§ 14. НАПРЯЖЕННОСТЬ
ЭЛЕКТРИЧЕСКОГО ПОЛЯ.
ЭЛЕКТРИЧЕСКОЕ
СМЕЩЕНИЕ
Основные
формулы
Напряженность
электрического поля
E=F/Q,
где F — сила,
действующая на точечный положительный
заряд Q, помещенный в данную точку
поля.
Сила, действующая
на точечный заряд Q, помещенный в
электрическое поле,
F=QE.
Поток вектора
напряженности Е электрического
поля:
а) через произвольную
поверхность S,
помещенную в неоднородное поле,
или
,
где
— угол между вектором напряженности Е
и нормалью n к элементу поверхности;
dS — площадь элемента поверхности;
En — проекция вектора
напряженности на нормаль;
б) через плоскую
поверхность, помещенную в однородное
электрическое поле,
ФE=ЕScos.
Поток вектора
напряженности Е через замкнутую
поверхность
,
где
интегрирование ведется по всей
поверхности.
Теорема Остроградского
— Гаусса. Поток вектора напряженности
Е
через любую замкнутую поверхность,
охватывающую заряды
Ql,
Q2,
. . .,
Qn,
,
где
— алгебраическая
сумма зарядов, заключенных внутри
замкнутой поверхности; п — число
зарядов.
Напряженность
электрического поля, создаваемого
точечным зарядом Q
на расстоянии r от
заряда,
.
Напряженность
электрического поля, создаваемого
металлической сферой радиусом
R, несущей заряд
Q,
на расстоянии r от
центра сферы:
а) внутри сферы
(r<.R)
E=0;
б) на поверхности
сферы (r=R)
;
в) вне сферы
(r>R)
.
Принцип
суперпозиции (наложения) электрических
полей, согласно которому напряженность
Е результирующего поля, созданного
двумя (и более) точечными зарядами, равна
векторной (геометрической) сумме
напряженностей складываемых полей:
Е=E1+Е2+…+Еn.
В
случае двух электрических полей с
напряженностями Е1
и Е2
модуль вектора напряженности
,
где
— угол между векторами E1
и E2.
Напряженность
поля, создаваемого бесконечно длинной
равномерно заряженной нитью (или
цилиндром) на расстоянии r
от ее оси,
,
где — линейная
плотность заряда.
Линейная плотность
заряда есть величина, равная отношению
заряда, распределенного по нити, к длине
нити (цилиндра):
Напряженность
поля, создаваемого бесконечной равномерно
заряженной плоскостью,
где
— поверхностная плотность заряда.
Поверхностная
плотность заряда есть величина, равная
отношению заряда, распределенного по
поверхности, к площади этой поверхности:
.
Напряженность
поля, создаваемого двумя параллельными
бесконечными равномерно и разноименно
заряженными плоскостями, с одинаковой
по модулю поверхностной плотностью о
заряда (поле плоского конденсатора)
.
Приведенная формула
справедлива для вычисления напряженности
поля между пластинами плоского
конденсатора (в средней части его)
только в том случае, если расстояние
между пластинами много меньше линейных
размеров пластин конденсатора.
Электрическое
смещение D
связано с напряженностью E
электрического поля соотношением
D=0E.
Это соотношение
справедливо только для изотропных
диэлектриков.
Поток вектора
электрического смещения выражается
аналогично потоку вектора напряженности
электрического поля:
а) в случае
однородного поля поток сквозь плоскую
поверхность
;
б) в случае
неоднородного поля и произвольной
поверхности
,
где Dn
— проекция вектора D на направление
нормали к элементу поверхности, площадь
которой равна dS.
Теорема
Остроградского — Гаусса. Поток вектора
электрического смещения сквозь любую
замкнутую поверхность, охватывающую
заряды Q1,Q2,
…,Qn,
,
где п—число
зарядов (со своим знаком), заключенных
внутри замкнутой поверхности.
