Окружность, вписанная в треугольник. Основное свойство биссектрисы угла
Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла
Определение 1 . Биссектрисой угла называют луч, делящий угол на две равные части.
Теорема 1 (Основное свойство биссектрисы угла) . Каждая точка биссектрисы угла находится на одном и том же расстоянии от сторон угла (рис.1).
Доказательство . Рассмотрим произвольную точку D , лежащую на биссектрисе угла BAC , и опустим из точки D перпендикуляры DE и DF на стороны угла (рис.1). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны острые углы DAF и DAE , а гипотенуза AD – общая. Следовательно,
что и требовалось доказать.
Теорема 2 (обратная теорема к теореме 1) . Если некоторая точка находится на одном и том же расстоянии от сторон угла, то она лежит на биссектрисе угла (рис.2).
Доказательство . Рассмотрим произвольную точку D , лежащую внутри угла BAC и находящуюся на одном и том же расстоянии от сторон угла. Опустим из точки D перпендикуляры DE и DF на стороны угла (рис.2). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE , а гипотенуза AD – общая. Следовательно,
что и требовалось доказать.
Определение 2 . Окружность называют окружностью, вписанной в угол , если она касается касается сторон этого угла.
Теорема 3 . Если окружность вписана в угол, то расстояния от вершины угла до точек касания окружности со сторонами угла равны.
Доказательство . Пусть точка D – центр окружности, вписанной в угол BAC , а точки E и F – точки касания окружности со сторонами угла (рис.3).
Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE (как радиусы окружности радиусы окружности ), а гипотенуза AD – общая. Следовательно
что и требовалось доказать.
Замечание . Теорему 3 можно сформулировать и по-другому: отрезки касательных касательных , проведенных к окружности из одной точки, равны.
Определение 3 . Биссектрисой треугольника называют отрезок, являющийся частью биссектрисы угла треугольника, и соединяющий вершину треугольника с точкой на противоположной стороне.
Теорема 4 . В любом треугольнике все три биссектрисы пересекаются в одной точке.
Доказательство . Рассмотрим две биссектрисы, проведённые из вершин A и C треугольника ABC , и обозначим точку их пересечения буквой O (рис. 4).
Опустим из точки O перпендикуляры OD , OE и OF на стороны треугольника. Поскольку точка O лежит на биссектрисе угла BAC , то в силу теоремы 1 справедливо равенство:
Поскольку точка O лежит на биссектрисе угла ACB , то в силу теоремы 1 справедливо равенство:
Следовательно, справедливо равенство:
откуда с помощью теоремы 2 заключаем, что точка O лежит на биссектрисе угла ABC . Таким образом, все три биссектрисы треугольника проходят через одну и ту же точку, что и требовалось доказать
Определение 4 . Окружностью, вписанной в треугольник , называют окружность, которая касается всех сторон треугольника (рис.5). В этом случае треугольник называют треугольником, описанным около окружности .
Следствие . В любой треугольник можно вписать окружность, причем только одну. Центром вписанной в треугольник окружности является точка, в которой пересекаются все биссектрисы треугольника.
Формулы для радиуса окружности, вписанной в треугольник
Формулы, позволяющие найти радиус вписанной в треугольник окружности , удобно представить в виде следующей таблицы.
a, b, c – стороны треугольника,
S – площадь,
r – радиус вписанной окружности,
p – полупериметр
.
a – сторона равностороннего треугольника,
r – радиус вписанной окружности
Фигура | Рисунок | Формула | Обозначения |
Произвольный треугольник | |||
Равнобедренный треугольник | |||
Равносторонний треугольник | |||
Прямоугольный треугольник |
где
a, b, c – стороны треугольника,
S –площадь,
r – радиус вписанной окружности,
p – полупериметр
.
где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
.
где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности
Произвольный треугольник |
Равнобедренный треугольник |
Равносторонний треугольник |
Прямоугольный треугольник |
Произвольный треугольник |
где
a, b, c – стороны треугольника,
S –площадь,
r – радиус вписанной окружности,
p – полупериметр
.
где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
.
Равнобедренный треугольник
Равносторонний треугольник
где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности
Прямоугольный треугольник
Вывод формул для радиуса окружности, вписанной в треугольник
Теорема 5 . Для произвольного треугольника справедливо равенство
где a, b, c – стороны треугольника, r – радиус вписанной окружности, – полупериметр (рис. 6).
с помощью формулы Герона получаем:
что и требовалось.
Теорема 6 . Для равнобедренного треугольника справедливо равенство
где a – боковая сторона равнобедренного треугольника, b – основание, r – радиус вписанной окружности (рис. 7).
то, в случае равнобедренного треугольника, когда
что и требовалось.
Теорема 7 . Для равностороннего треугольника справедливо равенство
где a – сторона равностороннего треугольника, r – радиус вписанной окружности (рис. 8).
то, в случае равностороннего треугольника, когда
что и требовалось.
Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в равносторонний треугольник, непосредственно, т.е. без использования общих формул для радиусов окружностей, вписанных в произвольный треугольник или в равнобедренный треугольник.
Теорема 8 . Для прямоугольного треугольника справедливо равенство
Доказательство . Рассмотрим рисунок 9.
