Как найти дугу окружности не зная угла

Как найти длину дуги окружности ?

r – радиус окружности

α – угол AOB, в градусах

Формула длины дуги ( L ):

Калькулятор для расчета длины дуги окружности :

Формулы для окружности и круга:

Площадь круга и его частей. Длина окружности и ее дуг

Основные определения и свойства

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки – центра окружности

Часть окружности, расположенная между двумя точками окружности

Конечная часть плоскости, ограниченная окружностью

Часть круга, ограниченная двумя радиусами

Часть круга, ограниченная хордой

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

Фигура Рисунок Определения и свойства
Окружность
Дуга
Круг
Сектор
Сегмент
Правильный многоугольник
Окружность

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки – центра окружности

Дуга

Часть окружности, расположенная между двумя точками окружности

Круг

Конечная часть плоскости, ограниченная окружностью

Сектор

Часть круга, ограниченная двумя радиусами

Сегмент

Часть круга, ограниченная хордой

Правильный многоугольник

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

Определение 1 . Площадью круга называют предел, к которому стремятся площади правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Определение 2 . Длиной окружности называют предел, к которому стремятся периметры правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Замечание 1 . Доказательство того, что пределы площадей и периметров правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон действительно существуют, выходит за рамки школьной математики и в нашем справочнике не приводится.

Определение 3 . Числом π (пи) называют число, равное площади круга радиуса 1.

Замечание 2 . Число π является иррациональным числом, т.е. числом, которое выражается бесконечной непериодической десятичной дробью:

Число π является трансцендентным числом, то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами.

Формулы для площади круга и его частей

,

где R – радиус круга, D – диаметр круга

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Числовая характеристика Рисунок Формула
Площадь круга
Площадь сектора
Площадь сегмента
Площадь круга

,

где R – радиус круга, D – диаметр круга

Площадь сектора

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Площадь сегмента

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Формулы для длины окружности и её дуг

где R – радиус круга, D – диаметр круга

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Длина окружности

где R – радиус круга, D – диаметр круга

Длина дуги

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Площадь круга

Рассмотрим две окружности с общим центром ( концентрические окружности ) и радиусами радиусами 1 и R , в каждую из которых вписан правильный n – угольник (рис. 1).

Обозначим через O общий центр этих окружностей. Пусть внутренняя окружность имеет радиус 1 .

Поскольку при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса 1 , стремится к π , то при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса R , стремится к числу πR 2 .

Таким образом, площадь круга радиуса R , обозначаемая S , равна

Длина окружности

то, обозначая длину окружности радиуса R буквой C , мы, в соответствии с определением 2, при увеличении n получаем равенство:

откуда вытекает формула для длины окружности радиуса R :

Следствие . Длина окружности радиуса 1 равна 2π.

Длина дуги

Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.

В случае, когда величина α выражена в градусах, справедлива пропорция

из которой вытекает равенство:

В случае, когда величина α выражена в радианах, справедлива пропорция

из которой вытекает равенство:

Площадь сектора

Рассмотрим круговой сектор, изображённый на рисунке 4, и обозначим его площадь символом S (α) , где буквой α обозначена величина соответствующего центрального угла.

В случае, когда величина α выражена в градусах, справедлива пропорция

из которой вытекает равенство:

В случае, когда величина α выражена в радианах, справедлива пропорция

из которой вытекает равенство:

Площадь сегмента

Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла.

Поскольку площадь сегмента равна разности площадей кругового сектора MON и треугольника MON (рис.5), то в случае, когда величина α выражена в градусах, получаем

В случае, когда величина α выражена в в радианах, получаем

Длина дуги

На этой странице приведены две формулы для расчета длины дуги окружности — через радиус и угол между ними и по формуле Гюйгенса. Также вы можете рассчитать длину дуги окружности с помощью калькуляторов, которые используют эти формулы.

Дуга — одно из двух подмножеств окружности, на которые её разбивают любые две различные принадлежащие ей точки. Любые две точки окружности разбивают её на две части, при этом каждая из частей является дугой.

[spoiler title=”источники:”]

http://www.resolventa.ru/demo/diaggia6.htm

http://mnogoformul.ru/dlina-dugi

[/spoiler]

Дуга окружности – это фрагмент окружности. Если на окружности отметить две точки A И B, то она разобьётся на 2 части, называемые дугами окружности.

Для того, чтобы найти длину дуги окружности, необходимо использовать значение центрального угла, измеряемого в радианах или градусах.


Существует 2 формулы длины дуги окружности:

1) Если дан центральный угол в радианах: l = R*α, где R – радиус, α – величина угла AOB в радианах.

2) Если дан центральный угол в градусах: l = R*π*C/180, где R – радиус, C – величина угла AOB в градусах.


Пример

Дано:

1) радиус окружности R = 6 дм.