Циркуляция
вектора напряженности электрического
поля есть величина, численно равная
работе по перемещению единичного
точечного положительного заряда вдоль
замкнутого контура. Циркуляция выражается
интегралом по замкнутому контуру
,
где El—проекция
вектора напряженности Е в данной точке
контура на направление касательной к
контуру в той же точке.
В случае
электростатического поля циркуляция
вектора напряженности равна нулю:
.
Примеры
решения задач
Пример
1. Электрическое поле создано двумя
точечными зарядами: Q1=30
нКл и Q2=
–10 нКл. Расстояние d
между зарядами равно 20 см. Определить
напряженность электрического поля в
точке, находящейся на расстоянии r1=15
см от первого и на расстоянии r2=10
см от второго зарядов.
Решение.
Согласно принципу суперпозиции
электрических полей, каждый заряд
создает поле независимо от присутствия
в пространстве других зарядов. Поэтому
напряженность Е электрического
поля в искомой точке может быть найдена
как векторная сумма
напряженностей E1 и Е2
полей, создаваемых каждым зарядом в
отдельности: E=E1+E2.
Напряженности
электрического поля, создаваемого в
вакууме первым и вторым зарядами,
соответственно равны
(1)
Вектор E1
(рис. 14.1) направлен по силовой линии от
заряда Q1,
так как заряд Q1>0;
вектор Е2 направлен также
по силовой линии, но к заряду
Q2,
так как Q2<0.
Модуль вектора Е
найдем по теореме косинусов:
, (2)
где угол
может быть найден из треугольника со
сторонами r1,
r2
и d:
.
В данном случае
во избежание громоздких записей вычислим
отдельно значение cos.
По этой формуле найдем
cos
=0,25.
Подставляя выражения
E1
и E2
а по формулам (1) в равенство (2) и вынося
общий множитель 1/(40)
за знак корня, получаем
.
Подставив значения
величин ,
0,
Q1,
Q2,
r1-,
r2
и в последнюю
формулу и произведя вычисления, найдем
Пример 2.
Электрическое поле создано двумя
параллельными бесконечными заряженными
плоскостями с поверхностными плотностями
заряда 1=0,4
мкКл/м2 и 2=0,1
мкКл/м2. Определить напряженность
электрического поля, созданного этими
заряженными плоскостями.
Решение.
Согласно принципу суперпозиции, поля,
создаваемые каждой заряженной плоскостью
в отдельности, накладываются друг на
друга, причем каждая заряженная плоскость
создает электрическое поле независимо
от присутствия другой заряженной
плоскости (рис. 14.2).
Напряженности
однородных электрических полей,
создаваемых первой и второй плоскостями,
соответственно равны:
;
.
Плоскости делят
все пространство на три области: I,
II и III.
Как вид но из рисунка, в первой и
третьей областях электрические силовые
линии обоих полей направлены в одну
сторону и, следовательно, напряженности
суммарных полей Е(I)
и E(III)
в первой и третьей областях равны между
собой и равны сумме напряженностей
полей, создаваемых первой и второй
плоскостями: Е(I)=
E(III)=E1+E2,
или
Е(I)=
E(III)=.
Во второй области
(между плоскостями) электрические
силовые линии полей направлены в
противоположные стороны и, следовательно,
напряженность поля E(II)
равна разности напряженностей полей,
создаваемых первой и второй плоскостями:
E(II)=|E1-E2|,
или
.
Подставив данные
и произведя вычисления, получим
E(I)=E(III)=28,3кВ/м=17
кВ/м.
Картина
распределения силовых линий суммарного
поля представлена на рис. 14.3.
Пример 3. На
пластинах плоского воздушного конденсатора
находится заряд Q=10
нКл. Площадь S
каждой пластины конденсатора равна 100
см2 Определить силу F,
с которой притягиваются пластины. Поле
между пластинами считать однородным.
Решение. Заряд
Q одной пластины
находится в поле, созданном зарядом
другой пластины конденсатора.
Следовательно, на первый заряд действует
сила (рис. 14.4)
F=E1Q,, (1)
где E1
— напряженность поля, создаваемого
зарядом одной пластины. Но
где
– поверхностная
плотность заряда пластины.