Поскольку четырёхугольник CDOF является прямоугольником прямоугольником , у которого соседние стороны DO и OF равны, то этот прямоугольник – квадрат квадрат . Следовательно,
В силу теоремы 3 справедливы равенства
Следовательно, принимая также во внимание теорему Пифагора, получаем
что и требовалось.
Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в прямоугольный треугольник, с помощью общей формулы для радиуса окружности, вписанной в произвольный треугольник.
Треугольник вписанный в окружность
Определение
Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.
На рисунке 1 изображена окружность, описанная около
треугольника и окружность, вписанная в треугольник.
ВD = FC = AE — диаметры описанной около треугольника окружности.
O — центр вписанной в треугольник окружности.
Формулы
Радиус вписанной окружности в треугольник
r — радиус вписанной окружности.
- Радиус вписанной окружности в треугольник,
если известна площадь и все стороны:
Радиус вписанной окружности в треугольник,
если известны площадь и периметр:
Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:
Радиус описанной окружности около треугольника
R — радиус описанной окружности.
- Радиус описанной окружности около треугольника,
если известна одна из сторон и синус противолежащего стороне угла:
Радиус описанной окружности около треугольника,
если известны все стороны и площадь:
Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:
Площадь треугольника
S — площадь треугольника.
- Площадь треугольника вписанного в окружность,
если известен полупериметр и радиус вписанной окружности:
Площадь треугольника вписанного в окружность,
если известен полупериметр:
Площадь треугольника вписанного в окружность,
если известен высота и основание:
Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:
Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:
[ S = frac<1><2>ab cdot sin angle C ]
Периметр треугольника
P — периметр треугольника.
- Периметр треугольника вписанного в окружность,
если известны все стороны:
Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:
Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:
Сторона треугольника
a — сторона треугольника.
- Сторона треугольника вписанного в окружность,
если известны две стороны и косинус угла между ними:
Сторона треугольника вписанного в
окружность, если известна сторона и два угла:
Средняя линия треугольника
l — средняя линия треугольника.
- Средняя линия треугольника вписанного
в окружность, если известно основание:
Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:
Высота треугольника
h — высота треугольника.
- Высота треугольника вписанного в окружность,
если известна площадь и основание:
Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:
[ h = b cdot sin alpha ]
Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:
Свойства
- Центр вписанной в треугольник окружности
находится на пересечении биссектрис. - В треугольник, вписанный в окружность,
можно вписать окружность, причем только одну. - Для треугольника, вписанного в окружность,
справедлива Теорема Синусов, Теорема Косинусов
и Теорема Пифагора. - Центр описанной около треугольника окружности
находится на пересечении серединных перпендикуляров. - Все вершины треугольника, вписанного
в окружность, лежат на окружности. - Сумма всех углов треугольника — 180 градусов.
- Площадь треугольника вокруг которого описана окружность, и
треугольника, в который вписана окружность, можно найти по
формуле Герона.
Доказательство
Около любого треугольника, можно
описать окружность притом только одну.
окружность и треугольник,
которые изображены на рисунке 2.
окружность описана
около треугольника.
- Проведем серединные
перпендикуляры — HO, FO, EO. - O — точка пересечения серединных
перпендикуляров равноудалена от
всех вершин треугольника. - Центр окружности — точка пересечения
серединных перпендикуляров — около
треугольника описана окружность — O,
от центра окружности к вершинам можно
провести равные отрезки — радиусы — OB, OA, OC.
окружность описана около треугольника,
что и требовалось доказать.
Подводя итог, можно сказать, что треугольник,
вписанный в окружность — это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.
Окружность, вписанная в треугольник. Теоремы и их рассмотрение
Еще в Древнем Египте появилась наука, с помощью которой можно было измерять объемы, площади и другие величины. Толчком к этому послужило строительство пирамид. Оно предполагало значительное число сложных расчетов. И кроме строительства, было важно правильно измерить землю. Отсюда и появилась наука “геометрия” от греческих слов “геос” – земля и “метрио” – измеряю.
Исследованию геометрических форм способствовало наблюдение астрономических явлений. И уже в 17-м веке до н. э. были найдены начальные способы расчета площади круга, объема шара и главнейшее открытие – теорема Пифагора.
Вам будет интересно: Казахская академия спорта и туризма. Факультеты, структура вуза
Формулировка теоремы об окружности, вписанной в треугольник выглядит следующим способом:
В треугольник можно вписать только одну окружность.
При таком расположении окружность – вписанная, а треугольник – описанный около окружности.
Формулировка теоремы о центре окружности, вписанной в треугольник, выглядит следующим образом:
Центральная точка окружности, вписанной в треугольник, есть точка пересечения биссектрис этого треугольника.
Окружность, вписанная в равнобедренный треугольник
Окружность считается вписанной в треугольник, если она хотя бы одной точкой касается всех его сторон.
На фото ниже показана окружность, находящаяся внутри равнобедренного треугольника. Условие теоремы об окружности, вписанной в треугольник, соблюдено – она касается всех сторон треугольника AB, ВС И СА в точках R, S, Q соответственно.
Одним из свойств равнобедренного треугольника является то, что вписанная окружность точкой касания делит основание пополам (BS = SC), а радиус вписанной окружности составляет треть высоты данного треугольника(SP=AS/3).
