Как найти два неизвестных в уравнении онлайн

Рассмотрим систему из двух нелинейных уравнений с двумя неизвестными:

Перепишем уравнения системы в следующем виде:

Тогда, первое уравнение системы представляет собой эллипс с большой полуосью равной
2
и малой полуосью равной
.
Второе уравнение системы – это прямая линия с тангесом угла наклона равным

и величиной отрезка, отсекаемого на оси
Oy
равной
35

.

Изобразим вышесказанное на схематичном графике:

схематичный график системы уравнений

Точки пересечения прямой с эллипсом
M1(x1,y1)
и
M2(x2,y2)
являются решениями исходной системы уравнений. Поскольку прямая пересекает эллипс только в двух указанных выше точках, других решений нет.

Только что мы рассмотрели так называемый

графический метод

решения систем уравнений, который хорошо подходит для решения системы из двух уравнений с двумя неизвестными. При большем количестве неизвестных, решениями будут точки в многомерном пространстве, что существенно усложняет задачу.

Если для решения исходной системы использовать более универсальный
метод подстановки, мы получим следующий результат:

x19235140.452122y135235700.871273×29235141.73784y235235700.442702

Наш онлайн калькулятор, построенный на основе системы Wolfram Alpha, позволяет решать разнообразные типы систем уравнений.

Системы уравнений по-шагам

Примеры систем уравнений

  • Система двух уравнений с двумя неизвестными
  • 2x - y = 5
    3x - y = 7
  • x - y = 1
    y - 2x = 1
  • Система трёх уравнений с тремя переменными
  • x1 - 2x2 + 3*x3 = 14
    2x1 + 3x2 - 4x3 = 0
  • Метод Гаусса
  • x - y - 1 = 0
    x + y + 2 = 0
  • Метод Крамера
  • 2*x - 3*y = 5
    5*x + y = 4
  • Прямой метод
  • 2*x - y = 3
    2*x + y = 9
  • Система нелинейных уравнений
  • x^2 - 1 = 1 + y/2
    1 - y^2 = 2 + x
  • Система четырёх уравнений
  • x1 + 2x2 + 3x3 - 2x4 = 1
    2x1 - x2 - 2x3 - 3x4 = 2
    3x1 + 2x2 - x3 + 2x4 = -5
    2x1 - 3x2 + 2x3 + x4 = 11
  • Система линейных уравнений с четырьмя неизвестными
  • 2x + 4y + 6z + 8v = 100
    3x + 5y + 7z + 9v = 116
    3x - 5y + 7z - 9v = -40
    -2x + 4y - 6z + 8v = 36
  • Система трёх нелинейных уравнений, содержащая квадрат и дробь
  • 2/x = 11
    3x + 5y + 7z + 9v = 116
    x - 3*z^2 = 0
    2/7*x + y - z = -3
  • Система двух уравнений, содержащая куб (3-ю степень)
  • x = y^3
    x - 3*z^2 = 0
    x*y = -5
  • Система уравнений c квадратным корнем
  • x + y - sqrt(x*y) = 5
    2*x*y = 3
  • Система тригонометрических уравнений
  • x + y = 5*pi/2
    sin(x) + cos(2y) = -1
  • Система показательных и логарифмических уравнений
  • y - log(x)/log(3) = 1
    x^y = 3^12

Что умеет калькулятор?

  • Решает системы уравнений различными методами:
    • Метод Крамера
    • Метод Гаусса
    • Численный метод
    • Графический метод
  • Подробное решение тремя способами:
    • Методами Крамера и Гаусса
    • Прямой способ подстановки переменных

Указанные выше примеры содержат также:

  • модуль или абсолютное значение: absolute(x) или |x|
  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x),
    арккотангенс acot(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x),
    гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    гиперболический арксинус asinh(x), гиперболический арккосинус acosh(x),
    гиперболический арктангенс atanh(x), гиперболический арккотангенс acoth(x)
  • другие тригонометрические и гиперболические функции:
    секанс sec(x), косеканс csc(x), арксеканс asec(x),
    арккосеканс acsc(x), гиперболический секанс sech(x),
    гиперболический косеканс csch(x), гиперболический арксеканс asech(x),
    гиперболический арккосеканс acsch(x)
  • функции округления:
    в меньшую сторону floor(x), в большую сторону ceiling(x)
  • знак числа:
    sign(x)
  • для теории вероятности:
    функция ошибок erf(x) (интеграл вероятности),
    функция Лапласа laplace(x)
  • Факториал от x:
    x! или factorial(x)
  • Гамма-функция gamma(x)
  • Функция Ламберта LambertW(x)
  • Тригонометрические интегралы: Si(x),
    Ci(x),
    Shi(x),
    Chi(x)

Правила ввода

Можно делать следующие операции

2*x
– умножение
3/x
– деление
x^2
– возведение в квадрат
x^3
– возведение в куб
x^5
– возведение в степень
x + 7
– сложение
x – 6
– вычитание
Действительные числа
вводить в виде 7.5, не 7,5

Постоянные

pi
– число Пи
e
– основание натурального логарифма
i
– комплексное число
oo
– символ бесконечности


Калькулятор онлайн.
Решение системы двух линейных уравнений с двумя переменными.
Метод подстановки и сложения.

