления обыкновенных дробей.

Пример 1

Выполнить деление 97 на 53. Результат записать в виде дроби.

Решение

Число 53 – это обратная дробь 35. Необходимо использовать правило деления обыкновенных дробей. Это выражение запишем так: 97:53=97·35=9·37·5=2735.

Ответ: 97:53=2735.

При сокращении дробей следует выделять целую часть, если числитель больше знаменателя.

Пример 2

Разделить 815:2465. Ответ записать в виде дроби.

Решение

Для решения нужно перейти от деления к умножению. Запишем это в такой форме: 815:2465=2·2·2·5·133·5·2·2·2·3=133·3=139 

Необходимо произвести сокращение, а это выполняется следующим образом: 8·6515·24=2·2·2·5·133·5·2·2·2·3=133·3=139

Выделяем целую часть и получаем 139=149.

Ответ: 815:2465=149.

Деление необыкновенной дроби на натуральное число

Используем правило деления дроби на натуральное число: чтобы разделить ab на натуральное число n, необходимо умножить только знаменатель на n. Отсюда получим выражение: ab:n=ab·n.

Правило деления является следствием правила умножения. Поэтому представление натурального числа в виде дроби даст равенство такого типа: ab:n=ab:n1=ab·1n=ab·n.

Рассмотрим данное деление дроби на число.

Пример 3

Произвести деление дроби 1645 на число 12.

Решение

Применим правило деления дроби на число. Получим выражение вида 1645:12=1645·12.

Произведем сокращение дроби. Получим 1645·12=2·2·2·2(3·3·5)·(2·2·3)=2·23·3·3·5=4135.

Ответ: 1645:12=4135.

Деление натурального числа на обыкновенную дробь

Правило деления аналогично правилу деления натурального числа на обыкновенную дробь: чтобы разделить натуральное число n на обыкновенную ab, необходимо произвести умножение числа n на обратное дроби ab.

Исходя из правила, имеем  n:ab=n·ba, а благодаря правилу умножения натурального числа на обыкновенную дробь, получим наше выражение в виде n:ab=n·ba. Необходимо рассмотреть данное деление на примере.

Пример 4

Делить 25 на 1528.

Решение

Нам необходимо переходить от деления к умножению. Запишем в виде выражения 25:1528=25·2815=25·2815. Сократим дробь и получим результат в виде дроби 4623.

Ответ: 25:1528=4623.

Деление обыкновенной дроби на смешанное число

При делении обыкновенной дроби на смешанное число легко можно свети к делению обыкновенных дробей.  Нужно совершить перевод смешанного числа в неправильную дробь.

Пример 5

Разделить дробь 3516 на 318.

Решение

Так как 318 – смешанное число, представим его в виде неправильной дроби. Тогда получим 318=3·8+18=258.  Теперь произведем деление дробей. Получим 3516:318=3516:258=3516·825=35·816·25=5·7·2·2·22·2·2·2·(5·5)=710

Ответ: 3516:318=710.

Деление смешанного числа производится  таким же образом, как и обыкновенных.

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

В этом уроке мы познакомимся с понятием дробных выражений и с тем, как их считать. Узнаем интересные способы работы с дробями, в числителе или знаменателе которых стоят дроби.

Для начала определимся с определением дробного выражения.

Дробным выражением называется частное двух выражений или чисел, знак деления в котором обозначается чертой.

Пример:

$$mathbf{frac{1}{2}}$$

Мы привыкли называть такое выражение обыкновенной дробью. Она ничем не противоречит определению дробного выражения. Поэтому если вас спросят: “Является ли обыкновенная дробь дробным выражением?”, то можно смело ответить: “Да, является!”

$$mathbf{frac{1+2}{3+4}}$$

$$mathbf{frac{5cdot(1+2)}{(3+5)div2}}$$

Мы не накладываем никаких ограничений на то, что из себя представляют выражения; нужно только то, чтобы это было деление, записанное как дробь.

Также никто не запрещает записать в одну или даже в обе части выражения, содержащие дроби.

Примеры:

$$mathbf{frac{1}{1+frac{1}{8}}}$$

$$mathbf{frac{3+12frac{1}{2}}{7frac{1}{3}-2frac{3}{4}}}$$

$$mathbf{frac{(frac{1}{2}+frac{1}{4})cdotfrac{2}{3}}{frac{2}{7}cdot(frac{3}{8}-frac{1}{4})}}$$

Можем пойти дальше и записать так называемую многоэтажную дробь. Это дробь, в числителе или в знаменателе (а иногда и в числителе и в знаменателе) которой стоят дробные выражения.

Примеры:

$$mathbf{frac{frac{1}{2}}{3}}$$

$$mathbf{frac{1}{frac{12}{19}}}$$

$$mathbf{frac{frac{12}{89}}{frac{74}{99}}}$$

Помимо определения дробного выражения необходимо знать определения числителя и знаменателя дробного выражения.

Эта информация доступна зарегистрированным пользователям

Если мы считаем дробное выражение делением, то числителем будет являться делимое, а знаменателем делитель.

