Как найти два базисных решения

Базисные (основные) и свободные (неосновные) переменные. Общее и базисное решения системы линейных алгебраических уравнений. Первая часть.

В теме “Теорема Кронекера-Капелли” было указано, что если ранг расширеной матрицы системы $widetilde{A}$ и ранг матрицы системы $A$ равны между собой, то заданная система линейных алгебраических уравнений (СЛАУ) совместна, т.е. имеет решение. Вопрос о количестве этих решений разрешим с помощью следствия из теоремы Кронекера. Согласно ему, если $rang A=rangwidetilde{A} = n$ ($n$ – количество неизвестных), то СЛАУ имеет единственное решение. Если же $rang A=rangwidetilde{A} < n$, то количество решений заданной СЛАУ бесконечно.

Особый интерес представляет именно случай $rang A=rangwidetilde{A} < n$, которым и займёмся в этой теме. Так как $rang A=rangwidetilde{A}$, то обозначим эти ранги просто буквой $r$, т.е. $rang A=rangwidetilde{A}=r$. Итак, $r < n$ и система неопределена, т.е. имеет бесконечное количество решений.

Что означает фраза “ранг матрицы равен $r$”? Она означает, что есть хотя бы один минор $r$-го порядка, который не равен нулю. Напомню, что такой минор называется базисным. Базисных миноров может быть несколько. При этом все миноры, порядок которых выше $r$, равны нулю или не существуют.

Если коэффициенты при $r$ переменных совместной СЛАУ образуют базисный минор матрицы системы $A$, то эти $r$ переменных называют базисными или основными. Остальные $n-r$ переменных именуют свободными или неосновными.

Выбрать $r$ базисных переменных в общем случае можно различными способами. В примерах я покажу наиболее часто используемый способ выбора.

Решение СЛАУ, в котором все свободные переменные равны нулю, называется базисным.

Во всех изложенных ниже примерах матрицу системы будем обозначать буквой $A$, а расширенную матрицу системы – буквой $widetilde{A}$.

Пример №1

Решить СЛАУ $
left { begin{aligned}
& 3x_1-6x_2+9x_3+13x_4=9\
& -x_1+2x_2+x_3+x_4=-11;\
& x_1-2x_2+2x_3+3x_4=5.
end{aligned} right.$. Если система является неопределённой, указать базисное решение.

Решение

Итак, мы имеем СЛАУ, у которой 3 уравнения и 4 переменных: $x_1$, $x_2$, $x_3$, $x_4$. Так как количество переменных больше количества уравнений, то такая система не может иметь единственное решение (чуть позже мы строго докажем это предложение на основе теоремы Кронекера-Капелли). Найдём решения СЛАУ, используя метод Гаусса:

$$
left( begin{array} {cccc|c}
3 & -6 & 9 & 13 & 9 \
-1 & 2 & 1 & 1 & -11 \
1 & -2 & 2 & 3 & 5 end{array} right) rightarrow
left|begin{aligned}
& text{поменяем местами первую и третью}\
& text{строки, чтобы первым элементом}\
& text{первой строки стала единица.}
end{aligned}right| rightarrow \

rightarrowleft( begin{array} {cccc|c}
1 & -2 & 2 & 3 & 5\
-1 & 2 & 1 & 1 & -11 \
3 & -6 & 9 & 13 & 9
end{array} right)
begin{array} {l} phantom{0} \ r_2+r_1\ r_3-3r_1 end{array} rightarrow

left( begin{array} {cccc|c}
1 & -2 & 2 & 3 & 5\
0 & 0 & 3 & 4 & -6 \
0 & 0 & 3 & 4 & -6
end{array}right)
begin{array} {l} phantom{0} \ phantom{0}\r_3-r_2end{array} rightarrow \

rightarrowleft( begin{array} {cccc|c}
1 & -2 & 2 & 3 & 5\
0 & 0 & 3 & 4 & -6 \
0 & 0 & 0 & 0 & 0
end{array}right)
$$

Мы завершили прямой ход метода Гаусса, приведя расширенную матрицу системы к ступенчатому виду. Слева от черты расположены элементы преобразованной матрицы системы, которую мы также привели к ступенчатому виду. Напомню, что если некая матрица приведена к ступенчатому виду, то её ранг равен количеству ненулевых строк.

Матрицы

И матрица системы, и расширенная матрица системы после эквивалентных преобразований приведены к ступенчатому виду; они содержат по две ненулевых строки. Вывод: $rang A=rangwidetilde{A} = 2$.

Итак, заданная СЛАУ содержит 4 переменных (обозначим их количество как $n$, т.е. $n=4$). Кроме того, ранги матрицы системы и расширенной матрицы системы равны между собой и равны числу $r=2$. Так как $r < n$, то согласно следствию из теоремы Кронекера-Капелли СЛАУ является неопределённой (имеет бесконечное количество решений).

Найдём эти решения. Для начала выберем базисные переменные. Их количество должно равняться $r$, т.е. в нашем случае имеем две базисные переменные. Какие именно переменные (ведь у нас их 4 штуки) принять в качестве базисных? Обычно в качестве базисных переменных берут те переменные, которые расположены на первых местах в ненулевых строках преобразованной матрицы системы, т.е. на “ступеньках”. Что это за “ступеньки” показано на рисунке:

Матрицы

На “ступеньках” стоят числа из столбцов №1 и №3. Первый столбец соответствует переменной $x_1$, а третий столбец соответствует переменной $x_3$. Именно переменные $x_1$ и $x_3$ примем в качестве базисных.

В принципе, если вас интересует именно методика решения таких систем, то можно пропускать нижеследующее примечание и читать далее. Если вы хотите выяснить, почему можно в качестве базисных взять именно эти переменные, и нельзя ли выбрать иные – прошу раскрыть примечание.

Примечание. показатьскрыть

Базисные переменные выбраны: это $x_1$ и $x_3$. Остальные $n-r=2$ переменных (т.е. $x_2$ и $x_4$) являются свободными. Нам нужно выразить базисные переменные через свободные.

Я предпочитаю работать с системой в матричной форме записи. Для начала очистим полученную матрицу $left( begin{array} {cccc|c}
1 & -2 & 2 & 3 & 5\
0 & 0 & 3 & 4 & -6 \
0 & 0 & 0 & 0 & 0
end{array}right)$ от нулевой строки:

$$
left( begin{array} {cccc|c}
1 & -2 & 2 & 3 & 5\
0 & 0 & 3 & 4 & -6
end{array}right)
$$

Свободным переменным, т.е. $x_2$ и $x_4$, соответствуют столбцы №2 и №4. Перенесём эти столбцы за черту. Знак всех элементов переносимых столбцов изменится на противоположный:

Матрицы

Почему меняются знаки? Что вообще значит это перенесение столбцов? показатьскрыть

А теперь продолжим решение обычным методом Гаусса. Наша цель: сделать матрицу до черты единичной. Для начала разделим вторую строку на 3, а потом продолжим преобразования обратного хода метода Гаусса:

$$
left( begin{array} {cc|ccc}
1 & 2 & 5 & 2 & -3\
0 & 3 & -6 & 0 & -4
end{array}right)
begin{array} {l} phantom{0} \ 1/3cdot{r_2} end{array} rightarrow
left( begin{array} {cc|ccc}
1 & 2 & 5 & 2 & -3\
0 & 1 & -2 & 0 & -4/3
end{array}right)
begin{array} {l} r_1-2r_2 \ phantom{0} end{array} rightarrow \

rightarrow left(begin{array} {cc|ccc}
1 & 0 & 9 & 2 & -1/3\
0 & 1 & -2 & 0 & -4/3
end{array}right).
$$

Матрица до черты стала единичной, метод Гаусса завершён. Общее решение найдено, осталось лишь записать его. Если вспомнить, что четвёртый столбец соответствует переменной $x_2$, а пятый столбец – переменной $x_4$, то получим:

$$
left{begin{aligned}
& x_1=9+2x_2-frac{1}{3}x_4;\
& x_2in R;\
& x_3=-2-frac{4}{3}x_4;\
& x_4 in R.
end{aligned}right.
$$

Нами получено общее решение заданной СЛАУ. Чтобы найти базисное решение, нужно все свободные переменные приравнять к нулю. Т.е. полагая $x_2=0$ и $x_4=0$, будем иметь:

$$
left{begin{aligned}
& x_1=9;\
& x_2=0;\
& x_3=-2;\
& x_4=0.
end{aligned}right.
$$

Решение $x_1=9$, $x_2=0$, $x_3=-2$, $x_4=0$ и является базисным решением данной СЛАУ. В принципе, задавая свободным переменным иные значения, можно получить иные частные решения данной системы. Таких частных решений бесконечное количество. Например, принимая $x_2=-4$ и $x_4=1$, получим такое частное решение: $left{begin{aligned}
& x_1=frac{2}{3};\
& x_2=-4;\
& x_3=-frac{10}{3};\
& x_4=1.
end{aligned}right.$. Базисное решение, которые мы нашли ранее – лишь одно из бесконечного множества частных решений заданной СЛАУ.

Если есть желание, то полученное решение можно проверить. Например, подставляя $x_1=9+2x_2-frac{1}{3}x_4$ и $x_3=-2-frac{4}{3}x_4$ в левую часть первого уравнения, получим:

$$
3x_1-6x_2+9x_3+13x_4=3cdot left(9+2x_2-frac{1}{3}x_4right)-6x_2+9cdot left(-2-frac{4}{3}x_4right)+13x_4=9.
$$

Проверка первого уравнения увенчалась успехом; точно так же можно проверить второе и третье уравнения.

Ответ: Общее решение: $left{begin{aligned}
& x_1=9+2x_2-frac{1}{3}x_4;\
& x_2in R;\
& x_3=-2-frac{4}{3}x_4;\
& x_4 in R.
end{aligned}right.$, базисное решение: $
left{begin{aligned}
& x_1=9;\
& x_2=0;\
& x_3=-2;\
& x_4=0.
end{aligned}right.$.