Свойства теоремы об окружности, вписанной в треугольник:
- Отрезки, выходящие из одной вершины треугольника к точкам касания с окружностью, равны. На рисунке AR = AQ, BR = BS, CS = CQ.
- Радиус окружности (вписанной) – это площадь, деленная на полупериметр треугольника. Как пример, нужно начертить равнобедренный треугольник с теми же буквенными обозначениями, что на картинке, следующих размеров: основание ВС = 3 см, высота AS = 2 см, стороны АВ=ВС, соответственно, получаются по 2,5 см каждая. Проведем из каждого угла биссектрису и место их пересечения обозначим как Р. Впишем окружность с радиусом PS, длину которого нужно найти. Узнать площадь треугольника можно, умножив 1/2 основания на высоту: S = 1/2 * DC * AS = 1/2 * 3 * 2 = 3 см2. Полупериметр треугольника равен 1/2 суммы всех сторон: Р = (АВ + ВС + СА) / 2 = (2,5 + 3 + 2,5) / 2 = 4 см; PS = S/P = 3/4 = 0,75 см2, что полностью соответствует действительности, если измерить линейкой. Соответственно, верно свойство теоремы об окружности, вписанной в треугольник.
Окружность, вписанная в прямоугольный треугольник
Для треугольника с прямым углом действуют свойства теоремы об вписанной окружности в треугольник. И, кроме того, добавляется возможность решать задачи с постулатами теоремы Пифагора.
Радиус вписанной окружности в прямоугольный треугольник можно определить следующим образом: сложить длины катетов, вычесть значение гипотенузы и получившееся значение разделить на 2.
Есть хорошая формула, которая поможет высчитать площадь треугольника – периметр умножить на радиус вписанной в этот треугольник окружности.
Формулировка теоремы о вписанной окружности
В планиметрии важны теоремы о вписанных и описанных фигурах. Одна из них звучит так:
Центр окружности, вписанной в треугольник, является точкой пересечения биссектрис, проведенных из его углов.
На представленном рисунке показано доказательство данной теоремы. Показано равенство углов, и, соответственно, равенство прилегающих треугольников.
Теорема о центре окружности, вписанной в треугольник
Радиусы окружности, вписанной в треугольник, проведенные в точки касания перпендикулярны сторонам треугольника.
Задание «сформулируйте теорему об окружности вписанной в треугольник» не должно застать врасплох, потому что это одни из фундаментальных и простейших знаний в геометрии, которыми необходимо владеть в полной мере для решения многих практических задач в реальной жизни.
[spoiler title=”источники:”]
http://colibrus.ru/treugolnik-vpisannyy-v-okruzhnost/
http://1ku.ru/obrazovanie/16764-okruzhnost-vpisannaya-v-treugolnik-teoremy-i-ix-rassmotrenie/
[/spoiler]
Содержание
- Определение
- Формулы
- Радиус вписанной окружности в треугольник
- Радиус описанной окружности около треугольника
- Площадь треугольника
- Периметр треугольника
- Сторона треугольника
- Средняя линия треугольника
- Высота треугольника
- Свойства
- Доказательство
Определение
Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.
На рисунке 1 изображена окружность, описанная около
треугольника и окружность, вписанная в треугольник.
ВD = FC = AE — не диаметры описанной около треугольника окружности.
O — центр вписанной в треугольник окружности.
Формулы
Радиус вписанной окружности в треугольник
r — радиус вписанной окружности.
- Радиус вписанной окружности в треугольник,
если известна площадь и все стороны:
[ r = frac{S}{(a+b+c)/2} ]
- Радиус вписанной окружности в треугольник,
если известны площадь и периметр:
[ r = frac{S}{frac{1}{2}P} ]
- Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:
[ r = sqrt{frac{(p-a)(p-b)(p-c)}{p}} ]
Радиус описанной окружности около треугольника
R — радиус описанной окружности.
- Радиус описанной окружности около треугольника,
если известна одна из сторон и синус противолежащего стороне угла:
[ R = frac{AC}{2 sin angle B} ]
- Радиус описанной окружности около треугольника,
если известны все стороны и площадь:
[ R = frac{abc}{4S} ]
- Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:[ R = frac{abc}{4sqrt{p(p-a)(p-b)(p-c)}} ]
Площадь треугольника
S — площадь треугольника.
- Площадь треугольника вписанного в окружность,
если известен полупериметр и радиус вписанной окружности:[ S = pr ]
- Площадь треугольника вписанного в окружность,
если известен полупериметр:[ S = sqrt{p(p-a)(p-b)(p-c)} ]
- Площадь треугольника вписанного в окружность,
если известен высота и основание:[ S = frac{1}2 ah ]
- Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:[ S = frac{a^2}{2cdot (sin(α)⋅sin(β)) : sin(180 — (α + β))} ]
- Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:[ S = frac{1}{2}ab cdot sin angle C ]
Периметр треугольника
P — периметр треугольника.
- Периметр треугольника вписанного в окружность,
если известны все стороны:
[ P = a + b + c ]
- Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:
[ P = frac{2S}{r} ]
- Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:[ P = sqrt{ b2 + с2 — 2 * b * с * cosα} + (b + с) ]
Сторона треугольника
a — сторона треугольника.