Например, существует следующее дробное выражение:

$$mathbf{frac{3+10cdot2}{2+frac{1}{2}}}$$

В данном случае (mathbf{3+10cdot2}) будет являться числителем, а (mathbf{2+frac{1}{2}})- знаменателем.

Также можно преобразовывать обычные выражения в дробные.

Это можно делать при условии, что выражение представляет из себя частное двух выражений или чисел, но пока что записанное через обычный знак деления.

Эта информация доступна зарегистрированным пользователям

Примеры преобразования обычного выражения в дробное:

(mathbf{(3+4)div(200+123)=frac{3+4}{200+123}})

(mathbf{(1247+523cdot(54+78))div((345+67)cdot56cdot87cdot(63+85))=})

(mathbf{=frac{1247+523cdot(54+78)}{(345+67)cdot56cdot87cdot(63+85)}})

(mathbf{(4+frac{1}{2})div(frac{3}{5}cdot8+2)=frac{4+frac{1}{2}}{frac{3}{5}cdot8+2}})

(mathbf{(452+789cdot(frac{7}{9}+frac{1}{2}))div(frac{4}{741}+582cdot741)=})

(mathbf{=frac{452+789cdot(frac{7}{9}+frac{1}{2})}{frac{4}{741}+582cdot741}})

Сформулируем правило: для того, чтобы преобразовать выражение, представляющее из себя частное двух выражений или чисел, необходимо делимое поместить в числитель дробного выражения, а делитель- в знаменатель.

Теперь вы видите, насколько большой класс формул покрывается понятием дробного выражения.

Давайте пройдем небольшой тест и перейдем к изучению того, как вычислять значения дробных выражений.

Эта информация доступна зарегистрированным пользователям

Начнем с самого простого способа вычисления значений дробных выражений.

Он заключается в том, чтобы отдельно посчитать значения числителя и знаменателя и получить дробное выражение, в знаменателе и числителе которого стоят числа.

Далее надо смотреть, что получилось:

  • может получиться правильная дробь, тогда это будет готовым ответом
  • может получиться дробь неправильная, тогда необходимо выделить целую часть
  • в числителе и знаменателе дробного выражения могут получиться дробные числа; в таком случае нужно поделить числитель на знаменатель, это и будет ответом

Эта информация доступна зарегистрированным пользователям

Пример 1

Вычислим значение выражения (mathbf{frac{1+2cdot4}{5-2}})

Решение:

Для начала вычислим значения числителя и знаменателя:

(mathbf{frac{1+2cdot4}{5-2}=frac{1+8}{3}=frac{9}{3}})

В данном примере числитель делится на знаменатель, поэтому из дроби получится натуральное число.

(mathbf{frac{9}{3}=3})

Пример 2

Вычислим значение выражения (mathbf{frac{7+2cdot3cdot2}{2cdot9}})

Решение:

Сначала вычислим числитель и знаменатель:

(mathbf{frac{7+2cdot3cdot2}{2cdot9}=frac{7+12}{18}=frac{19}{18}})

В данном случае получилась неправильная дробь, выделим целую ее часть, чтобы получить в ответе смешанное число:

(mathbf{frac{19}{18}=frac{19}{18}=1frac{1}{18}})

Пока что были рассмотрены случаи, в которых выражения в числителе и знаменателе представляли из себя арифметические действия над натуральными числами. Но вас нисколько не должны смущать случаи, в которых выражения содержат в себе дроби как обыкновенные, так и десятичные.

Пример: 

(mathbf{frac{3+frac{3}{4}}{1.2+0.3}})

Решение:

Наверное, вы уже догадываетесь, что мы сделаем дальше. Правильно! Вычислим числитель и знаменатель:

(mathbf{frac{3+frac{3}{4}}{1.2+0.3}=frac{frac{3cdot4+3}{4}}{1.5}=})

(mathbf{=frac{frac{12+3}{4}}{1.5}=frac{frac{15}{4}}{1.5}})

В данном случае мы получили неправильную дробь в числителе и десятичную дробь в знаменателе.

Чтобы получить окончательный результат разделим одно на другое:

(mathbf{frac{frac{15}{4}}{1.5}=frac{15}{4}div1.5=frac{15}{4}divfrac{15}{10}=})

(mathbf{=frac{15}{4}cdotfrac{10}{15}=frac{15cdot10}{4cdot15}=frac{10}{4}=frac{5}{2}=2frac{1}{2}})

Прежде чем перейти к дополнительным приемам работы с дробными выражениями, решим небольшой тест для закрепления навыка вычисления дробных выражений.

Эта информация доступна зарегистрированным пользователям

Пока что во всех предыдущих случаях мы находили значения дробных выражений «в лоб», по достаточно простому алгоритму.

Но, как это часто бывает в математике, в некоторых случаях можно упростить себе подсчеты, вовремя заметив определенные вещи.

Вы уже наверняка хорошо освоили сокращение дробей.

Напомним, в чем его суть: если числитель представляет из себя произведение, и знаменатель также является произведением, и в этих произведениях есть одинаковый множитель, то мы можем сократить дробь на этот множитель.