Пример №2

Решить СЛАУ

$$left{begin{aligned}
& x_1-2x_2+4x_3+2x_5=0;\
& 4x_1-11x_2+21x_3-2x_4+3x_5=-1; \
& -3x_1+5x_2-13x_3-4x_4+x_5=-2.
end{aligned}right.$$

Если система является неопределённой, указать базисное решение.

Решение

Похожий пример уже был решен в теме “метод Крамера” (пример №4). Переменные $x_4$ и $x_5$ были перенесены в правые части, а дальше применялись стандартные операции метода Крамера. Однако такой метод решения не гарантирует достижения результата. Например, мы переносим некие переменные в правую часть, а оставшийся определитель оказывается равным нулю, – что тогда? Решать перебором? 🙂 Поэтому гораздо удобнее применять преобразования метода Гаусса, как и в предыдущем примере.

$$
left( begin{array} {ccccc|c}
1 & -2 & 4 & 0 & 2 & 0\
4 & -11 & 21 & -2 & 3 & -1\
-3 & 5 & -13 & -4 & 1 & -2
end{array} right)
begin{array} {l} phantom{0} \r_2-4r_1\r_3+3r_1end{array} rightarrow

left( begin{array} {ccccc|c}
1 & -2 & 4 & 0 & 2 & 0\
0 & -3 & 5 & -2 & -5 & -1\
0 & -1 & -1 & -4 & 7 & -2
end{array} right) rightarrow \

rightarrow left|begin{aligned}
& text{поменяем местами вторую и третью}\
& text{строки, чтобы диагональным элементом}\
& text{второй строки стало число (-1).}
end{aligned}right|rightarrow

left( begin{array} {ccccc|c}
1 & -2 & 4 & 0 & 2 & 0\
0 & -1 & -1 & -4 & 7 & -2\
0 & -3 & 5 & -2 & -5 & -1
end{array} right)
begin{array} {l} phantom{0} \ phantom{0}\r_3-3r_1end{array} rightarrow \

rightarrow left( begin{array} {ccccc|c}
1 & -2 & 4 & 0 & 2 & 0\
0 & -1 & -1 & -4 & 7 & -2\
0 & 0 & 8 & 10 & -26 & 5
end{array} right).
$$

Матрица системы и расширенная матрица системы приведены к трапециевидной форме. Ранги этих матриц равны между собой и равны числу 3, т.е. $rang A=rangwidetilde{A} = 3$. Так как ранги равны между собой и меньше, чем количество переменных, то согласно следствию из теоремы Кронекера-Капелли данная система имеет бесконечное количество решений.

Количество неизвестных $n=5$, ранги обеих матриц $r=3$, поэтому нужно выбрать три базисных переменных и $n-r=2$ свободных переменных. Применяя тот же метод “ступенек”, что и в предыдущем примере, выберем в качестве базисных переменных $x_1$, $x_2$, $x_3$, а в качестве свободных переменных – $x_4$ и $x_5$.

Столбцы №4 и №5, которые соответствуют свободным переменным, перенесём за черту. После этого разделим третью строку на 8 и продолжим решение методом Гаусса:

$$
left( begin{array} {ccc|ccc}
1 & -2 & 4 & 0 & 0 & -2\
0 & -1 & -1 & -2 & 4 & -7\
0 & 0 & 8 & 5 & -10 & 26
end{array} right)
begin{array} {l} phantom{0} \ phantom{0}\1/8cdot{r_3}end{array} rightarrow

left( begin{array} {ccc|ccc}
1 & -2 & 4 & 0 & 0 & -2\
0 & -1 & -1 & -2 & 4 & -7\
0 & 0 & 1 & 5/8 & -5/4 & 13/4
end{array} right)
begin{array} {l}r_1-4r_3 \r_2+r_3\ phantom{0}end{array} rightarrow \

left( begin{array} {ccc|ccc}
1 & -2 & 0 & -5/2 & 5 & -15\
0 & -1 & 0 & -11/8 & 11/4 & -15/4\
0 & 0 & 1 & 5/8 & -5/4 & 13/4
end{array} right)
begin{array} {l} phantom{0} \ -1cdot{r_2}\ phantom{0}end{array} rightarrow

left( begin{array} {ccc|ccc}
1 & -2 & 0 & -5/2 & 5 & -15\
0 & 1 & 0 & 11/8 & -11/4 & 15/4\
0 & 0 & 1 & 5/8 & -5/4 & 13/4
end{array} right)
begin{array} {l}r_1+2r_2 \ phantom{0}\ phantom{0}end{array} rightarrow\

rightarrowleft( begin{array} {ccc|ccc}
1 & 0 & 0 & 1/4 & -1/2 & -15/2\
0 & 1 & 0 & 11/8 & -11/4 & 15/4\
0 & 0 & 1 & 5/8 & -5/4 & 13/4
end{array} right)
$$

Из последней матрицы имеем общее решение заданной СЛАУ: $left{begin{aligned}
& x_1=frac{1}{4}-frac{1}{2}x_4-frac{15}{2}x_5;\
& x_2=frac{11}{8}-frac{11}{4}x_4+frac{15}{4}x_5;\
& x_3=frac{5}{8}-frac{5}{4}x_4+frac{13}{4}x_5;\
& x_4 in R;\
& x_5 in R.
end{aligned}right.$. Базисное решение получим, если приравняем свободные переменные к нулю, т.е. $x_4=0$, $x_5=0$:

$$
left{begin{aligned}
& x_1=frac{1}{4};\
& x_2=frac{11}{8};\
& x_3=frac{5}{8};\
& x_4=0;\
& x_5=0.
end{aligned}right.
$$

Ответ: Общее решение: $left{begin{aligned}
& x_1=frac{1}{4}-frac{1}{2}x_4-frac{15}{2}x_5;\
& x_2=frac{11}{8}-frac{11}{4}x_4+frac{15}{4}x_5;\
& x_3=frac{5}{8}-frac{5}{4}x_4+frac{13}{4}x_5;\
& x_4 in R;\
& x_5 in R.
end{aligned}right.$, базисное решение: $left{begin{aligned}
& x_1=frac{1}{4};\
& x_2=frac{11}{8};\
& x_3=frac{5}{8};\
& x_4=0;\
& x_5=0.
end{aligned}right.$.

Продолжение этой темы рассмотрим во второй части, где разберём ещё два примера с нахождением общего решения.

Базисные (основные) и свободные (неосновные) переменные. Общее и базисное решения системы линейных алгебраических уравнений. Первая часть.

Что означает фраза “ранг матрицы равен $r$”? Она означает, что есть хотя бы один минор $r$-го порядка, который не равен нулю. Напомню, что такой минор называется базисным. Базисных миноров может быть несколько. При этом все миноры, порядок которых выше $r$, равны нулю или не существуют.

Выбрать $r$ базисных переменных в общем случае можно различными способами. В примерах я покажу наиболее часто используемый способ выбора.

Во всех изложенных ниже примерах матрицу системы будем обозначать буквой $A$, а расширенную матрицу системы – буквой $widetilde$.

Решить СЛАУ $ left < begin& 3x_1-6x_2+9x_3+13x_4=9\ & -x_1+2x_2+x_3+x_4=-11;\ & x_1-2x_2+2x_3+3x_4=5. end right.$. Если система является неопределённой, указать базисное решение.

Итак, мы имеем СЛАУ, у которой 3 уравнения и 4 переменных: $x_1$, $x_2$, $x_3$, $x_4$. Так как количество переменных больше количества уравнений, то такая система не может иметь единственное решение (чуть позже мы строго докажем это предложение на основе теоремы Кронекера-Капелли). Найдём решения СЛАУ, используя метод Гаусса:

$$ left( begin 3 & -6 & 9 & 13 & 9 \ -1 & 2 & 1 & 1 & -11 \ 1 & -2 & 2 & 3 & 5 end right) rightarrow left|begin & text<поменяем местами первую и третью>\ & text<строки, чтобы первым элементом>\ & text <первой строки стала единица.>endright| rightarrow \ rightarrowleft( begin 1 & -2 & 2 & 3 & 5\ -1 & 2 & 1 & 1 & -11 \ 3 & -6 & 9 & 13 & 9 end right) begin phantom <0>\ II+I\ III-3cdot Iend rightarrow left( begin 1 & -2 & 2 & 3 & 5\ 0 & 0 & 3 & 4 & -6 \ 0 & 0 & 3 & 4 & -6 endright) begin phantom <0>\ phantom<0>\ III-IIend rightarrow \ rightarrowleft( begin 1 & -2 & 2 & 3 & 5\ 0 & 0 & 3 & 4 & -6 \ 0 & 0 & 0 & 0 & 0 endright) $$

Мы завершили прямой ход метода Гаусса, приведя расширенную матрицу системы к ступенчатому виду. Слева от черты расположены элементы преобразованной матрицы системы, которую мы также привели к ступенчатому виду. Напомню, что если некая матрица приведена к ступенчатому виду, то её ранг равен количеству ненулевых строк.

И матрица системы, и расширенная матрица системы после эквивалентных преобразований приведены к ступенчатому виду; они содержат по две ненулевых строки. Вывод: $rang A=rangwidetilde = 2$.

Итак, заданная СЛАУ содержит 4 переменных (обозначим их количество как $n$, т.е. $n=4$). Кроме того, ранги матрицы системы и расширенной матрицы системы равны между собой и равны числу $r=2$. Так как $r < n$, то согласно следствию из теоремы Кронекера-Капелли СЛАУ является неопределённой (имеет бесконечное количество решений).

Найдём эти решения. Для начала выберем базисные переменные. Их количество должно равняться $r$, т.е. в нашем случае имеем две базисные переменные. Какие именно переменные (ведь у нас их 4 штуки) принять в качестве базисных? Обычно в качестве базисных переменных берут те переменные, которые расположены на первых местах в ненулевых строках преобразованной матрицы системы, т.е. на “ступеньках”. Что это за “ступеньки” показано на рисунке:

На “ступеньках” стоят числа из столбцов №1 и №3. Первый столбец соответствует переменной $x_1$, а третий столбец соответствует переменной $x_3$. Именно переменные $x_1$ и $x_3$ примем в качестве базисных.