- Сторона треугольника вписанного в окружность,
если известны две стороны и косинус угла между ними:[ a = sqrt{b^2+c^2 -2bc cdot cos alpha} ]
- Сторона треугольника вписанного в
окружность, если известна сторона и два угла:
[ a = frac{b · sin alpha }{sin β} ]
Средняя линия треугольника
l — средняя линия треугольника.
- Средняя линия треугольника вписанного
в окружность, если известно основание:
[ l = frac{AB}{2} ]
- Средняя линия треугольника вписанного в окружность,
если известны две стороны, ни одна из них не является
основанием, и косинус угла между ними:
[ l = frac{sqrt{b^2+c^2-2bc cdot cos alpha}}{2} ]
Высота треугольника
h — высота треугольника.
- Высота треугольника вписанного в окружность,
если известна площадь и основание:[ h = frac{2S}{a} ]
- Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:[ h = b cdot sin alpha ]
- Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:[ h = frac{bc}{2R} ]
Свойства
- Центр вписанной в треугольник окружности
находится на пересечении биссектрис. - В треугольник, вписанный в окружность,
можно вписать окружность, причем только одну. - Для треугольника, вписанного в окружность,
справедлива Теорема Синусов, Теорема Косинусов
и Теорема Пифагора. - Центр описанной около треугольника окружности
находится на пересечении серединных перпендикуляров. - Все вершины треугольника, вписанного
в окружность, лежат на окружности. - Сумма всех углов треугольника — 180 градусов.
- Площадь треугольника вокруг которого описана окружность, и
треугольника, в который вписана окружность, можно найти по
формуле Герона.
Доказательство
Около любого треугольника, можно
описать окружность притом только одну.
Дано: окружность и треугольник,
которые изображены на рисунке 2.
Доказать: окружность описана
около треугольника.
Доказательство:
- Проведем серединные
перпендикуляры — HO, FO, EO. - O — точка пересечения серединных
перпендикуляров равноудалена от
всех вершин треугольника. - Центр окружности — точка пересечения
серединных перпендикуляров — около
треугольника описана окружность — O,
от центра окружности к вершинам можно
провести равные отрезки — радиусы — OB, OA, OC.
Следовательно: окружность описана около треугольника,
что и требовалось доказать.
Подводя итог, можно сказать, что треугольник,
вписанный в окружность — это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.
Окружность, вписанная в треугольник
Определение окружности, вписанной в треугольник
Определение 1. Окружностью, вписанной в треугольник называется окружность, которая находится внутри треугольника и касается всех его сторон (Рис.1).
Можно дать и другое определение окружности, вписанной в треугольник.
Определение 2. Окружностью, вписанной в треугольник называется наибольшая окружность, которая может находится внутри треугольника.
При этом треугольник называется треугольником описанным около окружности. Центр вписанной в треугольник окружности явлется точка пересечения биссектрис треугольника. Центр окружности вписанной в треугольник называется инцентром треугольника.
Теорема об окружности, вписанной в треугольник
Теорема 1. В любой треугольник можно вписать окружность.
Доказательство. Пусть задан произвольный треугольник ABC (Рис.2). Обозначим точкой O точку пересечения биссектрис треугольника. Проведем из точки O перпендикуляры OK, OL и OM к сторонам AB, AC, BC, соответственно. Поскольку точка O равноудалена от сторон треугольника ABC, то OK=OL=OM. Тогда окружность с центром O и радиусом OK проходит через три точки K, L, M. Стороны AB, AC, BC треугольника ABC касаются этой окружности в точках K, L, M, поскольку они перпендикулярны к радиусам OK, OL, OM, соответственно. Следовательно, окружность с центром O и радиусом OK является вписанной в треугольник ABC.
Замечание 1. В любой треугольник можно вписать только одну окружность.
Доказательство. Допустим, что в треугольник можно вписать две окружности. Тогда центр каждой из этих окружностей равноудален от сторон треугольника и совпадает с точкой O пересечения биссектрис треугольника. Радиус этих окружностей равен расстоянию от точки O до сторон треугольника. Поэтому эти окружности совпадают.
Смотрите также:
- Радиус вписанной в треугольник окружности онлайн
- Радиус вписанной окружности в равнобедренный треугольник онлайн
- Радиус вписанной окружности в равносторонний треугольник онлайн
- Радиус вписанной окружности в прямоугольный треугольник онлайн
Треугольник (чёрный) с вписанной окружностью (синей), инцентр (I), вневписанными окружностями (оранжевые), эксцентры (JA,JB,JC), внутренние биссектрисы (красные) и внешние биссектрисы (зелёные)
Вписанная в треугольник окружность — окружность внутри треугольника, касающаяся всех его сторон; наибольшая окружность, которая может находиться внутри треугольника. Центр этой окружности является точкой пересечения биссектрис треугольника и называется инцентром треугольника.
Вневписанная окружность треугольника — окружность, лежащая вне треугольника и касающаяся одной стороны треугольника и продолжения двух других сторон[en]. Любой треугольник имеет три различные вневписанные окружности, каждая из которых касается своей стороны треугольника.