2) центральный угол AOB = 45°.

Найти:

Длину дуги AB.

Решение:

l = 6*3,14*1/4 дм. = 4,71 дм.

The ​arc length​ of a circle is the distance along the outside of that circle between two specified points. If you were to walk one-fourth of the way around a large circle and you knew the circle’s circumference, the arc length of the section you walked would simply be the circumference of the circle, 2π​r​, divided by four. The straight-line distance across the circle between those points, meanwhile, is called a chord.

If you know the measure of the central angle ​θ​, which is the angle between the lines originating at the center of the circle and connecting to the ends of the arc, you can easily calculate the arc length:

L = frac{θ}{360} × 2πr

The Arc Length With No Angle

Sometimes, however, you are not given ​θ​ . But if you know the length of the associated chord ​c​, you can calculate the arc length even without this information, using the following formula:

c = 2r sin bigg(frac{θ}{2}bigg)

The steps below assume a circle with a radius of 5 meters and a chord of 2 meters.

Solve the Chord Equation for ​θ

Divide each side by 2​r​ (which equals the diameter of the circle). This gives

frac{c}{2r} = sin bigg(frac{θ}{2}bigg)

In this example

frac{c}{2r} = frac{2}{2×5} = 0.2

Find the Inverse Sine of (​θ​/2)

Since you now have

0.2 = sin bigg(frac{θ}{2}bigg)

you must find the angle that yields this sine value.

Use your calculator’s ARCSIN function, often labeled SIN-1, to do this, or refer too the Rapid Tables calculator (see Resources).

sin^{-1}(0.2) = 11.54=frac{θ}{2} \ implies θ=23.08

Solve for the Arc Length

Going back to the equation

L = frac{θ}{360} × 2πr

input the known values:

L = frac{23.08}{360} × 2π × 5text{ meters} \ , \= 0.0641 × 31.42 = 2.014 text{ meters}

Note that for relatively short arc lengths, the chord length will be very close to the arc length, as a visual inspection suggests.

Оглавление:

  • 📝 Как это работает?
  • 🤔 Частые вопросы и ответы
  • 📋 Похожие материалы
  • 📢 Поделиться и комментировать

Что такое длина дуги?

Калькулятор длины дуги

Дуга — это часть окружности, ограниченная двумя точками на окружности.

Для вычисления длины дуги необходимо знать радиус окружности и центральный угол, охватывающий эту дугу.

Наш онлайн калькулятор длины дуги может вычислить длину дуги через угол в градусах и радианах.

Для вычисления длины дуги через центральный угол в градусах формула выглядит следующим образом:

L = r * θ * π / 180

где L – длина дуги, r – радиус окружности, θ – центральный угол в градусах, π – число Пи (3.14159…).

Для вычисления длины дуги через центральный угол в радианах формула выглядит следующим образом:

L = r * θ

где L – длина дуги, r – радиус окружности, θ – центральный угол в радианах.

Таким образом, чтобы использовать наш калькулятор для вычисления длины дуги через центральный угол в градусах, необходимо ввести радиус и угол в градусах, а для вычисления длины дуги через центральный угол в радианах – радиус и угол в радианах.

🔣 Формула Гюйгенса

Длина дуги по формуле Гюйгенса

Длину дуги можно найти, используя более редкую формула, в которой известны две хорды, как показано на рисунке выше. Это формула называется формулой Гюйгенса.

В формуле Гюйгенса используется знак “равно или почти равно” (≊), потому что вычисления с помощью этой формулы могут содержать погрешности. Эти погрешности обычно малы, но они существуют, и их нужно учитывать. Относительная погрешность формулы Гюйгенса составляет около 0,5% при угле дуги в 60°. Однако, при уменьшении угла дуги, погрешность также уменьшается. Например, при дуге в 45° относительная погрешность составит около 0,02%.

🌈 Пример использования калькулятора в повседневной жизни

Калькулятор для вычисления длины дуги может быть использован и в повседневной жизни в различных ситуациях:

Пример 1. При выборе размера ободной обрезиненной ленты для замены на велосипеде. Чтобы выбрать правильный размер ленты, необходимо знать длину окружности колеса. Калькулятор для вычисления длины дуги поможет быстро и точно вычислить длину окружности колеса по его радиусу.

Пример 2. При планировании работы садовой или дачной зоны. Например, при расчете длины ленточного газона или длины обочин для дорожек. Калькулятор для вычисления длины дуги поможет быстро и точно вычислить необходимую длину материала.

Пример 3. При выборе длины троса для подвешивания карниза или штор в доме. Чтобы подобрать правильную длину троса, необходимо знать длину окна и расстояние от карниза до пола. Калькулятор для вычисления длины дуги поможет быстро и точно вычислить длину троса, необходимую для подвешивания карниза.