В принципе, если вас интересует именно методика решения таких систем, то можно пропускать нижеследующее примечание и читать далее. Если вы хотите выяснить, почему можно в качестве базисных взять именно эти переменные, и нельзя ли выбрать иные – прошу раскрыть примечание.

Почему можно принять переменные $x_1$ и $x_3$ в качестве базисных? Для ответа на этот вопрос давайте вспомним, что ранг матрицы системы равен числу $r=2$. Это говорит о том, что все миноры данной матрицы, порядок которых выше 2, либо равны нулю, либо не существуют. Ненулевые миноры есть только среди миноров второго порядка. Выберем какой-либо ненулевой минор второго порядка. Мы можем выбирать его как в исходной матрице системы $A$, т.е. в матрице $left( begin 3 & -6 & 9 & 13 \ -1 & 2 & 1 & 1 \ 1 & -2 & 2 & 3 end right)$, так и в преобразованной матрице системы, т.е. в $left( begin 1 & -2 & 2 & 3 \ 0 & 0 & 3 & 4 \ 0 & 0 & 0 & 0 endright)$. Так как в преобразованной матрице системы побольше нулей, то будем работать именно с нею.

Итак, давайте выберем минор второго порядка, элементы которого находятся на пересечении строк №1 и №2, и столбцов №1 и №2:

$$ M_<2>^<(1)>=left| begin 1 & -2 \ 0 & 0 endright|=1cdot 0-(-2)cdot 0=0. $$

Вывод: выбранный нами минор второго порядка не является базисным, ибо он равен нулю. Так как элементы этого минора взяты из столбца №1 (он соответствует переменной $x_1$) и столбца №2 (он соответствует переменной $x_2$), то пара переменных $x_1$ и $x_2$ не могут быть базисными переменными.

Осуществим вторую попытку, взяв минор второго порядка, элементы которого лежат на пересечении строк №1, №2 и столбцов №3 и №4:

$$ M_<2>^<(2)>=left| begin 2 & 3\ 3 & 4 endright|=2cdot 4-3cdot 3=-1. $$

Вывод: выбранный нами минор второго порядка является базисным, ибо он не равен нулю. Так как элементы этого минора взяты из столбца №3 (он соответствует переменной $x_3$) и столбца №4 (он соответствует переменной $x_4$), то пару переменных $x_3$ и $x_4$ можно принять в качестве базисных.

Сделаем и третью попытку, найдя значение минора, элементы которого расположены на пересечении строк №1, №2 и столбцов №1 и №3:

Вывод: выбранный нами минор второго порядка является базисным, ибо он не равен нулю. Так как элементы этого минора взяты из столбца №1 (он соответствует переменной $x_1$) и столбца №3 (он соответствует переменной $x_3$), то пару переменных $x_1$ и $x_3$ можно принять в качестве базисных.

Как видите, выбор базисных переменных не является однозначным. На самом деле количество вариантов выбора не превышает количество размещений из $n$ элементов по $r$, т.е. не больше чем $C_^$.

В рассматриваемом примере в качестве баисных были приняты переменные $x_1$ и $x_3$ – сугубо из соображений удобства дальнейшего решения. В чём это удобство состоит, будет видно чуток позже.

Базисные переменные выбраны: это $x_1$ и $x_3$. Остальные $n-r=2$ переменных (т.е. $x_2$ и $x_4$) являются свободными. Нам нужно выразить базисные переменные через свободные.

Я предпочитаю работать с системой в матричной форме записи. Для начала очистим полученную матрицу $left( begin 1 & -2 & 2 & 3 & 5\ 0 & 0 & 3 & 4 & -6 \ 0 & 0 & 0 & 0 & 0 endright)$ от нулевой строки:

$$ left( begin 1 & -2 & 2 & 3 & 5\ 0 & 0 & 3 & 4 & -6 endright) $$

Свободным переменным, т.е. $x_2$ и $x_4$, соответствуют столбцы №2 и №4. Перенесём эти столбцы за черту. Знак всех элементов переносимых столбцов изменится на противоположный:

Почему меняются знаки? Что вообще значит это перенесение столбцов? показатьскрыть

Давайте обратимся к расширенной матрице системы, которая после преобразований имеет вид $left( begin 1 & -2 & 2 & 3 & 5\ 0 & 0 & 3 & 4 & -6 endright)$. Перейдём от матрицы к уравнениям. Первая строка соответствует уравнению $x_1-2x_2+2x_3+3x_4=5$, а вторая строка соответствует уравнению $3x_3+4x_4=-6$. Теперь перенесём свободные переменные $x_2$ и $x_4$ в правые части уравнений. Естественно, что когда мы переносим выражение $4x_4$ в правую часть уравнения, то знак его изменится на противоположный, и в правой части появится $-4x_4$.

Если опять записать полученную систему в виде матрицы, то мы и получим матрицу с перенесёнными за черту столбцами.

А теперь продолжим решение обычным методом Гаусса. Наша цель: сделать матрицу до черты единичной. Для начала разделим вторую строку на 3, а потом продолжим преобразования обратного хода метода Гаусса:

$$ left( begin 1 & 2 & 5 & 2 & -3\ 0 & 3 & -6 & 0 & -4 endright) begin phantom <0>\ II:3 end rightarrow left( begin 1 & 2 & 5 & 2 & -3\ 0 & 1 & -2 & 0 & -4/3 endright) begin I-2cdot II \ phantom <0>end rightarrow \ rightarrow left(begin 1 & 0 & 9 & 2 & -1/3\ 0 & 1 & -2 & 0 & -4/3 endright). $$

Матрица до черты стала единичной, метод Гаусса завершён. Общее решение найдено, осталось лишь записать его. Если вспомнить, что четвёртый столбец соответствует переменной $x_2$, а пятый столбец – переменной $x_4$, то получим:

Нами получено общее решение заданной СЛАУ. Чтобы найти базисное решение, нужно все свободные переменные приравнять к нулю. Т.е. полагая $x_2=0$ и $x_4=0$, будем иметь:

Решение $x_1=9$, $x_2=0$, $x_3=-2$, $x_4=0$ и является базисным решением данной СЛАУ. В принципе, задавая свободным переменным иные значения, можно получить иные частные решения данной системы. Таких частных решений бесконечное количество. Например, принимая $x_2=-4$ и $x_4=1$, получим такое частное решение: $left <begin& x_1=frac<2><3>;\ & x_2=-4;\ & x_3=-frac<10><3>;\ & x_4=1. endright.$. Базисное решение, которые мы нашли ранее – лишь одно из бесконечного множества частных решений заданной СЛАУ.

Если есть желание, то полученное решение можно проверить. Например, подставляя $x_1=9+2x_2-frac<1><3>x_4$ и $x_3=-2-frac<4><3>x_4$ в левую часть первого уравнения, получим:

$$ 3x_1-6x_2+9x_3+13x_4=3cdot left(9+2x_2-frac<1><3>x_4right)-6x_2+9cdot left(-2-frac<4><3>x_4right)+13x_4=9. $$

Проверка первого уравнения увенчалась успехом; точно так же можно проверить второе и третье уравнения.

Если система является неопределённой, указать базисное решение.

Похожий пример уже был решен в теме “метод Крамера” (пример №4). Переменные $x_4$ и $x_5$ были перенесены в правые части, а дальше применялись стандартные операции метода Крамера. Однако такой метод решения не гарантирует достижения результата. Например, мы переносим некие переменные в правую часть, а оставшийся определитель оказывается равным нулю, – что тогда? Решать перебором? 🙂 Поэтому гораздо удобнее применять преобразования метода Гаусса, как и в предыдущем примере.

$$ left( begin 1 & -2 & 4 & 0 & 2 & 0\ 4 & -11 & 21 & -2 & 3 & -1\ -3 & 5 & -13 & -4 & 1 & -2 end right) begin phantom <0>\ II-4cdot I\ III+3cdot Iend rightarrow left( begin 1 & -2 & 4 & 0 & 2 & 0\ 0 & -3 & 5 & -2 & -5 & -1\ 0 & -1 & -1 & -4 & 7 & -2 end right) rightarrow \ rightarrow left|begin & text<поменяем местами вторую и третью>\ & text<строки, чтобы диагональным элементом>\ & text <второй строки стало число (-1).>endright|rightarrow left( begin 1 & -2 & 4 & 0 & 2 & 0\ 0 & -1 & -1 & -4 & 7 & -2\ 0 & -3 & 5 & -2 & -5 & -1 end right) begin phantom <0>\ phantom<0>\ III-3cdot Iend rightarrow \ rightarrow left( begin 1 & -2 & 4 & 0 & 2 & 0\ 0 & -1 & -1 & -4 & 7 & -2\ 0 & 0 & 8 & 10 & -26 & 5 end right). $$

Матрица системы и расширенная матрица системы приведены к трапециевидной форме. Ранги этих матриц равны между собой и равны числу 3, т.е. $rang A=rangwidetilde = 3$. Так как ранги равны между собой и меньше, чем количество переменных, то согласно следствию из теоремы Кронекера-Капелли данная система имеет бесконечное количество решений.

Количество неизвестных $n=5$, ранги обеих матриц $r=3$, поэтому нужно выбрать три базисных переменных и $n-r=2$ свободных переменных. Применяя тот же метод “ступенек”, что и в предыдущем примере, выберем в качестве базисных переменных $x_1$, $x_2$, $x_3$, а в качестве свободных переменных – $x_4$ и $x_5$.