Как же это относится к дробным выражениям?

Дело в том, что в некоторых случаях числитель и знаменатель могут быть произведениями или же могут стать произведениями в процессе подсчетов.

Тогда почему бы не сокращать их по возможности?!

Эта информация доступна зарегистрированным пользователям

Пример:

(mathbf{frac{7cdot(123+4)}{3cdot(120+7)}})

Начнем считать выражение и посмотрим, что получается.

(mathbf{frac{7cdot(123+4)}{3cdot(120+7)}=frac{7cdot127}{3cdot127}})

Числитель и знаменатель дробного выражения после первых преобразований превратились в произведения.

Также можно заметить, что в этих произведениях есть общий множитель: 127

Тогда мы можем поделить числитель и знаменатель дробного выражения на это число, тем самым значительно упростив выражение.

(mathbf{frac{7cdot127}{3cdot127}=frac{7}{3}=2frac{1}{3}})

Это и будет значением этого выражения.

Также мы можем быть еще более хитрыми и внимательными.

Найдем значение выражения (mathbf{frac{2cdot(478569-145236)}{(478569-145236)cdot3}})

Конечно же, можно начать вычислять сначала числитель, потом знаменатель. Для этого мы будем вычислять разность шестизначных чисел.

Но можно сделать проще: заметим, что числитель и знаменатель являются произведениями.

Числитель является произведением 2-х и выражения (478569-145236)

Знаменатель же является произведением выражения (478569-145236) и 3-х.

Выражение (478569-145236) является множителем и можно утверждать, что это один и тот же множитель в числителе и в знаменателе.

Значит, мы можем уверенно сокращать дробное выражение на это выражение.

(mathbf{frac{2cdot(478569-145236)}{(478569-145236)cdot3}=frac{2}{3}})

В данном случае мы сразу получили правильную дробь, это и будет являться значением выражения.

Отдельно стоит упомянуть работу с многоэтажными дробями.

Мы всегда можем идти по алгоритму с последовательным вычислением числителя и знаменателя – это гарантированно дает результат.

Но также можно запомнить два правила, которые существенно экономят время.

Первое правило говорит о том, что, если в числителе дробного выражения находится дробь (или же дробное выражение), мы можем домножить дробное выражение на знаменатель дроби (или дробного выражения), стоящей в числителе, тем самым уменьшив «этажность» дробного выражения.

Эта информация доступна зарегистрированным пользователям

Парочка примеров:

(mathbf{frac{frac{2}{3}}{4}=frac{frac{2}{3}cdot3}{4cdot3}=frac{2}{12}=frac{1}{6}})

(mathbf{frac{frac{3}{7+13}}{5}=frac{frac{3}{7+13}cdot(7+13)}{5cdot(7+13)}=})

(mathbf{=frac{3}{5cdot20}=frac{3}{100}=0.03})

Второе правило рассматривает случай, когда дробь (или дробное выражение) находится в знаменателе дробного выражения.

В таком случае уменьшить «этажность» дробного выражения поможет домножение всего дробного выражения на знаменатель дроби (или дробного выражения), стоящей в знаменателе.

Эта информация доступна зарегистрированным пользователям

И парочка примеров на этот случай:

(mathbf{frac{3}{frac{2}{7}}=frac{3cdot7}{frac{2}{7}cdot7}=frac{21}{2}=10frac{1}{2}})

(mathbf{frac{11}{frac{3}{1+7}}=frac{11cdot(1+7)}{frac{3}{1+7}cdot(1+7)}=})

(mathbf{=frac{11cdot(1+7)}{3}=frac{11cdot8}{3}=frac{88}{3}=29frac{1}{3}})

И в завершение еще дам такой пример:

(mathbf{frac{frac{3}{4+1}}{frac{7-2}{4}}=frac{frac{3}{5}}{frac{5}{4}}=})

(mathbf{=frac{frac{3}{5}cdot5}{frac{5}{4}cdot5}=frac{3}{frac{25}{4}}=frac{3cdot4}{frac{25}{4}cdot4}=frac{12}{25}})

Эта информация доступна зарегистрированным пользователям

Десять интересных математических фактов:

1. Известные всем знаки сложения и вычитания впервые были использованы только около 500 лет назад

2. 2 и 5– единственные простые числа, которые оканчиваются на 2 или 5

3. Несмотря на то, что сохранилось много трудов древнегреческого ученого Евклида, о его биографии почти ничего не известно

4. В римской системе счисления не существует нуля

5. Знак равенства «=» появился только в XVI веке

6. Слово «миг» обозначает не только короткое мгновение, но и вполне конкретный временной промежуток: 0,01 секунды

7. У древних египтян отсутствовала таблицы умножения и прочие математические правила

8. В свое время заниматься математикой в высоких кругах было настолько популярно, что даже Наполеон Бонапарт оставил после себя научные труды

9. Самые древние математические записи были найдены написанными на костях

10. Ученый Муавр с помощью математики смог рассчитать дату своей смерти

Добавить комментарий