Помимо этого, калькулятор для вычисления длины дуги может быть использован для быстрого и удобного решения задач, связанных с геометрией, физикой и техническими науками. Например:

  1. Геометрия: в геометрии часто требуется вычислять длину дуги окружности для построения различных фигур и геометрических конструкций.
  2. Физика: в физике, например, длина дуги может быть использована для вычисления длины траектории движения тела по окружности.
  3. Технические науки: в инженерии и других технических науках, вычисление длины дуги может быть использовано для определения размеров и формы кривых поверхностей и для расчета траекторий движения механизмов и устройств.

Таким образом, калькулятор для вычисления длины дуги может быть полезным инструментом как в повседневной жизни, так и при решении задач, связанных с техническими науками.

🌀 Основные виды дуг

  1. Дуги окружности — это дуги, которые образуются на окружности. Они имеют равные начальный и конечный углы и могут быть выражены через радиус окружности и центральный угол, который они охватывают.
  2. Произвольные дуги — это дуги, которые не являются частью окружности и могут быть описаны любой кривой. Они могут быть параметризованы, то есть выражены через параметр, который изменяется от начального до конечного значения. (Примеры произвольных дуг включают дуги эллипсов, парабол, гипербол и других кривых, которые можно параметризовать).
  1. Круговые дуги — это дуги, которые образуются на круге. Они имеют равные начальный и конечный углы, как дуги окружности, но могут быть на любом расстоянии от центра круга.
  2. Сегменты — это дуги, которые являются частью окружности или круга и имеют начальный и конечный углы, которые не равны 360 градусам.

В зависимости от конкретного контекста могут быть и другие типы дуг, но основные типы – это дуги окружности и произвольные дуги.

В чем разница между градусом от радианом?

Градусы и радианы — это единицы измерения угла. Они могут использоваться для измерения углов различных фигур, таких как треугольники, прямоугольники, круги и другие.

Градус — это одна из самых распространенных единиц измерения угла. Он определяется как 1/360 часть полного угла, который составляет один оборот. Таким образом, полный угол равен 360 градусам.

Радиан — это другая единица измерения угла, которая используется в математике и физике. Радиан определяется как длина дуги, равной радиусу окружности, разделенная на радиус этой окружности. Таким образом, полный угол равен 2π радианам.

Отличие между градусами и радианами заключается в том, как они измеряют углы. Градусы измеряют углы в сотнях долей полного угла, а радианы измеряют углы в длинах дуг окружности.

В математике и физике часто используются радианы, так как они позволяют производить более точные вычисления.

❓ Вопросы и ответы

Некоторые из популярных вопросов и ответы на них по калькулятору длины дуги.

Что такое длина дуги?

Длина дуги — это длина части кривой линии, которая соединяет две заданные точки на кривой.

В каких областях применяется вычисление длины дуги?

Вычисление длины дуги находит применение в различных областях, таких как физика, инженерия, компьютерная графика, дизайн и другие. Например, при моделировании траекторий движения тел, в оптике для расчета оптических путей лучей, при создании графических объектов и многих других задачах.

Как перевести угол из градусов в радианы?

Для перевода угла из градусов в радианы используется следующая формула: θ (в радианах) = θ (в градусах) * π / 180, где π – число Пи (3.14159…).

Какой формат ввода углов используется в калькуляторе длины дуги?

Калькулятор длины дуги использует радианы и градусы для ввода углов.

Какой диапазон углов может быть введен в калькулятор длины дуги?

Углы могут быть введены в диапазоне от 0 до 2π (двух пи), что соответствует полной окружности.

Похожие калькуляторы

Возможно вам пригодятся ещё несколько калькуляторов по данной теме:

  • Калькулятор масштабов. Переведите онлайн именованный масштаб на чертеже в реальный и наоборот.
  • Калькулятор числа Пи. Узнайте, чему равно число Пи с точностью до нужного количества знаков после запятой.
  • Калькулятор объема параллелепипеда. Рассчитайте онлайн объем любого параллелепипеда по длинам его ребер и не только.
  • Калькулятор объема куба. Рассчитайте онлайн объем любого кубического предмета по длине стороны или диагоналям.
  • Калькулятор объема бака. Посчитайте объем цилиндрического, прямоугольного или автомобильного бака по габаритам (по расходу и пройденному расстоянию).
  • Калькулятор объема помещения. Посчитайте объем комнаты или любого помещения в кв.метра или литрах.
  • Калькулятор объема трубы. Рассчитайте онлайн объем трубы в куб. м. или литрах в зависимости от диаметра и длины трубопровода.
  • Калькулятор объема пирамиды. Рассчитайте объем пирамиды по высоте, площади основания или стороне основания. Основание может быть любой формы.
  • Калькулятор объема и площади усеченного конуса. Рассчитайте онлайн объем и площадь поверхности усеченного конуса по его радиусам и высоте.
  • Калькулятор площади трапеции. Рассчитайте онлайн площадь трапеции, не только зная длины ее оснований и высоту, но и по другим известным параметрам, например, диагоналям.