Столбцы №4 и №5, которые соответствуют свободным переменным, перенесём за черту. После этого разделим третью строку на 8 и продолжим решение методом Гаусса:

$$ left( begin 1 & -2 & 4 & 0 & 0 & -2\ 0 & -1 & -1 & -2 & 4 & -7\ 0 & 0 & 8 & 5 & -10 & 26 end right) begin phantom <0>\ phantom<0>\ III:8end rightarrow left( begin 1 & -2 & 4 & 0 & 0 & -2\ 0 & -1 & -1 & -2 & 4 & -7\ 0 & 0 & 1 & 5/8 & -5/4 & 13/4 end right) begin I-4cdot III \ II+III\ phantom<0>end rightarrow \ left( begin 1 & -2 & 0 & -5/2 & 5 & -15\ 0 & -1 & 0 & -11/8 & 11/4 & -15/4\ 0 & 0 & 1 & 5/8 & -5/4 & 13/4 end right) begin phantom <0>\ IIcdot (-1)\ phantom<0>end rightarrow left( begin 1 & -2 & 0 & -5/2 & 5 & -15\ 0 & 1 & 0 & 11/8 & -11/4 & 15/4\ 0 & 0 & 1 & 5/8 & -5/4 & 13/4 end right) begin I+2cdot II \ phantom<0>\ phantom<0>end rightarrow\ rightarrowleft( begin 1 & 0 & 0 & 1/4 & -1/2 & -15/2\ 0 & 1 & 0 & 11/8 & -11/4 & 15/4\ 0 & 0 & 1 & 5/8 & -5/4 & 13/4 end right) $$

Продолжение этой темы рассмотрим во второй части, где разберём ещё два примера с нахождением общего решения.

Разрешенная система уравнений. Общее, частное и базисное решения

Определение. Неизвестная х, называется разрешенной для системы уравнений, если она входит в одно из уравнений системы с коэффициентом +1, а в остальные уравнения не входит, т.е. входит с коэффициентом, равным нулю.

Определение. Неизвестная х. называется разрешенной, если в системе линейных уравнений (2.2) существует s-e уравнение, содержащее это неизвестное с коэффициентом asj = 1, а в остальных уравнениях системы (2.2) коэффициенты при этом неизвестном равны нулю, т.е. а- = 0 при / ф s.

Определение. Система уравнений называется разрешенной, если каждое уравнение системы содержит разрешенную неизвестную, отличную от разрешенных переменных в остальных уравнениях.

Разрешенные неизвестные, взятые по одной из каждого уравнения системы, образуют полный набор разрешенных неизвестных системы. Заметим, что полный набор разрешенных неизвестных определяется неоднозначно.

Разрешенные неизвестные, входящие в полный набор, называют также базисными переменными, а не входящие в полный набор — свободными переменными.

В общем случае разрешенная система уравнений имеет вид

Определение. Общим решением разрешенной системы уравнений называется совокупность выражений разрешенных неизвестных через свободные члены (правые части) и свободные неизвестные:

Определение. Частным решением системы уравнений называется решение, получающееся из общего решения при конкретных значениях свободных неизвестных.

Определение. Базисным решением называется частное решение, получающееся из общего при нулевых значениях свободных неизвестных.

Определение. Базисное решение называется вырожденным, если число его координат, отличных от нуля, меньше числа разрешенных неизвестных.

Определение. Базисное решение называется невырожденным, если число его координат, отличных от нуля, равно числу разрешенных неизвестных системы, входящих в полный набор.

Любое общее решение системы представляет собой совокупность соотношений, используя которые можно получить любое частное решение из множества всех возможных частных решений системы.

Разрешенная система уравнений всегда совместна; причем если система не имеет свободных неизвестных, то она является определенной; если же имеется хотя бы одна свободная неизвестная, то система является неопределенной.

Пример 2.3. Найти общее, базисное и какое-либо частное решение системы

Решение. Система является разрешенной, поэтому, включив в набор разрешенных неизвестных х и х2, записываем общее решение

Если включить в набор разрешенных неизвестных х5 вместо х<, то можно записать другое общее решение

Найдем частное решение, соответствующее значениям свободных переменных х3 = 0, х4 = 1, х5 = 2, для этого, подставляя в первое общее решение заданные значения свободных неизвестных, получим

Запишем частное решение Хч = (9, 24, 0, 1, 2).

Если принять свободные переменные равными нулю х3 = х4 = ,rg = О, то из первого общего решения получим ту = 10, х2 = 20 и запишем базисное решение Х6 = (10, 20, 0, 0, 0).

Если для какой-либо заданной системы уравнений получена равносильная ей разрешенная система, то общее, частное и базисное решения этой разрешенной системы являются также решениями исходной системы.

Е1еобходимо заметить, что любые две разрешенные системы уравнений, равносильные заданной системе, совпадают, если они имеют одни и те же разрешенные, а следовательно и свободные, неизвестные.

Решение систем линейных уравнений методом Жордана-Гаусса

Разрешенная система уравнений

Уравнение имеет решение: если хотя бы один из коэффициентов при неизвестных отличен от нуля. В этом случае любой -мерный вектор называется решением уравнения, если при подстановке его координат уравнение обращается в тождество.

Общая характеристика разрешенной системы уравнений

Дать характеристику системе уравнений.

Решение:

1. Входит ли в состав системы линейных уравнений противоречивое уравнение? (Если коэффициенты , в этом случае уравнение имеет вид: и называется противоречивым.)

  • Если система содержит противоречивое, то такая система несовместна и не имеет решения

2. Найти все разрешенные переменные. (Неизвестная называется разрешенной для системы уравнений, если она входит в одно из уравнений системы с коэффициентом +1, а в остальные уравнения не входит (т.е. входит с коэффициентом, равным нулю).

  • В нашем примере неизвестная входит в первое уравнение с коэффициентом единица, во второе уравнение не входит, то есть является первой разрешенной .
  • Аналогично — содержится только во втором уравнении а только в первом.

3. Является ли система уравнений разрешенной? (Система уравнений называется разрешенной, если каждое уравнение системы содержит разрешенную неизвестную, среди которых нет совпадающих)

  • Наша система является разрешенной т.к. каждое уравнение содержит в себе разрешенные неизвестные )

Разрешенные неизвестные, взятые по одному из каждого уравнения системы, образуют полный набор разрешенных неизвестных системы. (в нашем примере это )

Разрешенные неизвестные, входящие в полный набор, называют также базисными ( ), а не входящие в набор — свободными ( ).

В общем случае разрешенная система уравнений имеет вид:

!На данном этапе главное понять что такое разрешенная неизвестная (входящая в базис и свободная).

Общее Частное Базисное решения

Общим решением разрешенной системы уравнений называется совокупность выражений разрешенных неизвестных через свободные члены и свободные неизвестные:

Частным решением системы уравнений называется решение, получающиеся из общего при конкретных значениях свободных переменных и неизвестных.

Базисным решением называется частное решение, получающееся из общего при нулевых значениях свободных переменных.

  • Базисное решение (вектор) называется вырожденным, если число его координат, отличных от нуля, меньше числа разрешенных неизвестных.
  • Базисное решение называется невырожденным, если число его координат, отличных от нуля, равно числу разрешенных неизвестных системы, входящих в полный набор.

Теорема (1)

Разрешенная система уравнений всегда совместна (потому что она имеет хотя бы одно решение); причем если система не имеет свободных неизвестных, (то есть в системе уравнений все разрешенные входят в базис) то она определена (имеет единственное решение); если же имеется хотя бы одна свободная переменная, то система не определена (имеет бесконечное множество решений).

Решение:

1. Проверяем является ли система разрешенной?

  • Система является разрешенной (т.к. каждое из уравнений содержит в себе разрешенную неизвестную)

2. Включаем в набор разрешенные неизвестные — по одному из каждого уравнения.

  • В нашем случае мы можем включить в набор разрешенных неизвестных из первого уравнения — и , а из второго уравнения только . То есть набор может состоять из ( ) или ( ).

3. Записываем общее решение в зависимости от того какие разрешенные неизвестные мы включили в набор.

  • допустим мы включили в набор неизвестные и , тогда общее решение будет выглядеть так:

4. Находим частное решение. Для этого приравниваем свободные переменные, которые мы не включили в набор приравнять к произвольным числам.

  • Пусть , , , тогда из общего решения находим:

Ответ: частное решение (один из вариантов)

5. Находим базисное решение. Для этого приравниваем свободные переменные, которые мы не включили в набор к нулю.

  • , то из общего решения получаем , и базисное решение:

Элементарные преобразования линейных уравнений

Системы линейных уравнений приводятся к равносильным разрешенным системам с помощью элементарных преобразований.

Теорема (2)

Если какое-либо уравнение системы умножить на некоторое отличное от нуля число, а остальные уравнения оставить без изменения, то получится система, равносильная данной. (то есть если умножить левую и правую часть уравнения на одно и то же число то получится уравнение, равносильное данному)

Теорема (3)

Если к какому-либо уравнению системы прибавить другое, а все остальные уравнения оставить без изменения, то получится система, равносильная данной. (то есть если сложить два уравнения (сложив их левые и правые части) то получится уравнение равносильное данным)

Следствие из Теорем (2 и 3)

Если к какому-либо уравнению прибавить другое, умноженное на некоторое число, а все остальные уравнения оставить без изменения, то получится система, равносильная данной.

Формулы пересчета коэффициентов системы

Если у нас есть система уравнений и мы хотим преобразовать ее в разрешенную систему уравнений в этом нам поможет метод Жордана-Гаусса.

Преобразование Жордана с разрешающим элементом позволяет получить для системы уравнений разрешенную неизвестную в уравнении с номером . (пример 2).

Преобразование Жордана состоит из элементарных преобразований двух типов:

  1. Уравнение с разрешающим элементом делится на этот элемент (умножается на )
  2. Уравнение с разрешающим элементом умножается на подходящие множители и прибавляется ко всем другим уравнениям для того, чтобы исключить неизвестную .

Допустим мы хотим сделать неизвестную в нижнем уравнении разрешенной неизвестной. Для этого мы должны разделить на , так чтобы сумма .

Пример 2 Пересчитаем коэффициенты системы

При делении уравнения с номером на , его коэффициенты пересчитываются по формулам:

Чтобы исключить из уравнения с номером , нужно уравнение с номером умножить на и прибавить к этому уравнению.

Теорема (4) О сокращении числа уравнений системы.

Если система уравнений содержит тривиальное уравнение, то его можно исключить из системы, при этом получится система равносильная исходной.

Теорема (5) О несовместимости системы уравнений.

Если система уравнений содержит противоречивое уравнение, то она несовместна.