Центром вневписанной окружности является пересечение биссектрисы одного внутреннего угла[en] и биссектрис двух других внешних углов[en]. Поскольку биссектриса внутреннего угла перпендикулярна биссектрисе смежного внешнего угла, центр вписанной окружности вместе с тремя центрами вневписанных окружностей образуют ортоцентричную систему[en][1].
Не все многоугольники с числом сторон более трёх имеют вписанную окружность. Те, которые имеют, называются описанными.
Связь с площадью треугольника[править | править код]
Радиусы вписанных и вневписанных окружностей имеют тесную связь с площадью треугольника[2].
Вписанная окружность[править | править код]
Пусть имеет вписанную окружность радиуса r с центром I.
Пусть a — длина BC, b — длина AC, а c — длина AB.
Пусть вписанная окружность касается AB в некоторой точке C′, тогда
является прямым.
Тогда радиус C’I будет высотой треугольника
.
Таким образом,
имеет основание длины c и высоту r, а следовательно, его площадь равна
.
Подобным же образом
имеет площадь
и
имеет площадь .
Поскольку эти три треугольника разбивают , получаем, что
где — площадь , а — его полупериметр.
Чтобы получить альтернативную формулу, рассмотрим . Это прямоугольный треугольник, у которого один из катетов равен r, а другой равен . То же самое верно для . Весь треугольник состоит из 6 таких треугольников, и общая площадь составляет:
Вневписанные окружности[править | править код]
Пусть вневписанная окружность, касающаяся стороны AB, касается продолжения стороны AC в точке G, и пусть радиус этой окружности равен , а её центр — . Тогда является высотой треугольника ,
так что имеет площадь . По тем же причинам
имеет площадь
,
а
имеет площадь
.
Тогда
- .
Таким образом, ввиду симметрии,
- .
По теореме косинусов получаем
Комбинируя это с тождеством , получим
Но , так что
и это формула Герона вычисления площади треугольника по его сторонам.
Комбинируя формулу Герона с , получим
- .
Аналогично, даёт
- .
Из этих формул видно, что вневписанные окружности всегда больше вписанной и наибольшая окружность соответствует самой длинной стороне, а самая наименьшая из вневписанных окружностей соответствует самой маленькой стороне. Дальнейшее комбинирование формул приводит к:[3]
Отношение площади вписанной окружности к площади треугольника меньше или равно , и равенство достигается только на правильных треугольниках[4].
Связанные построения[править | править код]
Окружность девяти точек и точка Фейербаха[править | править код]
- Теорема Эйлера об окружности Эйлера. Середины отрезков высот от ортоцентра до вершин треугольника называются точками Эйлера. Основания медиан, основания высот и точки Эйлера лежат на одной окружности, называемой окружностью девяти точек[5].
- Теорема Фейербаха. Окружность девяти точек касается всех трёх вневписанных окружностей, а также вписанной окружности в четырёх разных точках. Одна из них – точка касания окружности Эйлера и вписанной окружности известна как точка Фейербаха.
Треугольник и точка Жергонна[править | править код]
Треугольник ΔABC с вписанной окружностью (синяя), и её центр (синий, I), треугольник точек касания (красный, ΔTaTbTc) и точка Жергонна (зелёная, Ge)
Треугольник Жергонна (для треугольника ABC) определяется тремя точками касания вписанной окружности на трёх сторонах.
Эти вершины обозначим TA, и т. д..
Точка TA лежит напротив вершины A.
Этот треугольник Жергонна TATBTC известен также как треугольник касаний треугольника ABC.
Три прямые ATA, BTB и CTC пересекаются в одной точке — точке Жергонна и обозначается Ge — X(7). Точка Жергонна лежит внутри открытого ортоцентроидного круга[en] с выколотым центром[6].
Интересно, что точка Жергонна треугольника является точкой пересечения симедиан треугольника Жергонна. Полный набор свойств точки Жергонна можно найти в статье Декова[7].
Трилинейные координаты вершин треугольника касаний задаются формулами
- вершина
- вершина
- вершина
Трилинейные координаты точки Жергонна
- ,
или, эквивалентно, по теореме синусов,
- .
Точка Жергонна является изотомическим сопряжением точки Нагеля.
Треугольник и точка Нагеля[править | править код]
Треугольник Нагеля (см. рис. выше) для треугольника ABC определяется вершинами TA, TB и TC, которые являются точками касания вневписанных окружностей треугольника ABC и точка XA противоположна стороне A, и т. д. Описанная вокруг треугольника TATBTC окружность называется окружностью Мандарта (частный случай эллипса Мандарта). Три прямые ATA, BTB и CTC делят периметр пополам и пересекаются в одной точке Нагеля Na — X(8).
Трилинейные координаты точек касания треугольника вневписанными окружностями задаются формулами
- вершина
- вершина
- вершина
Трилинейные координаты точки Нагеля задаются формулами
- ,
или, эквивалентно, по теореме синусов,
- .
Точка Нагеля является изотомическим сопряжением точки Жергонна.