Формула (1) с учетом
выражения для E1
примет вид
F=Q2/(20S).
Подставив значения
величин Q, 0
и S в эту формулу и
произведя вычисления, получим
F=565
мкН.
Пример 4.
Электрическое поле создано, бесконечной
плоскостью, заряженной с поверхностной
плотностью =400
нКл/м2, и бесконечной прямой
нитью, заряженной с линейной плотностью
=100 нКл/м. На расстоянии
r=10 см от нити находится
точечный заряд Q=10
нКл. Определить силу, действующую на
заряд, ее направление, если заряд и нить
лежат в одной плоскости, параллельной
заряженной плоскости.
Решение. Сила,
действующая на заряд, помещённый в поле,
F=EQ, (1)
где Е —
напряженность поля в точке, в которой
находится заряд Q.
Определим
напряженность Е поля, создаваемого,
по условию задачи, бесконечной заряженной
плоскостью и бесконечной заряженной
нитью. Поле, создаваемое бесконечной
заряженной плоскостью, однородно, и его
напряженность в любой точке
. (2)
Поле, создаваемое
бесконечной заряженной линией,
неоднородно. Его напряженность зависит
от расстояния и определяется по формуле
. (3)
Согласно принципу
суперпозиции электрических полей,
напряженность поля в точке, где находится
заряд Q,
равна векторной сумме напряженностей
E1
и Е2 (рис. 14.5):
E=E1+E2.
Так как векторы E1
и Е2 взаимно
перпендикулярны, то
.
Подставляя выражения
E1
и E2 по
формулам (2) и (3) в это
равенство, получим
,
или
.
Теперь найдем силу
F, действующую на
заряд, подставив выражение Е в
формулу (1):
. (4)
Подставив значения
величин Q, 0,
, ,
и r
в формулу (4) и сделав вычисления, найдем
F=289
мкН.
Направление силы
F, действующей на положительный
заряд Q, совпадает с направлением
вектора напряженности Е поля.
Направление же вектора Е задается
углом к заряженной
плоскости. Из рис. 14.5 следует, что
,
откуда
.
Подставив значения
величин , r,
и
в это выражение и вычислив, получим
=51°3
Пример 5.
Точечный заряд Q=25
нКл находится в ноле, созданном прямым
бесконечным цилиндром радиусом
R=1
см, равномерно заряженным с поверхностной
плотностью =2 мкКл/м2.
Определить силу, действующую на заряд,
помещенный от оси цилиндра на расстоянии
r=10 см.
Решение. Сила,
действующая на заряд Q, находящийся
в поле,
F=QE, (1)
где Е —
напряженность поля в точке, в которой
находится заряд Q.
Как известно,
напряженность поля бесконечно длинного
равномерно заряженного цилиндра
E=/(20r), (2)
где
— линейная плотность
заряда.
Выразим линейную
плотность через
поверхностную плотность .
Для этого выделим элемент цилиндра
длиной l и выразим
находящийся на нем заряд Q1
двумя, способами:
Q1=S=2Rl
и Q1=l.
Приравняв правые
части этих равенств, получим l=2Rl.
После сокращения на l
найдем =2R.
С учетом этого формула (2) примет вид
E=R/(0r).
Подставив это выражение Е в формулу
(1), найдем искомую силу:
F=QR/(0r). (3)
Так как
R и r
входят в формулу в виде отношения, то
они могут быть выражены в любых, но
только одинаковых единицах.
Выполнив вычисления
по формуле (3), найдем
F=2510-9210-610-2/(8,8510-121010-2)H==56510-6H=565мкH.
Направление силы
F совпадает с
направлением вектора напряженности
Е, а последний в силу симметрии (цилиндр
бесконечно длинный) направлен
перпендикулярно цилиндру.
Пример 6.
Электрическое поле создано тонкой
бесконечно длинной нитью, равномерно
заряженной с линейной плотностью =30
нКл/м. На расстоянии а=20 см от нити
находится плоская круглая площадка
радиусом r=1 см.