Алгоритм метода Жордана-Гаусса

Алгоритм решения систем уравнений методом Жордана-Гаусса состоит из ряда однотипных шагов, на каждом из которых производятся действия в следующем порядке:

  1. Проверяется, не является ли система несовместной. Если система содержит противоречивое уравнение, то она несовместна.
  2. Проверяется возможность сокращения числа уравнений. Если в системе содержится тривиальное уравнение, его вычеркивают.
  3. Если система уравнений является разрешенной, то записывают общее решение системы и если необходимо — частные решения.
  4. Если система не является разрешенной, то в уравнении, не содержащем разрешенной неизвестной, выбирают разрешающий элемент и производят преобразование Жордана с этим элементом.
  5. Далее заново переходят к пункту 1

Пример 3 Решить систему уравнений методом Жордана-Гаусса.

Найти: два общих и два соответствующих базисных решения

Решение:

Вычисления приведены в нижеследующей таблице:

Справа от таблицы изображены действия над уравнениями. Стрелками показано к какому уравнению прибавляется уравнение с разрешающим элементом, умноженное на подходящий множитель.

В первых трех строках таблицы помещены коэффициенты при неизвестных и правые части исходной системы. Результаты первого преобразования Жордана с разрешающим элементом равным единице приведены в строках 4, 5, 6. Результаты второго преобразования Жордана с разрешающим элементом равным (-1) приведены в строках 7, 8, 9. Так как третье уравнение является тривиальным, то его можно не учитывать.

Равносильная система с разрешенными неизвестными и имеет вид:

Теперь можем записать Общее решение:

Приравниваем свободные переменные и нулю и получаем: .

Базисное решение:

Для того чтобы найти второе общее и соответствующее ему базисное решение, в полученной разрешенной системе в каком-либо уравнении необходимо выбрать какой-либо другой разрешающий элемент. (дело в том, что линейное уравнение может содержать несколько общих и базисных решений). Если разрешенная система уравнений, равносильная исходной системе содержит неизвестных и уравнений, то число общих и соответствующих базисных решений исходной системы равно числу сочетаний и . Количество сочетаний можно вычислить по формуле:

В нашем случае выбран разрешающий элемент (-1) в первом уравнении при (строка 7). Далее производим преобразование Жордана. Получаем новую разрешенную систему (строки 10,11) c новыми разрешенными неизвестными и :

Записываем второе общее решение:

И соответствующее ему базисное решение:

[spoiler title=”источники:”]

http://bstudy.net/719710/estestvoznanie/razreshennaya_sistema_uravneniy_obschee_chastnoe_bazisnoe_resheniya

http://www.grandars.ru/student/vysshaya-matematika/metod-gaussa.html

[/spoiler]

Решение:

Расширенная матрица данной системы имеет вид

Выполним
прямой ход метода Гаусса.

Умножим
первую строку на (-1) и прибавим ко второй
и третьей строке. Получим

Меняем
местами вторую и третью строки матрицы.
Получаем

Вторую
строку умножаем на (-2) и прибавляем к
третьей. Получаем

Разделим
третью строку на 2. Получим

Итак,
прямой ход осуществлен, в результате
преобразования матрицы получим систему
уравнений, эквивалентную заданной

Обратный
ход позволяет последовательно определить
все неизвестные системы. Так как система
содержит 5 неизвестных и всего 3 уравнения,
то выберем x4,
x5
– свободными
переменными, а x1,
x2
x3
– базисными переменными.

Из
последнего уравнения находим x3=3-x4x5
и подставляем во второе уравнение для
определения x2.
Получаем

Подставляем
найденные x2
и x3 в
первое уравнение и находим
x1=6+x2x3+x4x5=6+
-3+
x4
+x5
+
x4x5;

x1=3,5+2,5x4-0,5x5.

В результате получаем общее решение системы

.

Одно базисное
решение получаем при x4=x5=0,
т.е. x1=3,5;
x2=0,5;
x3=3
или X1=(3,5;
0,5; 3; 0; 0).

Чтобы получить
другое базисное решение, достаточно
задать x4=1;
x5=0,
тогда x1=6;
x2=1;
x3=2
или X2=(6;
1; 2; 1; 0).

Пример 7.
Найти характеристические числа и
собственные векторы линейного
преобразования с матрицей А =
.

Решение:

Запишем
линейное преобразование в виде:

Составим
характеристическое уравнение:

l2
– 8l
+ 7 = 0;

Корни
характеристического уравнения: l1
= 7; l2
= 1;

Для
корня l1
= 7:

Из
системы получается зависимость: x1
– 2
x2
=
0. Собственные
векторы для первого корня характеристического
уравнения имеют координаты: (t;
0,5
t)
где t
параметр.

Для
корня l2
= 1:

Из
системы получается зависимость: x1
+
x2
=
0. Собственные
векторы для второго корня характеристического
уравнения имеют координаты: (t;
t)
где t
параметр.

Полученные
собственные векторы можно записать в
виде:

Пример
8
.
Дано комплексное число z.
Требуется:

  1. записать
    число z
    в алгебраической и тригонометрической
    формах;

  2. найти
    все корни уравнения
    .

.

Решение:

1)
Комплексное число z
в
алгебраической форме имеет вид: z=а+bi;

в тригонометрической
форме: z=r(cosj+i×sinj),
где
и
.

Для
тог чтобы записать

в алгебраической форме, умножим числитель
и знаменатель на сопряженное к знаменателю,
т. е. на 1-
i.

.


– алгебраическая
форма.

,
,

,

.


тригонометрическая форма.

2)

Þ

.

Так
как число
в
тригонометрической форме

Þ

.

Применяя
формулу для извлечения корня из
комплексного числа:

,

получаем

Если
k=0,
то
;

Если

k=1,
то
;

Если
k=2,
то
.

Следовательно,
корни уравнения в алгебраической форме
имеет вид

Ответ:



,



,

.

Пример 9.
Даны два линейных преобразования:

Средствами
матричного исчисления найти преобразование,
выражающее x1¢¢,
x
2¢¢,
x3¢¢
через
x1,
x2,
x3.

Решение:
Первое преобразование определяется
матрицей A,
а второе ¾
матрицей B,
где

Искомое
преобразование является произведением
данных преобразований с матрицей

Перемножив
матрицы B
и A,
получим матрицу

Следовательно,
искомое преобразование таково:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Содержание:

Базисные и свободные переменные:

Пусть задана система

Метод Гаусса - определение и вычисление с примерами решения

Элементарными преобразованиями системы линейных уравнений называются следующие преобразования:

  1. исключение из системы уравнения вида Метод Гаусса - определение и вычисление с примерами решения
  2. умножение обеих частей одного из уравнений системы на любое действительное число Метод Гаусса - определение и вычисление с примерами решения;
  3. перестановка местами уравнений системы;
  4. прибавление к обеим частям одного из уравнений системы соответствующих частей другого уравнения, умноженных на любое действительное число не равное нулю.

Элементарные преобразования преобразуют данную систему уравнений в эквивалентную систему, т.е. в систему, которая имеет те же решения, что и исходная.

Для решения системы т линейных уравнений с т неизвестными удобно применять метод Гаусса, называемый методом последовательного исключения неизвестных, который основан на применении элементарных преобразований системы. Рассмотрим этот метод.

Предположим, что в системе (6.1.1)Метод Гаусса - определение и вычисление с примерами решения. Если это не так, то переставим уравнения системы так, чтобы Метод Гаусса - определение и вычисление с примерами решения .

На первом шаге метода Гаусса исключим неизвестное Метод Гаусса - определение и вычисление с примерами решения из всех уравнений системы (6.1.1), начиная со второго. Для этого последовательно умножим первое уравнение системы на множители

Метод Гаусса - определение и вычисление с примерами решения и вычтем последовательно преобразованные уравнения из второго, третьего, …, последнего уравнения системы (6.1.1). В результате получим эквивалентную систему:

Метод Гаусса - определение и вычисление с примерами решения (6.1.2)

в которой коэффициенты Метод Гаусса - определение и вычисление с примерами решения вычислены по формулам:

Метод Гаусса - определение и вычисление с примерами решения На втором шаге метода Гаусса исключим неизвестное Метод Гаусса - определение и вычисление с примерами решения из всех уравнений системы (6.1.2) начиная с третьего, предполагая, что Метод Гаусса - определение и вычисление с примерами решения (в противном случае, переставим уравнения системы (6.1.2)

чтобы это условие было выполнено). Для исключения неизвестного Метод Гаусса - определение и вычисление с примерами решения последовательно умножим второе уравнение системы (6.1.2) на множетели Метод Гаусса - определение и вычисление с примерами решения и вычтем последовательно преобразованные уравнения из третьего, четвёртого, последнего,…,уравнения системы (6.1.2). В результате получим эквивалентную систему:

Метод Гаусса - определение и вычисление с примерами решения

в которой коэффициенты Метод Гаусса - определение и вычисление с примерами решениявычислены по формулам:

Метод Гаусса - определение и вычисление с примерами решения

Продолжая аналогичные преобразования, систему (6.1.1) можно привести к одному из видов:

Метод Гаусса - определение и вычисление с примерами решения

или

Метод Гаусса - определение и вычисление с примерами решения

Совокупность элементарных преобразований, приводящих систему (6.1.1) к виду (6.1.4) или (6.1.5) называется прямым ходом метода Гаусса.

Отметим, что если на каком-то шаге прямого хода метода Гаусса получим уравнение вида:

Метод Гаусса - определение и вычисление с примерами решения, то это означает, что система (6.1.1) несовместна.

Итак, предположим, что в результате прямого хода метода Гаусса мы получили систему (6.1.4), которая называется системой треугольного вида. Тогда из последнего уравнения находим значение Метод Гаусса - определение и вычисление с примерами решения подставляем найденное значение Метод Гаусса - определение и вычисление с примерами решения в предпоследнее уравнение системы (6.1.4) и находим значение Метод Гаусса - определение и вычисление с примерами решения; и т.д. двигаясь снизу вверх в системе (6.1.4) находим единственные значения неизвестных Метод Гаусса - определение и вычисление с примерами решения которые и определяют единственное решение системы (6.1.1). Построение решения системы (6.1.4) называют обратным ходом метода Гаусса.