Трилинейные координаты вписанных треугольников[править | править код]
Трилинейные координаты вершин треугольника, образованного основаниями биссектрис, задаются формулами
- вершина
- вершина
- вершина
Трилинейные координаты треугольника, образованного точками касания сторон внеописанными окружностями, задаются формулами
- вершина
- вершина
- вершина
Уравнения окружностей[править | править код]
Пусть x : y : z — координаты точки в трилинейных координатах, и пусть u = cos2(A/2), v = cos2(B/2), w = cos2(C/2). Четыре окружности, описанные выше, можно задать любым из двух указанных способов[8]:
-
- Вписанная окружность:
-
- A-внешневписанная:
-
- B-внешневписанная:
-
- C-внешневписанная:
Другие свойства вписанной окружности[править | править код]
Некоторые формулы с радиусом вписанной окружности[править | править код]
- Радиус вписанной окружности не больше одной девятой суммы высот треугольника[9].
- Неравенство Эйлера: радиус вписанной окружности не превосходит половины радиуса описанной окружности и равенство имеет место лишь для равностороннего треугольника[10].
- Предположим, что точки касания вписанной окружности делят стороны на отрезки длиной x и y, y и z, z и x. Тогда вписанная окружность имеет радиус[11]
и площадь треугольника равна
- Если высоты, опущенные на стороны a, b и c есть ha, hb и hc, то радиус вписанной окружности r равен одной трети гармонического среднего этих высот, то есть
- Произведение радиуса вписанной окружности r и радиуса описанной окружности R треугольника со сторонами a, b и c равен[1]
- Некоторые связи сторон, радиусов вписанной окружности и описанной окружностей[12]:
- Любая прямая, проходящая через треугольник и делящая площадь треугольника и периметр пополам, проходит через центр вписанной окружности. Таких прямых может существовать три, две или одна[13].
- Перпендикуляры, восставленные к сторонам треугольника в точках касания вневписанных окружностей, пересекаются в одной точке. Эта точка симметрична центру вписанной окружности относительно центра описанной окружности[14].
Формулы для расстояний до центра вписанной или вневписанной окружностей[править | править код]
Теорема Эйлера[править | править код]
Теорема Эйлера утверждает, что в треугольнике[10]:
где R и rin являются радиусами описанной и вписанной окружностей соответственно, а d — расстояние между центрами этих окружностей.
Для вневписанных окружностей уравнение выглядит похоже:
где rex — радиус одной из вневписанных окружностей, а d — расстояние между центрами описанной и вневписанной окружностей[15][16][17]
- Возводя в квадрат и приводя подобные из первой формулы Эйлера выше имеем:
Квадрат расстояния от центра вписанной окружности I до центра описанной O задаётся уравнением[18]
Аналогично для второй формулы:
Другие формулы для расстояний до центра вписанной или вневписанной окружностей[править | править код]
- Расстояние от центра вписанной окружности до центра N окружности девяти точек равно[18]
- Расстояние от вершины до точек касания вписанной окружности на прилегающих сторонах равно полусумме длин прилегающих сторон минус половина противолежащей стороны[19]. Так, для вершины B и прилежащих точек касания TA и TC,
- Если обозначить центр вписанной окружности треугольника ABC буквой I, мы получим[20]
и[21]
- Теорема Мансиона (составная часть Теоремы о трезубце). Середины трёх отрезков, соединяющих центр вписанной окружности с центрами вневписанных окружностей лежат на описанной окружности[10].
- Теорема Харкорта. Пусть треугольник задан своими вершинами A, B и C, противоположные вершинам стороны имеют длины a, b и c, площадь равна K и прямая касается вписанной в треугольник окружности в произвольной точке. Обозначим расстояния от вершин треугольника до прямой через a ‘, b ‘ и c ‘, при этом, если вершина и центр окружности лежат по разные стороны от прямой, расстояние считается отрицательным. Тогда
- .
Другие свойства вневписанных окружностей[править | править код]
- Следующее отношение выполняется для радиуса r вписанной окружности, радиуса R описанной окружности, полупериметра s и радиусов вневписанных окружностей ra, rb, rc[12]:
- Окружность, проходящая через центры вневписанных окружностей, имеет радиус 2R[12].
- Если H — ортоцентр треугольника ABC, то[12]
- Вершины A, B и C треугольника ABC являются основаниями высот треугольника JAJB,JC,
где JAJB,JC — центры вневписанных окружностей[10].
- Перпендикуляры, восставленные к сторонам треугольника в точках касания вневписанных окружностей, пересекаются в одной точке. Эта точка симметрична центру вписанной окружности относительно центра описанной окружности[14].
- Центр Шпикера треугольника является радикальным центром его вневписанных окружностей[22]. Если из центра Шпикера треугольника провести 6 касательных к 3 вневписанным окружностям треугольника, то все их длины будут равны между собой.
Окружность Аполлония[править | править код]
Определение окружности Аполлония[править | править код]
Точка Аполлония и окружность Аполлония
Пусть дан треугольник ABC. Пусть вневписанные окружности треугольника ABC, противоположные вершинам A, B и C, есть соответственно EA, EB, EC (см. рисунок). Тогда окружность Аполлония E (на рис. справа показана зеленым цветом) касается внутренним образом сразу трех вневписанных окружностей треугольника ABC в точках соответственно EA, EB и EC (см. рисунок)[23].