Определить поток вектора напряженности
через эту площадку, если плоскость ее
составляет угол =30°
с линией напряженности, проходящей
через середину площадки.
Решение. Поле,
создаваемое бесконечно равномерно,
заряженной нитью, является неоднородным.
Поток вектора напряженности в этом
случае выражается интегралом
, (1)
где En
— проекция вектора Е на нормаль
n к поверхности площадки
dS. Интегрирование
выполняется по всей поверхности площадки,
которую пронизывают линии напряженности.
Проекция
Еп вектора напряженности
равна, как видно из рис. 14.6,
Еп=Еcos,
где
— угол между направлением вектора и
нормалью n. С учетом этого формула
(1) примет вид
.
Так как размеры
поверхности площадки малы по сравнению
с расстоянием до нити (r<<a),
то электрическое поле в пределах площадки
можно считать практически однородными.
Следовательно, вектор напряженности Е
очень мало. меняется по модулю и
направлению в пределах площадки, что
позволяет заменить под знаком интеграла
значения Е и cos
их средними значениями <E>
и <cos>
и вынести их за знак интеграла:
Выполняя
интегрирование и заменяя <E>
и <cos>
их приближенными значениями ЕA
и cosA,
вычисленными для средней точки площадки,
получим
ФE=ЕAcosAS=r2ЕAcosA. (2)
Напряженность ЕA
вычисляется по формуле EA=/(20a).
Из
рис. 14.6 следует
cosA=cos(/2—)=sin.
С учетом выражения
ЕA и
cosA
равенство (2.) примет вид
.
Подставив в
последнюю формулу данные и произведя
вычисления, найдем
ФE=424
мВ.м.
Пример 7.
Две концентрические проводящие сферы
радиусами R1=6
см и R2=10
см несут соответственно заряды
Q1=l
нКл и Q2=
–0,5 нКл. Найти напряженность
Е поля в точках, отстоящих от центра
сфер на расстояниях r1=5
см, r2=9
см r3=15см.
Построить график Е(r).
Решение.
Заметим, что точки, в которых требуется
найти напряженности электрического
поля, лежат в трех областях (рис. 14.7):
область I (r<R1),
область II (R1<r2<R2),
область III (r3>R2).
1. Для определения
напряженности E1
в области I проведем
сферическую поверхность
S1
радиусом r1
и воспользуемся теоремой Остроградского—Гаусса.
Так как внутри области I
зарядов нет, то согласно указанной
теореме получим равенство
, (1)
где En
— нормальная составляющая напряженности
электрического поля.
Из соображений
симметрии нормальная составляющая En
должна быть равна самой напряженности
и постоянна для всех точек сферы, т. е.
En=E1=const.
Поэтому ее можно вынести за знак
интеграла. Равенство (1) примет вид
.
Так как площадь
сферы не равна нулю, то
E1=0,
т. е. напряженность
поля во всех точках, удовлетворяющих
условию r1<.R1,
будет равна нулю.
2. В области II
сферическую поверхность проведем
радиусом r2.
Так как внутри этой поверхности находится,
заряд Q1,
то для нее, согласно теореме
Остроградского—Гаусса, можно
записать равенство
. (2)
Так как
En=E2=const,
то из условий симметрии следует
,
или ES2=Q1/0,
откуда
E2=Q1/(0S2).
Подставив сюда
выражение площади сферы, получим
E2=Q/(4). (3)
3. В области III
сферическую поверхность проведем
радиусом r3.
Эта поверхность охватывает
суммарный заряд Q1+Q2.
Следовательно, для нее уравнение,
записанное на основе теоремы
Остроградского — Гаусса, будет иметь
вид
.
Отсюда, использовав
положения, примененные в первых двух
случаях, найдем
. (4)
Убедимся в том,
что правые части равенств (3) и (4) дают
единицу напряженности электрического
поля;
Выразим все величины
в единицах СИ (Q1=10-9
Кл, Q2=
–0,510-9
Кл, r1=0,09
м, r2=15
м, l/(40)=9109
м/Ф) и произведем вычисления:
4. Построим график
E(r).В
области I (r1<R1)
напряженность E=0. В
области II (R1r<.R2)
напряженность E2(r)
изменяется по закону l/r2.