Если же в результате прямого хода метода Гаусса мы получим систему (6.1.5), которая называется системой ступенчатого вида, то из последнего уравнения этой системы находим значение неизвсстногоМетод Гаусса - определение и вычисление с примерами решения которое выражается через неизвестные Метод Гаусса - определение и вычисление с примерами решения. Найденное выражение подставляем в предпоследнее уравнение системы (6.1.5) и выражаем неизвестное Метод Гаусса - определение и вычисление с примерами решения через неизвестные Метод Гаусса - определение и вычисление с примерами решения и т.д. Двигаясь снизу вверх в системе (6.1.5) находим выражения неизвестных Метод Гаусса - определение и вычисление с примерами решения через неизвестные Метод Гаусса - определение и вычисление с примерами решенияПри этом неизвестные Метод Гаусса - определение и вычисление с примерами решения называются базисными неизвестными, а неизвестные Метод Гаусса - определение и вычисление с примерами решения – свободными. Так как свободным неизвестным можно придавать любые значения и получать соответствующие значения базисных неизвестных, то система (6.1.5), а, следовательно, и система (6.1.1) в этом случае имеет бесконечное множество решений. Полученные выражения базисных неизвестных через свободные неизвестные называются общим решением системы уравнений (6.1.1).

Таким образом, если система (6.1.1) путём элементарных преобразований приводится к треугольному виду (6.1.4), то она имеет единственное решение, если же она приводится к системе ступенчатого вида (6.1.5), то она имеет бесконечное множество решений. При этом неизвестные Метод Гаусса - определение и вычисление с примерами решения, начинающие уравнения ступенчатой системы, называются базисными, а остальные неизвестные – свободными.

Практически удобнее преобразовывать не саму систему уравнений (6.1.1), а расширенную матрицу системы, соединяя последовательно получающиеся матрицы знаком эквивалентностиМетод Гаусса - определение и вычисление с примерами решения.

Формализовать метод Гаусса можно при помощи следующего алгоритма.

Алгоритм решения системы m линейных уравнений с n неизвестными методом Гаусса

1. Составьте расширенную матрицу коэффициентов системы уравнений так, чтобы Метод Гаусса - определение и вычисление с примерами решения было не равно нулю:

Метод Гаусса - определение и вычисление с примерами решения

2. Выполните первый шаг метода Гаусса: в первом столбце начиная со второй строки, запишите нули, а все другие элементы вычислите по формуле

Метод Гаусса - определение и вычисление с примерами решения

Матрица после первого шага примет вид

Метод Гаусса - определение и вычисление с примерами решения

3. Выполните второй шаг метода Гаусса, предполагая, что Метод Гаусса - определение и вычисление с примерами решения : во втором столбце начиная с третьей строки, запишите нули, а все другие элементы вычислите по формуле

Метод Гаусса - определение и вычисление с примерами решения

После второго шага матрица примет вид Метод Гаусса - определение и вычисление с примерами решения

4. Продолжая аналогичные преобразования, придёте к одному из двух случаев:

а) либо в ходе преобразований получим уравнение вида Метод Гаусса - определение и вычисление с примерами решения

тогда данная система несовместна;

б) либо придём к матрице вида:

Метод Гаусса - определение и вычисление с примерами решения

где Метод Гаусса - определение и вычисление с примерами решения. Возможное уменьшение числа строк Метод Гаусса - определение и вычисление с примерами решения

связано с тем, что в процессе преобразований матрицы исключаются строки, состоящие из нулей.

5. Использовав конечную матрицу, составьте систему, при этом возможны два случая:

5.1. r=n:

Метод Гаусса - определение и вычисление с примерами решения

Система имеет единственное,решение Метод Гаусса - определение и вычисление с примерами решения, которое находим из системы обратным ходом метода Гаусса. Из последнего уравнения находите Метод Гаусса - определение и вычисление с примерами решения. Из предпоследнего уравнения находите Метод Гаусса - определение и вычисление с примерами решения затем из третьего от конца – Метод Гаусса - определение и вычисление с примерами решения и т.д., двигаясь снизу вверх, найдём все неизвестные Метод Гаусса - определение и вычисление с примерами решения.

5.2. Метод Гаусса - определение и вычисление с примерами решения:

Метод Гаусса - определение и вычисление с примерами решения

Тогда r неизвестных будут базисными, а остальные (n-r) – свободными. Из последнего уравнения выражаете неизвестное Метод Гаусса - определение и вычисление с примерами решениячерез Метод Гаусса - определение и вычисление с примерами решения. Из предпоследнего уравнения находите Метод Гаусса - определение и вычисление с примерами решения и т.д.

Система имеет в этом случае бесконечное множество решений.

Приведенный алгоритм можно несколько видоизменить и получить алгоритм полного исключения, состоящий в выполнении следующих шагов. На первом шаге:

  1. составляется расширенная матрица;
  2. выбирается разрешающий элемент расширенной матрицы Метод Гаусса - определение и вычисление с примерами решения (если Метод Гаусса - определение и вычисление с примерами решения, строки матрицы можно переставить так, чтобы выполнялось условие Метод Гаусса - определение и вычисление с примерами решения);
  3. элементы разрешающей строки (строки, содержащей разрешающий элемент) оставляем без изменения; элементы разрешающего столбца (столбца, содержащего разрешающий элемент), кроме разрешающего элемента, заменяем нулями;
  4. все другие элементы вычисляем по правилу прямоугольника: преобразуемый элемент равен разности произведений элементов главной диагонали (главную диагональ образует разрешающий элемент и преобразуемый) и побочной диагонали (побочную диагональ образуют элементы, стоящие в разрешающей строке и разрешающем столбце): Метод Гаусса - определение и вычисление с примерами решения – разрешающий элемент (см. схему).

Последующие шаги выполняем по правилам:

1) выбирается разрешающий элемент Метод Гаусса - определение и вычисление с примерами решения (диагональный элемент матрицы);

2) элементы разрешающей строки оставляем без изменения;

Метод Гаусса - определение и вычисление с примерами решения

3) все элементы разрешающего столбца, кроме разрешающего элемента, заменяем нулями; • •

4) все другие элементы матрицы пересчитываем по правилу прямоугольника.

На последнем шаге делим элементы строк на диагональные элементы матрицы, записанные слева от вертикальной черты, и получаем решение системы.

Пример:

Решить систему уравнений:

Метод Гаусса - определение и вычисление с примерами решения

Решение:

Составим расширенную матрицу системы, и применим алгоритм полного исключения, обозначая разрешающий элемент символом Метод Гаусса - определение и вычисление с примерами решения

Метод Гаусса - определение и вычисление с примерами решения

Из последней матрицы находим следующее решение системы

уравнении: Метод Гаусса - определение и вычисление с примерами решения

Ответ: Метод Гаусса - определение и вычисление с примерами решения

Пример:

Решить систему уравнений:

Метод Гаусса - определение и вычисление с примерами решения

Решение:

Составим расширенную матрицу системы, и применим алгоритм полного исключения, обозначая разрешающий элемент символом Метод Гаусса - определение и вычисление с примерами решенияМетод Гаусса - определение и вычисление с примерами решения

Система привелась к ступенчатому виду (трапециевидной форме):

Метод Гаусса - определение и вычисление с примерами решения

в которой неизвестные Метод Гаусса - определение и вычисление с примерами решения – базисные, а Метод Гаусса - определение и вычисление с примерами решения – свободные. Из второго уравнения системы (6.1.6) находим выражение Метод Гаусса - определение и вычисление с примерами решения через Метод Гаусса - определение и вычисление с примерами решения. Из первого уравнений найдём выражение Метод Гаусса - определение и вычисление с примерами решения через Метод Гаусса - определение и вычисление с примерами решения и Метод Гаусса - определение и вычисление с примерами решения . Система имеет бесконечное множество решений. Общее решение системы имеет вид:

Метод Гаусса - определение и вычисление с примерами решения

в котором Метод Гаусса - определение и вычисление с примерами решения принимают любые значения из множества действительных чисел.

Если в общем решении положить Метод Гаусса - определение и вычисление с примерами решения, то получим решение Метод Гаусса - определение и вычисление с примерами решения, которое называется частным решением заданной системы.

Ответ: система имеет бесконечное множество решений, общее решение которой записывается в виде: Метод Гаусса - определение и вычисление с примерами решения

Пример:

Решить систему уравнений:

Метод Гаусса - определение и вычисление с примерами решения

Решение:

Составим расширенную матрицу системы, и применим алгоритм полного исключения, обозначая разрешающий элемент символомМетод Гаусса - определение и вычисление с примерами решения Метод Гаусса - определение и вычисление с примерами решения В последней матрице мы получили четвёртую строку, которая равносильна уравнению Метод Гаусса - определение и вычисление с примерами решения. Это означает, что заданная система не имеет решений.

Ответ: система несовместна.

Замечание 1. Если дана система уравнений (6.1.1), в которой число уравнений m равно числу неизвестных n (m=n) и определитель этой системы Метод Гаусса - определение и вычисление с примерами решения не равен нулю Метод Гаусса - определение и вычисление с примерами решения, то система имеет единственное решение, которое можно найти по формулам Крамера: Метод Гаусса - определение и вычисление с примерами решения, где определитель Метод Гаусса - определение и вычисление с примерами решения получен из определи-теля Метод Гаусса - определение и вычисление с примерами решения заменой j-ro столбца столбцом свободных членов.

Если же такую систему (m-n) записать в матричной форме AX=F, то её решение можно найти по формуле Метод Гаусса - определение и вычисление с примерами решения и оно является единственным.

Замечание 2. Используя метод Гаусса, тем самым и алгоритм полного исключения, можно находить обратную матрицу. Для этого составляется расширенная матрица, в которой слева от вертикальной черты записана матрица А, а справа – единичная матрица. Реализовав алгоритм полного исключения, справа от вертикальной черты получаем обратную матрицу, а слева – единичную.