Радиус окружности Аполлония[править | править код]
Радиус окружности Аполлония равен , где r — радиус вписанной окружности и s — полупериметр треугольника[24].
Определение точки Аполлония Ap[править | править код]
- Точка Аполлония Ap в Энциклопедии центров треугольника у Кларка Кимберлинга (Encyclopedia of Triangle Centers (ETC)) именуется как центр треугольника под именем X(181).
- Точка Аполлония Ap или X(181) определяется следующим образом:
Пусть A’ , B’ и C’ есть точки касания окружности Аполлония E с соответствтвующими вневписанными окружностями. Тогда прямые AA’ , BB’ и CC’ пересекаются в одной точке Ap, которую называют точкой Аполлония треугольника ABC.
Изогональное сопряжение[править | править код]
Изогональное сопряжение имеет ровно четыре неподвижные точки (то есть точки, которые сопряжены самим себе): центр вписанной окружности и центры вневписанных окружностей треугольника[25].
Ортоцентр треугольника изогонально сопряжён центру описанной окружности этого треугольника[25].
Обобщение на другие многоугольники[править | править код]
- Некоторые (но не все) четырёхугольники имеют вписанную окружность. Они называются описанными четырёхугольниками. Среди свойств этих четырёхугольников наиболее важным является то, что суммы противоположных сторон равны. Это утверждение называется теоремой Пито.
- Некоторые (но не все) четырёхугольники имеют вневписанную окружность. Они называются внеописанными четырёхугольниками. Среди свойств этих четырёхугольников наиболее важное свойство отмечает теорема Уркхарта. Она утверждает:
- Если противоположные стороны выпуклого четырёхугольника ABCD пересекаются в точках E и F, то
См. также[править | править код]
- Вневписанная окружность
- Внеописанный четырёхугольник
- Вписанная окружность
- Вписанные и описанные фигуры для треугольника
- Вписанное коническое сечение[en]
- Вписанная сфера
- Высота треугольника
- Замечательные точки треугольника
- Инцентр или Центр вписанной окружности
- Окружность
- Описанная окружность
- Описанный четырёхугольник
- Ортоцентр
- Степень точки относительно окружности
- Теорема Мансиона
- Теорема о трезубце
- Теорема Тебо 2 и 3
- Теорема Харкорта
- Точки Аполлония
- Степень точки относительно окружности
- Центр Шпикера
- Центроид
- Центроид треугольника
- Эллипс Мандарта
- Эллипс Штейнера
Примечания[править | править код]
- ↑ 1 2 Roger A. Johnson. Advanced Euclidean Geometry. — Dover, 2007 (оригинал — 1929).. — С. 189, #298(d).
- ↑ H.S.M. Coxeter. Introduction to Geometry. — 2. — Wiley, 1961..
- ↑ Marcus Baker. A collection of formulae for the area of a plane triangle. — January 1885. — Т. part 1, vol. 1(6). — С. 134-138.. См. также часть 2 в томе. 2(1), Сентябрь 1885, 11-18.)
- ↑ D. Minda, S. Phelps. Triangles, ellipses, and cubic polynomials // American Mathematical Monthly. — October 2008. — Вып. 115. — С. 679-689: Theorem 4.1..
- ↑ С. И. Зетель. Новая геометрия треугольника. — Москва: УЧПЕДГИЗ, 1962. — С. 52-53 Глава III.
- ↑ Christopher J. Bradley, Geoff C. Smith. The locations of triangle centers // Forum Geometricorum. — 2006. — Вып. 6. — С. 57-70..
- ↑ Deko Dekov. Computer-generated Mathematics : The Gergonne Point // Journal of Computer-generated Euclidean Geometry. — 2009. — Т. 1. — С. 1–14.. Архивировано 5 ноября 2010 года.
- ↑ William Allen Whitworth. Trilinear Coordinates and Other Methods of Modern Analytical Geometry of Two Dimensions. — 2012. — С. 210-215. — (Forgotten Books).
- ↑ Alfred S. Posamentier, Ingmar Lehmann. The Secrets of Triangles. — Prometheus Books, 2012. — С. 289.
- ↑ 1 2 3 4 А. Д. Куланин, С. Н. Федин. Геометрия треугольника в задачах. — М.: Книжный дом «ЛИБРОКОМ», 2009. — ISBN 978-5-397-00786-3.
- ↑ Thomas Chu. The Pentagon. — Spring, 2005. — С. 45, задача 584..
- ↑ 1 2 3 4 Amy Bell. Hansen’s right triangle theorem, its converse and a generalization // Forum Geometricorum. — 2006. — Вып. 6. — С. 335–342.
- ↑ Dimitrios Kodokostas. Triangle Equalizers // Mathematics Magazine. — 2010. — Вып. 83, April. — С. 141-146..
- ↑ 1 2 Мякишев, 2002, с. 11, п. 5.
- ↑ Roger Nelson. Euler’s triangle inequality via proof without words // Mathematics Magazine. — February 2008. — Вып. 81(1). — С. 58-61.
- ↑ R. A. Johnson. Modern Geometry. — Boston: Houghton Mifflin, 1929. — С. 187.