В точке r=R1
напряженность E2(R1)=Q1/(40R)=2500
В/м.В точке r=R1
(r стремится к
R1
слева) E2(R2)=Q1/(40R)=900В/м.
В области III (r>R2)E3(r)
изменяется по закону 1/r2,
причем в точке r=R2
(r стремится к R2
справа) Е3(R2)=(Q1–|Q2|)/(40R)=450
В/м. Таким образом, функция Е(r)
в точках r=R1
и r=R2
терпит разрыв. График зависимости Е(r)
представлен на рис. 14.8.
Задачи
Напряженность
поля точечных зарядов
14.1. Определить
напряженность Е электрического
поля, создаваемого точечным зарядом
Q=10
нКл на расстоянии r=10
см от него. Диэлектрик —
масло.
14.2. Расстояние
d между двумя
точечными зарядами Q1=+8
нКл и Q2=
–5,3 нКл равно 40 см. Вычислить
напряженность Е поля в точке, лежащей
посередине между зарядами. Чему равна
напряженность, если второй заряд будет
положительным?
14.3. Электрическое
поле создано двумя точечными зарядами
Q1=10
нКл и Q2=
–20 нКл, находящимися на расстоянии
d=20
см друг от друга. Определить напряженность
E поля в точке, удаленной
от первого заряда на r1=30
см и от второго на r2=50
см.
14.4. Расстояние
d между двумя точечными положительными
зарядами Q1=9Q
и Q2=Q
равно 8 см. На каком расстоянии г от
первого заряда находится точка, в которой
напряженность Е поля зарядов равна
нулю? Где находилась бы эта точка, если
бы второй заряд был отрицательным?
14.5. Два точечных
заряда Q1=2Q
и Q2=
–Q находятся на
расстоянии d друг от друга. Найти
положение точки на прямой, проходящей
через эти заряды, напряженность Е
поля в которой равна нулю,
14.6. Электрическое
поле создано двумя точечными зарядами
Q1=40
нКл и Q2=
–10 нКл, находящимися на расстоянии
d=10 см друг от друга.
Определить напряженность Е поля в
точке, удаленной от первого заряда на
r1=12
см и от второго на r2=6
см.
Напряженность
поля заряда, распределенного по кольцу
и сфере
14.7. Тонкое
кольцо радиусом R=8 см
несет заряд, равномерно распределенный
с линейной плотностью =10
нКл/м. Какова напряженность Е
электрического поля в точке, равноудаленной
от всех точек кольца на расстояние r=10
см?
14.8. Полусфера
несет заряд, равномерно распределенный
с поверхностной плотностью =1,нКл/м2.
Найти напряженность Е электрического
поля в геометрическом центре полусферы.
14.9. На
металлической сфере радиусом R=10
см находится заряд Q=l
нКл. Определить напряженность Е
электрического поля в
следующих точках: 1) на расстоянии r1=8
см от центра сферы; 2) на
ее поверхности; 3) на расстоянии r2=15
см от центра сферы. Построить график
зависимости E от r.
14.10. Две
концентрические металлические заряженные
сферы радиусами R1=6cм
и R2=10
см несут соответственно заряды
Q1=1
нКл и Q2=
–0,5 нКл. Найти
напряженности Е поля в точках.
отстоящих от центра сфер на расстояниях
r1=5 см, r2=9
см, r3=15
см. Построить график зависимости Е(r).
Напряженность
поля заряженной линии
14.11. Очень
длинная тонкая прямая проволока несет
заряд, равномерно распределенный по
всей ее длине. Вычислить линейную
плотность заряда,
если напряженность E
поля на расстоянии а=0,5 м от проволоки
против ее середины равна 200 В/м.
14.12. Расстояние
d между двумя длинными
тонкими проволоками, расположенными
параллельно друг другу, равно 16 см.