Пример:

Найти обратную матрицу для матрицы: Метод Гаусса - определение и вычисление с примерами решения

Решение:

Так как

Метод Гаусса - определение и вычисление с примерами решения

то обратная матрицаМетод Гаусса - определение и вычисление с примерами решения существует. Составим расширенную мат-рицу и применим алгоритм полного исключения:

Метод Гаусса - определение и вычисление с примерами решения

тогда

Метод Гаусса - определение и вычисление с примерами решения

Покажем, что Метод Гаусса - определение и вычисление с примерами решения

Метод Гаусса - определение и вычисление с примерами решения

ответ Метод Гаусса - определение и вычисление с примерами решения

Исследование совместности и определённости системы. Теорема Кронекера-Капелли

Рассмотрим систему (6.1.1) m линейных уравнений с n неизвестными при любых m и n (случай m=n не исключается). Вопрос о совместности системы решается следующим критерием.

Теорема 6.2.1. (критерий Кронкера-Капелли). Для того, чтобы система линейных уравнений(6.1.1) была совместна, необходимо и достаточно, чтобы ранг матрицы А системы был равен рангу расширенной матрицы Метод Гаусса - определение и вычисление с примерами решения.

Доказательство и Необходимость:

Предположим, что система (6.1.1) совместна и Метод Гаусса - определение и вычисление с примерами решения – какое-либо её решение (возможно единственное). По определению решения системы получаем:

Метод Гаусса - определение и вычисление с примерами решения

Из этих равенств следует, что последний столбец матрицыМетод Гаусса - определение и вычисление с примерами решения есть линейная комбинация остальных ее столбцов с коэффициентами Метод Гаусса - определение и вычисление с примерами решения, то есть система вектор-столбцов матрицы Метод Гаусса - определение и вычисление с примерами решения линейно зависима (свойство 3 п.2.5) и значит последний столбец матрицы Метод Гаусса - определение и вычисление с примерами решения не изменяет ранга матрицы А, т.е.

Метод Гаусса - определение и вычисление с примерами решения.

Достаточность. Пусть Метод Гаусса - определение и вычисление с примерами решения. Рассмотрим r базисных

столбцов матрицы А, которые одновременно будут базисными столбцами и матрицы Метод Гаусса - определение и вычисление с примерами решения. В этом случае последний столбец матрицы Метод Гаусса - определение и вычисление с примерами решения можно представить как линейную комбинацию базисных столбцов, а следовательно, и как линейную комбинацию всех столбцов матрицы А, то есть

Метод Гаусса - определение и вычисление с примерами решения

где Метод Гаусса - определение и вычисление с примерами решения – коэффициенты линейных комбинаций. А это означает, что Метод Гаусса - определение и вычисление с примерами решения– решение системы (6.1.1), следовательно,

эта система совместна.

Совместная система линейных уравнений (6.1.1) может быть либо определенной, либо неопределенной.

Следующая теорема даст критерий определенности.

Теорема 6.2.2. Совместная система линейных уравнений имеет единственное решение тогда и только тогда, когда ранг матрицы А системы равен числу п ее неизвестных.

Таким образом, если число уравнений m системы (6.1.1) меньше числа ее неизвестных n и система совместна, то ранг матрицы системы Метод Гаусса - определение и вычисление с примерами решения. Значит система неопределенная.

В случае Метод Гаусса - определение и вычисление с примерами решения по теореме 6.2.2 получаем, что система имеет единственное решение. Так как Метод Гаусса - определение и вычисление с примерами решения, то определительМетод Гаусса - определение и вычисление с примерами решения и квадратная матрица А имеет обратную x матрицу Метод Гаусса - определение и вычисление с примерами решения и её решение можно найти по формуле: Метод Гаусса - определение и вычисление с примерами решения, где Х- столбец неизвестных, F— столбец свободных членов, или по формулам Крамера.

Следует отметить, что, решая систему (6.1.1) методом Гаусса, мы определяем и совместность, и определённость системы.

Пример:

Исследовать на совместность и определённость следующую систему линейных уравнений:

Метод Гаусса - определение и вычисление с примерами решения

Решение:

Составим расширенную матрицу заданной системы. Определяя её ранг, находим тем самым и ранг матрицы системы. Для нахождения ранга матрицы применим алгоритм метода Гаусса. Метод Гаусса - определение и вычисление с примерами решения

Из последней матрицы следует, что ранг расширенной матрицы Метод Гаусса - определение и вычисление с примерами решенияне может быть больше ранга матрицы А системы. Так как

Метод Гаусса - определение и вычисление с примерами решения, то заданная система совместная и неопределённая.

  • Заказать решение задач по высшей математике

Однородные системы линейных уравнений

Система линейных уравнений (6.1.1) называется однородной, если все свободные члены Метод Гаусса - определение и вычисление с примерами решения равны нулю, то есть система имеет следующий вид:

Метод Гаусса - определение и вычисление с примерами решения

Эта система всегда совместна, так как очевидно, что она имеет нулевое решение

Метод Гаусса - определение и вычисление с примерами решения

Для однородной системы важно установить, имеет ли она ненулевые решения. Этот факт устанавливается следующей теоремой.

Теорема 6.3.1. Для того, чтобы однородная система имела ненулевые решения, необходимо и достаточно, чтобы ранг г матрицы А системы был меньше числа неизвестных n (rМетод Гаусса - определение и вычисление с примерами решенияn). 

Доказательство. Необходимость. Пусть система (6.3.1) имеет ненулевое решение. Тогда она неопределённая, т.к. имеет еще и нулевое решение. В силу теоремы 6.2.2 ранг матрицы неопределённой системы не может равняться n потому что при r(А)=n система определённая. Следовательно, Метод Гаусса - определение и вычисление с примерами решения и так как он не может быль больше n то Метод Гаусса - определение и вычисление с примерами решения.

Достаточность. Если Метод Гаусса - определение и вычисление с примерами решения, то в силу теоремы 6.2.2 система (6.3.1) имеет бесчисленное множество решений. А так как только одно решение является нулевым, то все остальные решения ненулевые. Метод Гаусса - определение и вычисление с примерами решения

Следствие 1. Если число неизвестных в однородной системе больше числа уравнений, то однородная система имеет ненулевые решения.

Доказательство. Действительно, ранг матрицы системы (6.3.1) не может превышать m. Но так как по условиюМетод Гаусса - определение и вычисление с примерами решения, то и Метод Гаусса - определение и вычисление с примерами решения. Следовательно, в силу теоремы 6.3.1 система имеет ненулевые решения.

Следствие 2. Для того, чтобы однородная система с квадрат-ной матрицей имела ненулевые решения, необходимо и достаточно, чтобы её определитель Метод Гаусса - определение и вычисление с примерами решения равнялся нулю.

Доказательство. Рассмотрим однородную систему с квадратной матрицей:

Метод Гаусса - определение и вычисление с примерами решения (6.3.2)

Если определитель матрицы системы Метод Гаусса - определение и вычисление с примерами решения, то ранг матрицы Метод Гаусса - определение и вычисление с примерами решения, тогда в силу теоремы 6.3.1 система (6.3.2) имеет ненулевое решение, так как условие Метод Гаусса - определение и вычисление с примерами решения является необходимым и достаточным условием для существования ненулевого решения. Заметим, что если определитель матрицы системы (6.3.2) не равен нулю, то Метод Гаусса - определение и вычисление с примерами решения в силу теоремы 6.3.1 она имеет только нулевое решение.

Пример:

Решить систему однородных линейных уравнений:

Метод Гаусса - определение и вычисление с примерами решения

Решение:

Составим матицу системы и применим алгоритм полного исключения:Метод Гаусса - определение и вычисление с примерами решения

Из последней матрицы следует, что Метод Гаусса - определение и вычисление с примерами решения и система имеет бесчисленное множество решений.

Используя последнюю матрицу, последовательно находим общее решение: Метод Гаусса - определение и вычисление с примерами решения

Неизвестные Метод Гаусса - определение и вычисление с примерами решения– базисные, Метод Гаусса - определение и вычисление с примерами решения– свободная неизвестная, Метод Гаусса - определение и вычисление с примерами решения.

Фундаментальная система решений. Общее решение неоднородной системы линейных уравнений

Рассмотрим систему однородных линейных уравнений

Метод Гаусса - определение и вычисление с примерами решения (6.4.1)

Любое решение

Метод Гаусса - определение и вычисление с примерами решения

системы m линейных однородных уравнений с n неизвестными можно рассматривать как вектор-строкуМетод Гаусса - определение и вычисление с примерами решения или как вектор-столбец Метод Гаусса - определение и вычисление с примерами решения . Поэтому имеют смысл такие понятия, как сумма двух решений, произведение решения на число, линейная комбинация решений, линейная зависимость или независимость системы решений. Непосредственной подстановкой в систему (6.4.1) можно показать, что:

1) сумма двух решений также является решением системы, т.е.

еслиМетод Гаусса - определение и вычисление с примерами решения – решения системы

(6.4.1), то и Метод Гаусса - определение и вычисление с примерами решения – решение системы (6.4.1);

2) произведение решенийМетод Гаусса - определение и вычисление с примерами решенияна любое число Метод Гаусса - определение и вычисление с примерами решения есть решение системы, т.е. Метод Гаусса - определение и вычисление с примерами решения – решение системы.

Из приведенных свойств следует, что

3) линейная комбинация решений системы (6.4.1) является решением этой системы.

В частности, если однородная система (6.4.1) имеет хотя бы одно ненулевое решение, то из него умножением на произвольные числа, можно получить бесконечное множество решений.

Определение 6.4.1. Фундаментальной системой решений для системы однородных линейных уравнений (6.4.1) называется линейно независимая система решений, через которую линейно выражается любое решение системы (6.4.1).

Заметим, что если ранг матрицы системы (6.4.1) равен числу неизвестных n (r(А)=n), то эта система не имеет фундаментальной системы решений, так как единственным решением будет нулевое решение, составляющее линейно зависимую систему. Существование и число фундаментальных решений определяется следующей теоремой.