С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и
экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре.
А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее
сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным
решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень
образования в области решаемых задач повышается.

Правила ввода уравнений

В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.

При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются.
Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2

В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &

Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p – 2&1/8q)

Пример подробного решения (методом подстановки и сложения) >>

Наши игры, головоломки, эмуляторы:

Немного теории.

Решение систем линейных уравнений. Способ подстановки

Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ left{ begin{array}{l} 3x+y=7 \ -5x+2y=3 end{array} right. $$

Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ left{ begin{array}{l} y = 7—3x \ -5x+2(7-3x)=3 end{array} right. $$

Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только
одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 Rightarrow -5x+14-6x=3 Rightarrow -11x=-11 Rightarrow x=1 $$

Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 cdot 1 Rightarrow y=4 $$

Пара (1;4) — решение системы

Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений,
также считают равносильными.

Решение систем линейных уравнений способом сложения

Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при
решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит
только одну переменную.

Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали
противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ left{ begin{array}{l} 2x+3y=-5 \ x-3y=38 end{array} right. $$

В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений,
получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ left{ begin{array}{l} 3x=33 \ x-3y=38 end{array} right. $$

Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение ( x-3y=38 ) получим уравнение с
переменной y: ( 11-3y=38 ). Решим это уравнение:
( -3y=27 Rightarrow y=-9 )

Таким образом мы нашли решение системмы уравнений способом сложения: ( x=11; y=-9 ) или ( (11; -9) )

Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к
решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит
только одну переменную.

Решение систем линейных уравнений

Введите коэффициенты при неизвестных в поля. Если Ваше уравнение имеет меньшее количество неизвестных, то оставьте пустыми поля при переменных, не входящих в ваше уравнение. Можно использовать дроби (13/31).

Выводить десятичную дробь

,


  • 2x-2y+z=-3
    x+3y-2z=1
    3x-y-z=2

Эта страничка поможет решить Системы Линейных Алгебраических Уравнений (СЛАУ) методом Гаусса, матричным методом или методом Крамера, исследовать их на совместность (теорема Кронекера-Капелли), определить количество решений, найти общее, частное и базисные решения.

  • Оставляйте лишние ячейки пустыми для ввода неквадратных матриц.
  • Элементы матриц – десятичные (конечные и периодические) дроби: 1/3, 3,14, -1,3(56) или 1,2e-4; либо арифметические выражения: 2/3+3*(10-4), (1+x)/y^2, 2^0,5 (=2), 2^(1/3), 2^n, sin(phi), cos(3,142rad), a_1 или (root of x^5-x-1 near 1,2).

    • decimal (finite and periodic) fractions:

      1/3, 3,14, -1,3(56) или 1,2e-4

    • 2/3+3*(10-4), (1+x)/y^2, 2^0,5 (=2), 2^(1/3), 2^n, sin(phi), cos(3,142rad), a_1 или (root of x^5-x-1 near 1,2)

    • matrix literals:

      {{1,3},{4,5}}

    • operators:

      +, -, *, /, , !, ^, ^{*}, ,, ;, , =, , , > и <

    • functions:

      sqrt, cbrt, exp, log, abs, conjugate, min, max, gcd, rank, adjugate, inverse, determinant, transpose, pseudoinverse, cos, sin, tan, cot, cosh, sinh, tanh, coth, arccos, arcsin, arctan, arccot, arcosh, arsinh, artanh и arcoth

    • units:

      rad, deg

    • special symbols:

      • pi, e, i — mathematical constants
      • k, n — integers
      • I or E — identity matrix
      • X, Y — matrix symbols
  • Используйте ↵ Ввод, Пробел, , и Delete для перемещения по ячейкам, Ctrl⌘ Cmd+C/Ctrl⌘ Cmd+V – для копирования матриц.
  • Перетаскивайте матрицы из результата (drag-and-drop), или даже из текстового редактора.
  • За теорией о матрицах и операциях над ними обращайтесь к страничке на Википедии.

Онлайн калькулятор для вычисления систем уравнений.
Калькулятор решает системы: линейных, квадратных, кубических, тригонометрических, логарифмических, показательных уравнений. Если система имеет общие методы решения, то калькулятор выдает полное аналитическое решение системы а также графическое решение, в противном случае, выдает ответ и графическое решение.

Уравнения вводятся в калькулятор в одну строку, через запятую так как указано в примере, можно вводить любое число уравнений.

Калькулятор поможет найти решение систем уравнений.
Для получения полного хода решения нажимаем в ответе Step-by-step.

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»

Добавить комментарий