Проволоки равномерно заряжены
разноименными зарядами с линейной
плотностью ||=^150.
мкКл/м. Какова напряженность Е поля
в точке, удаленной на r=10
см как от первой, так и от второй проволоки?
14.13. Прямой
металлический стержень диаметром d=5
см и длиной l=4 м несет
равномерно распределенный по его
поверхности заряд Q=500
нКл. Определить напряженность Е
поля в точке, находящейся против середины
стержня на расстоянии а=1 см от его
поверхности.
14.14. Бесконечно
длинная тонкостенная металлическая
трубка радиусом R=2
см несет равномерно распределенный по
поверхности заряд (=1
нКл/м2). Определить напряженность
Е поля в точках, отстоящих от оси
трубки на расстояниях r1=l
см, r2=3
см. Построить график зависимости Е(r).
Главная
→
Примеры решения задач ТОЭ
→
Расчет электрической цепи постоянного тока с конденсаторами
Расчет электрической цепи постоянного тока с конденсаторами
Расчет электрической цепи постоянного тока с конденсаторами
Основные положения и соотношения
1. Общее выражение емкости конденсатора
C= Q U .
2. Емкость плоского конденсатора
C= ε a ⋅S d = ε r ⋅ ε 0 ⋅S d ,
здесь
S — поверхность каждой пластины конденсатора;
d — расстояние между ними;
εa = εr·ε0 — абсолютная диэлектрическая проницаемость среды;
εr — диэлектрическая проницаемость среды (относительная диэлектрическая проницаемость);
ε 0 = 1 4π⋅ с 2 ⋅ 10 −7 ≈8,85418782⋅ 10 −12 Ф м – электрическая постоянная.
3. При параллельном соединении конденсаторов С1, С2, …, Сn эквивалентная емкость равна
C= C 1 + C 2 +…+ C n = ∑ k=1 n C k .
4. При последовательном соединении конденсаторов эквивалентная емкость определяется из формулы
1 C = 1 C 1 + 1 C 2 +…+ 1 C n = ∑ k=1 n 1 C k .
Для двух последовательно соединенных конденсаторов эквивалентная емкость составляет:
C= C 1 ⋅ C 2 C 1 + C 2 ,
а напряжения между отдельными конденсаторами распределяются обратно пропорционально их емкостям:
U 1 =U⋅ C 2 C 1 + C 2 ; U 2 =U⋅ C 1 C 1 + C 2 .
5. Преобразование звезды емкостей в эквивалентный треугольник емкостей или обратно (рис. а и б)
Рис. 0
осуществляется по формулам:
Y→Δ { C 12 = C 1 ⋅ C 2 ΣC ; C 13 = C 1 ⋅ C 3 ΣC ; C 23 = C 2 ⋅ C 3 ΣC , где ΣC= C 1 + C 2 + C 3 , Δ→Y { C 1 = C 12 + C 13 + C 12 ⋅ C 13 C 23 ; C 2 = C 12 + C 23 + C 12 ⋅ C 23 C 13 ; C 3 = C 13 + C 23 + C 13 ⋅ C 23 C 12 .
6. Энергия электростатического поля конденсатора:
W= C⋅ U 2 2 = Q⋅U 2 = Q 2 2C .
7. Расчет распределения зарядов в сложных цепях, содержащих источники э.д.с. и конденсаторы, производится путем составления уравнений по двум законам:
1) По закону сохранения электричества (закон сохранения электрического заряда): алгебраическая сумма зарядов на обкладках конденсаторов, соединенных в узел и не подключенных к источнику энергии, равна алгебраической сумме зарядов, имевшихся на этих обкладках до их соединения:
ΣQ=Σ Q ′ .
2) По второму закону Кирхгофа: алгебраическая сумма э. д. с. в замкнутом контуре равна алгебраической сумме напряжений на участках контура, в том числе на входящих в него конденсаторах:
∑ k=1 n E k = ∑ k=1 n U C k = ∑ k=1 n Q k C k .