Если понравилось, поделитесь калькулятором в своих социальных сетях: вам нетрудно, а проекту полезно для продвижения. Спасибо!

Есть что добавить?

Напишите своё мнение, комментарий или предложение.

Показать комментарии

Длина дуги окружности

{L = dfrac{pi R alpha}{180degree}}

Длина дуги окружности – важный параметр, который используется в геометрии и математике для решения различных задач. На этой странице приведены две формулы для расчета длины дуги окружности – через радиус и угол между радиусами и по формуле Гюйгенса. Также вы можете рассчитать длину дуги окружности с помощью калькулятора, которые используют эти формулы.

Дуга — одно из двух подмножеств окружности, на которые её разбивают любые две различные принадлежащие ей точки. Любые две точки окружности разбивают её на две части, при этом каждая из частей является дугой.

Содержание:
  1. калькулятор длины дуги окружности
  2. формула длины дуги окружности через радиус и угол
  3. формула длины дуги окружности по формуле Гюйгенса
  4. примеры задач

Если обобщить, то дуга окружности – это часть окружности, ограниченная двумя ее точками. Ниже приведены несколько примеров дуг окружностей:

  • Полная окружность – это дуга, которая охватывает всю окружность. Угол, определяющий полную окружность, равен 360° или 2π радиан. Длина дуги полной окружности равна общей длине окружности, которая может быть вычислена по формуле L = 2πr, где r – радиус окружности.

    Полная окружность

  • Полуокружность – это дуга, которая охватывает половину окружности. Угол, определяющий полуокружность, равен 180° или π радиан. Длина дуги полуокружности равна половине общей длины окружности и может быть вычислена по формуле L = πr.

    Полуокружность

  • Сектор окружности – это область, ограниченная дугой окружности и двумя ее радиусами.

    Сектор окружности

Это только несколько примеров дуг окружности. Дуги могут быть разных размеров и форм, в зависимости от угла, определяющего их, и расположения на окружности.

Формула длины дуги окружности через радиус и угол

Длина дуги окружности через радиус и угол

{L = dfrac{pi R alpha}{180degree}}

R – радиус окружности

α – центральный угол (угол между радиусами) в градусах

{L = R alpha}

R – радиус окружности

α – центральный угол (угол между радиусами) в радианах

Формула длины дуги окружности по формуле Гюйгенса

Длина дуги окружности по формуле Гюйгенса

{L approxeq 2m + dfrac{2m-M}{3}}

m – длина хорды m

M – длина хорды M

Обратите внимание, что в данной формуле используется не привычный знак равно «=», а знак “равно или почти равно”, который записывается так – «approxeq». Это связано с тем, что формула Гюйгенса дает погрешность при вычислении. Хоть величина погрешности невелика, знать об этом надо.

Относительная погрешность формулы Гюйгенса составляет порядка 0,5% когда угол дуги равен 60°. Если же угловая мера дуги уменьшается, то уменьшается и погрешность. Например, для дуги в 45° относительная погрешность будет равна примерно 0,02%.

Примеры задач на нахождение длины дуги

Задача 1

Найдите длину дуги окружности радиуса 6см, если ее градусная мера равна 30.

Решение

Для решения этой задачи нам подойдет первая формула. Подставим в нее значение радиуса и угла и произведем вычисления:

L = dfrac{pi R alpha}{180degree} = dfrac{pi cdot 6 cdot 30degree}{180degree} = dfrac{pi cdot 180degree}{180degree} = pi : см approx 3.14 : см.

Ответ: {pi : см approx 3.14 : см.}

Введем известные значения в калькулятор для проверки полученного ответа.

Задача 2

Найдите длину дуги окружности радиуса 3см, если ее градусная мера равна 150 градусов.

Решение

Задача аналогична предыдущей. Также воспользуемся первой формулой.

L = dfrac{pi R alpha}{180degree} = dfrac{pi cdot 3 cdot 150degree}{180degree} = dfrac{pi cdot 3 cdot 5}{6} = dfrac{pi cdot 5}{2} = dfrac{5}{2} pi : см = 2.5 pi : см approx 7.85398 : см.

Ответ: {2.5 pi : см approx 7.85398 : см.}

В проверке ответа нам снова поможет калькулятор .

Длина дуги окружности имеет множество применений в математике и ее приложениях. Например, она используется для вычисления длины дуги графика функции, заданной в полярных координатах. Также длина дуги окружности используется при вычислении пути, пройденного телом при движении по окружности, а также для вычисления объема тела, полученного путем вращения дуги окружности вокруг ее диаметра.

Добавить комментарий