- ↑ Lev Emelyanov, Tatiana Emelyanova. Euler’s formula and Poncelet’s porism // Forum Geometricorum. — 2001. — Вып. 1. — С. 137–140..
- ↑ 1 2 3 William N. Franzsen. The distance from the incenter to the Euler line // Forum Geometricorum. — 2011. — Т. 11. — С. 231–236..
- ↑ Mathematical Gazette, July 2003, 323—324.
- ↑ Patricia R. Allaire, Junmin Zhou, Haishen Yao. Proving a nineteenth century ellipse identity // Mathematical Gazette. — 2012. — Вып. 96, March. — С. 161-165..
- ↑ Nathan Altshiller-Court. College Geometry. — Dover Publications, 1980. — С. 121,#84.
- ↑ Odenhal, 2010, с. 35—40.
- ↑ Darij Grinberg, Paul Yiu. The Apollonius Circle as a Tucker Circle // Forum Geometricorum. — 2002. — Вып. 2. — С. 175-182.
- ↑ Milorad R. Stevanovi´c. The Apollonius circle and related triangle centers // Forum Geometricorum. — 2003. — Вып. 3. — С. 187-195..
- ↑ 1 2 В. В. Прасолов. Точки Брокара и изогональное сопряжение. — М.: МЦНПО, 2000. — (Библиотека «Математическое просвещение»). — ISBN 5-900916-49-9.
Литература[править | править код]
- Мякишев А.Г. Элементы геометрии треугольника. — М.: МЦНМО, 2002.
- Clark Kimberling. Triangle Centers and Central Triangles // Congressus Numerantium. — 1998. — Вып. 129. — С. i-xxv, 1-295.
- Sándor Kiss. The Orthic-of-Intouch and Intouch-of-Orthic Triangles // Congressus Numerantium. — 2006. — Вып. 6. — С. 171—177.
- Boris Odenhal. Some triangle centers associated with the circles tangent to the excircles // Forum Geometricorum. — 2010. — Т. 10.
Ссылки[править | править код]
- Derivation of formula for radius of incircle of a triangle
- Weisstein, Eric W. Incircle (англ.) на сайте Wolfram MathWorld.
Сайты с интерактивным содержанием[править | править код]
- Triangle incenter Triangle incircle Incircle of a regular polygon With interactive animations
- Constructing a triangle’s incenter / incircle with compass and straightedge An interactive animated demonstration
- Equal Incircles Theorem at cut-the-knot
- Five Incircles Theorem at cut-the-knot
- Pairs of Incircles in a Quadrilateral at cut-the-knot
- An interactive Java applet for the incenter
Здравствуйте, уважаемые читатели. Продолжаем разбор заданий с окружностью. В этой статье рассмотрим третью тему.
1. Центральные и вписанные углы.
2.Касательная, хорда, секущая.
3.Вписанная и описанная окружность (треугольник)
Окружность называется вписанной в треугольник, если она касается всех его сторон. Радиус вписанной окружности обозначается маленькой буквой r
При решении задач, будем вспоминать необходимую теорию непосредственно в решении.
Задача №1
Площадь треугольника, в который вписана окружность, равна произведению полупериметра треугольника на радиус окружности.
Полупериметр – это периметр треугольника, деленный пополам.
В некоторых задачах, даны лишние данные. В этой задаче лишним является длина стороны, которая равна 18. Полупериметр равен 48:2=24, радиус равен 3. Подставим все в формулу, получим:
Задача №2
Решим задачу двумя способами:
Способ №1
Для решения этой задачи, воспользуемся формулой площади треугольника через радиус вписанной окружности
В этой формуле нам известен радиус. Нужно найти полупериметр. Поскольку треугольник равносторонний, то пусть стороны треугольника равны а
Подставим все в нашу формулу:
С другой стороны, площадь треугольника равна половина произведения высоты на сторону, к которой проведена эта высота
Не важно по какой формуле вычислять площадь треугольника, она будет одинаковой, поэтому приравняем эти формулы и найдем высоту треугольника:
Способ №2
Формулу радиуса окружности, вписанной в равносторонний или правильный треугольник, вы можете взять в справочных материалах, которые выдаются на экзамене, и по этой формуле вычислить сторону равностороннего треугольника:
Так как треугольник по условию задачи равносторонний, то высота является медианой.
Поскольку треугольник ВНС – прямоугольный, то ВН найдем по теореме Пифагора.
Задание №3
Окружность называется описанной около треугольника, если все вершины треугольника лежат на окружности. Радиус описанной окружности обозначается большой буквой R
Найдем сторону равностороннего треугольника, через формулу радиуса описанной около равностороннего треугольника окружности. Возьмем эту формулу из справочного материала, выдаваемый на экзамене:
Так как треугольник, вписанный в окружность, равносторонний, то высота треугольника является и медианой. Значит АН=НС
По теореме Пифагора найдем высоту треугольника:
Высоту равностороннего треугольника, можно найти и по формуле:
Но этой формулы в справочнике на экзамене нет, поэтому теорема Пифагора – универсальный способ.
Спасибо что дочитали. Вы меня очень поддержите, если поставите лайк и подпишитесь на мой блог.