Приступая к решению задачи, надо задаться полярностью зарядов на обкладках конденсаторов.
Решение задач на расчет электрической цепи постоянного тока с конденсаторами
Задача. Доказать формулу эквивалентной емкости при последовательном соединении конденсаторов (рис. 1).
Рис. 1
Решение
На рис. 1 представлено последовательное соединение трех конденсаторов. Если батарею конденсаторов подключить к источнику напряжения U12, то на левую пластину конденсатора С1 перейдет заряд +q, на правую пластину конденсатора С3 заряд –q.
Вследствие электризации через влияние правая пластина конденсатора С1 будет иметь заряд –q, а так как пластины конденсаторов С1 и С2 соединены и были электронейтральны, то вследствие закона сохранения заряда заряд левой пластины конденсатора C2 будет равен +q, и т. д. На всех пластинах конденсаторов при таком соединении будет одинаковый по величине заряд.
Найти эквивалентную емкость — это значит найти конденсатор такой емкости, который при той же разности потенциалов будет накапливать тот же заряд q, что и батарея конденсаторов.
Разность потенциалов U12 = φ1 — φ2 складывается из суммы разностей потенциалов между пластинами каждого из конденсаторов
U 12 = φ 1 − φ 2 =( φ 1 − φ A )+( φ A − φ B )+( φ B − φ 2 )= U 1A + U AB + U B2 .
Воспользовавшись формулой напряжения на конденсаторе
U= q C ,
запишем
q C = q C 1 + q C 2 + q C 3 .
Откуда эквивалентная емкость батареи из трех последовательно включенных конденсаторов
1 C = 1 C 1 + 1 C 2 + 1 C 3 .
В общем случае эквивалентная емкость при последовательном соединении конденсаторов
1 C = 1 C 1 + 1 C 2 +…+ 1 C n = ∑ k=1 n 1 C k .
Задача 1. Определить заряд и энергию каждого конденсатора на рис. 2, если система подключена в сеть с напряжением U = 240 В.
Рис. 2
Емкости конденсаторов: C1 =50 мкФ; C2 =150 мкФ; C3 =300 мкФ.
Решение
Эквивалентная емкость конденсаторов C1 и C2, соединенных параллельно
C12 = C1 + C2 = 200 мкФ,
эквивалентная емкость всей цепи равна
C= C 12 ⋅ C 3 C 12 + C 3 = 200⋅300 500 =120 мкФ.
Заряд на эквивалентной емкости
Q = C·U = 120·10–6·240 = 288·10–4 Кл.
Той же величине равен заряд Q3 на конденсаторе C3, т.е. Q3 = Q = 288·10–4 Кл; напряжение на этом конденсаторе
U 3 = Q 3 C 3 = 288⋅ 10 −4 300⋅ 10 −6 =96 В.
Напряжение на конденсаторах C1 и C2 равно
U1 = U2 = U — U3 = 240 — 96 = 144 В.
их заряды имеют следующие значения
Q1 = C1·U1 = 50·10–6·144 = 72·10–4 Кл;
Q2 = C2·U2 = 150·10–6·144 = 216·10–4 Кл.
Энергии электростатического поля конденсаторов равны
W 1 = Q 1 ⋅ U 1 2 = 72⋅ 10 −4 ⋅144 2 ≈0,52 Дж; W 2 = Q 2 ⋅ U 2 2 = 216⋅ 10 −4 ⋅144 2 ≈1,56 Дж; W 3 = Q 3 ⋅ U 3 2 = 288⋅ 10 −4 ⋅96 2 ≈1,38 Дж.
Задача 2. Плоский слоистый конденсатор (рис. 3), поверхность каждой пластины которого S = 12 см2, имеет диэлектрик, состоящий из слюды (εr1 = 6) толщиною d1 = 0,3 мм и стекла (εr2 = 7) толщиною d2 =0,4 мм.
Пробивные напряженности слюды и стекла соответственно равны E1 = 77 кВ/мм, E2 = 36 кВ/мм.