Теорема 6.4.1. Если ранг матрицы однородной системы уравнений (6.4.1) меньше числа неизвестных (r(А)Метод Гаусса - определение и вычисление с примерами решенияn), то система (6.4.1) имеет бесконечное множество фундаментальных систем решений, причём каждая из них состоит из n-r решений и любые n-r линейно независимые решения составляют фундаментальную систему.

Сформулируем алгоритм построения фундаментальной системы решений:

  1. Выбираем любой определитель Метод Гаусса - определение и вычисление с примерами решения порядка n-r, отличный от нуля, в частности, определитель порядка n-r, у которого элементы главной диагонали равны единице, а остальные – нули.
  2. Свободным неизвестным придаём поочерёдно значения, равные элементам первой, второй и т.д. строк определителяМетод Гаусса - определение и вычисление с примерами решения, и каждый раз из общего решения находим соответствующие значения базисных неизвестных.
  3. Из полученных n-r решений составляют фундаментальную систему решений.

Меняя произвольно определитель Метод Гаусса - определение и вычисление с примерами решения, можно получать всевозможные фундаментальные системы решений.

Пример:

Найти общее решение и фундаментальную систему решений для однородной системы уравнений:

Метод Гаусса - определение и вычисление с примерами решения

Решение:

Составим матрицу системы и применим алгоритм полного исключения.

Метод Гаусса - определение и вычисление с примерами решения

Для последней матрицы составляем систему:

Метод Гаусса - определение и вычисление с примерами решения,

, из которой находим общее решение:

Метод Гаусса - определение и вычисление с примерами решения

в котором Метод Гаусса - определение и вычисление с примерами решения — базисные неизвестные, а Метод Гаусса - определение и вычисление с примерами решения– свободные неизвестные.

Построим фундаментальную систему решений. Для этого выбираем определительМетод Гаусса - определение и вычисление с примерами решения и свободным неизвестным придаём поочерёдно значения, равные элементам первой, а затем второй строк, т.е. положим вначале Метод Гаусса - определение и вычисление с примерами решения и получим из общего решения Метод Гаусса - определение и вычисление с примерами решения; затем полагаем Метод Гаусса - определение и вычисление с примерами решения, из общего решения находим: Метод Гаусса - определение и вычисление с примерами решения.

Таким образом, построенные два решения (1; -1; 1; 0) и (-6; 4; 0; 1) составляют фундаментальную систему решений.

Если ранг матрицы системы однородных линейных уравнений (6.4.1) на единицу меньше числа неизвестных: Метод Гаусса - определение и вычисление с примерами решения то Метод Гаусса - определение и вычисление с примерами решения, и значит, фундаментальная система состоит из одного решения. Следовательно, любое ненулевое решение образует фундаментальную систему. В этом случае любые два решения различаются между собой лишь числовыми множителями.

Рассмотрим теперь неоднородную систему m линейных уравнений с n неизвестными (6.1.1). Если в системе (6.1.1) положить Метод Гаусса - определение и вычисление с примерами решения, то полученная однородная система называется приведенной для системы (6.1.1).

Решения системы (6.1.1) и её приведенной системы удовлетворяют свойствам:

  1. Сумма и разность любого решения системы (6.1.1) и любого решения её приведенной системы является решением неоднородной системы.
  2. Все решения неоднородной системы можно получить, прибавляя к одному (любому) её решению поочерёдно все решения её приведенной системы.

Из этих свойств следует теорема.

Теорема 6.4.2. Общее решение неоднородной системы (6.1.1.) определяется суммой любого частного решения этой системы и общего решения её приведенной системы.

Пример:

Найти общее решение системы:

Метод Гаусса - определение и вычисление с примерами решения

Решение:

Составим расширенную матрицу (A|F) заданной системы и применим алгоритм полного исключения:

Метод Гаусса - определение и вычисление с примерами решения,

Преобразованной матрице соответствует система уравнений:

Метод Гаусса - определение и вычисление с примерами решения

из которой находим общее решение системы:

Метод Гаусса - определение и вычисление с примерами решения

, где Метод Гаусса - определение и вычисление с примерами решения — базисные неизвестные, а Метод Гаусса - определение и вычисление с примерами решения– свободные неизвестные.

Покажем, что это общее решение определяется суммой любого частного решения заданной системы и общего решения приведенной системы.

Подставляя вместо свободных неизвестных Метод Гаусса - определение и вычисление с примерами решения в общее решение системы нули, получаем частное решение исходной системы: Метод Гаусса - определение и вычисление с примерами решения.

Очевидно, что общее решение приведенной системы имеет вид:

Метод Гаусса - определение и вычисление с примерами решения

Суммируя частное решение заданной системы и общее решение приведенной системы, получим общее решение (6.4.2) исходной системы.

Отметим, что общее решение системы (6.1.1) можно представить в векторном виде:

Метод Гаусса - определение и вычисление с примерами решения

где Метод Гаусса - определение и вычисление с примерами решения– • некоторое решение (вектор-строка) системы (6.1.1);

Метод Гаусса - определение и вычисление с примерами решения – фундаментальная система решений системы (6.4.1);

Метод Гаусса - определение и вычисление с примерами решения – любые действительные числа.

Формула (6.4.4) называется общим решением системы (6.1.1) в векторной форме.

Запишем общее решение системы примера 6.4.1 в векторной форме. Для этого определим фундаментальную систему решений приведенной системы. Возьмём определитель Метод Гаусса - определение и вычисление с примерами решения и придадим поочерёдно свободным неизвестным значения, равные элементам строк. Пусть Метод Гаусса - определение и вычисление с примерами решения тогда из общего решения (6.4.3) приведенной системы находим Метод Гаусса - определение и вычисление с примерами решения; если же Метод Гаусса - определение и вычисление с примерами решения, то Метод Гаусса - определение и вычисление с примерами решения. Следовательно, фундаментальную систему решений образуют решения: Метод Гаусса - определение и вычисление с примерами решения и Метод Гаусса - определение и вычисление с примерами решения. Тогда общее решение заданной системы в векторной форме имеет вид: Метод Гаусса - определение и вычисление с примерами решения, где Метод Гаусса - определение и вычисление с примерами решения – частное решение заданной системы; Метод Гаусса - определение и вычисление с примерами решения.

Определение метода Гаусса

Исторически первым, наиболее распространенным методом решения систем линейных уравнений является метод Гаусса, или метод последовательного исключения неизвестных. Сущность этого метода состоит в том, что посредством последовательных исключений неизвестных данная система превращается в ступенчатую (в частности, треугольную) систему, равносильную данной. При практическом решении системы линейных уравнений методом Гаусса удобнее приводить к ступенчатому виду не саму систему уравнений, а расширенную матрицу этой системы, выполняя элементарные преобразования над ее строками. Последовательно получающиеся в ходе преобразования матрицы обычно соединяют знаком эквивалентности.

Пример:

Решить систему уравнений методом Гаусса:

Метод Гаусса - определение и вычисление с примерами решения

Решение:

Выпишем расширенную матрицу данной системы Метод Гаусса - определение и вычисление с примерами решения и произведем следующие элементарные преобразования над ее строками:

а) из ее второй и третьей строк вычтем первую, умноженную соответственно на 3 и 2: Метод Гаусса - определение и вычисление с примерами решения

б) третью строку умножим на (-5) и прибавим к ней вторую: Метод Гаусса - определение и вычисление с примерами решения

В результате всех этих преобразований данная система приводится к треугольному виду: Метод Гаусса - определение и вычисление с примерами решения

Из последнего уравнения находим Метод Гаусса - определение и вычисление с примерами решения Подставляя это значение во второе уравнение, имеем Метод Гаусса - определение и вычисление с примерами решения Далее из первого уравнения получим Метод Гаусса - определение и вычисление с примерами решения

Вычисление метода Гаусса

Этот метод основан на следующей теореме.

Теорема:

Элементарные преобразования не изменяют ранга матрицы.

К элементарным преобразованиям матрицы относят:

  1. перестановку двух параллельных рядов;
  2. умножение какого-нибудь ряда на число, отличное от нуля;
  3. прибавление к какому-либо ряду матрицы другого, параллельного ему ряда, умноженного на произвольное число.

Путем элементарных преобразований исходную матрицу можно привести к трапециевидной форме

Метод Гаусса - определение и вычисление с примерами решения

где все диагональные элементы Метод Гаусса - определение и вычисление с примерами решения отличны от нуля. Тогда ранг полученной матрицы равен рангу исходной матрицы и равен k.

Пример:

Найти ранг матрицы

Метод Гаусса - определение и вычисление с примерами решения

1) методом окаймляющих миноров;

2 ) методом Гаусса.

Указать один из базисных миноров.

Решение:

1. Найдем ранг матрицы методом окаймляющих миноров. Выберем минор второго порядка, отличный от нуля. Например,

Метод Гаусса - определение и вычисление с примерами решения Существуют два минора третьего порядка, окаймляющих минор Метод Гаусса - определение и вычисление с примерами решения

Метод Гаусса - определение и вычисление с примерами решения Т.к. миноры третьего порядка равны нулю, ранг матрицы равен двум. Базисным минором является, например, минор Метод Гаусса - определение и вычисление с примерами решения

2. Найдем ранг матрицы методом Гаусса. Производя последовательно элементарные преобразования, получим: Метод Гаусса - определение и вычисление с примерами решения

  1. переставили первую и третью строки;
  2. первую строку умножили на 2 и прибавили ко второй, первую строку умножили на 8 и прибавили к третьей;
  3. вторую строку умножили на -3 и прибавили к третьей.

Последняя матрица имеет трапециевидную форму и ее ранг равен двум. Следовательно, ранг исходной матрицы также равен двум.

  • Прямая линия на плоскости и в пространстве
  • Плоскость в трехмерном пространстве
  • Функция одной переменной
  • Производная функции одной переменной
  • Дифференциальные уравнения с примерами
  • Обратная матрица – определение и нахождение
  • Ранг матрицы – определение и вычисление
  • Определители второго и третьего порядков и их свойства

Добавить комментарий