Рис. 3
Вычислить емкость конденсатора и предельное напряжение, на которое его можно включать, принимая для более слабого слоя двойной запас электрической прочности.
Решение
Эквивалентная емкость слоистого конденсатора определится как емкость двух последовательно соединенных конденсаторов
C= C 1 ⋅ C 2 C 1 + C 2 = ε a1 ⋅S d 1 ⋅ ε a2 ⋅S d 2 ε a1 ⋅S d 1 + ε a2 ⋅S d 2 = ε a1 ⋅ ε a2 ⋅S ε a1 ⋅ d 2 + ε a2 ⋅ d 1 .
Подставляя сюда числовые значения, предварительно заменив εa1 = εr1·ε0 и εa2 = εr2·ε0, получим
C= ε 0 ⋅ ε r1 ⋅ ε r2 ⋅S ε r1 ⋅ d 2 + ε r2 ⋅ d 1 =8,85⋅ 10 −12 ⋅ 6⋅7⋅12⋅ 10 −4 6⋅0,4⋅ 10 −3 +7⋅0,3⋅ 10 −3 =99⋅ 10 −12 Ф.
Обозначим общее напряжение, подключаемое к слоистому конденсатору, через Uпр, при этом заряд конденсатора будет равен
Q = C·Uпр.
Напряжения на каждом слое будут равны
U 1 = Q C 1 = C⋅ U пр ε a1 ⋅S d 1 = ε a2 ⋅ d 1 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U пр ; U 2 = Q C 2 = C⋅ U пр ε a2 ⋅S d 2 = ε a1 ⋅ d 2 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U пр .
Напряженности электростатического поля в каждом слое
E 1 = U 1 d 1 = ε a2 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U ′ пр ; E 2 = U 2 d 2 = ε a1 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U ″ пр .
Здесь U’np — общее напряжение, подключаемое к конденсатору, при котором пробивается первый слой, a U”np — общее напряжение, при котором происходит пробой второго слоя.
Из последнего выражения находим
U ′ пр = E 1 ⋅ ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ε a2 =49,5 кВ; U ″ пр = E 2 ⋅ ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ε a1 =27,0 кВ.
Таким образом, более слабым слоем является второй; согласно условию, принимая для него двойной запас прочности, находим, что конденсатор может быть включен на напряжение, равное
27,0 кВ / 2 = 13,5 кВ.
Задача 3. Обкладки плоского конденсатора с воздушным диэлектриком расположены на расстоянии d1 = 1 см друг от друга. Площадь обкладок S = 50 см2. Конденсатор заряжается до напряжения U = 120 В и затем отсоединяется от источника электрической энергии.
Определить, какую надо совершить работу, если увеличить расстояние между пластинами до d2 = 10 см. Краевым эффектом можно пренебречь; другими словами, емкость конденсатора можно считать обратно пропорциональной расстоянию между обкладками.
Решение
Энергия заряженного плоского конденсатора равна
W 1 = C 1 ⋅ U 2 2 = ε 0 ⋅S d 1 ⋅ U 2 2 ,
где С1 — емкость до раздвижения обкладок.
Так как конденсатор отключен от источника, то при изменении расстояния между обкладками его заряд остается постоянным. Поэтому из~ соотношения
Q = C2·U2,
где C2 — емкость конденсатора после раздвижения обкладок, следует, что, так как C2 = ε0·S/d2 стало меньше в 10 раз (d2 увеличилось в 10 раз), то напряжение на конденсаторе U2 увеличилось в 10 раз, т. е. U2 = 10U.
Таким образом, энергия конденсатора после отключения и раздвижения обкладок на расстояние d2 будет больше первоначальной
W 2 = ε 0 ⋅S d 2 ⋅ U 2 2 2 = ε 0 ⋅S 10 d 1 ⋅ ( 10U ) 2 2 =10⋅ ε 0 ⋅S d 1 ⋅ U 2 2 =10⋅ W 1 .
Увеличение энергии произошло за счет работы внешних сил, затраченной на раздвижение обкладок.
Таким образом, надо совершить работу, равную
W 2 − W 1 =9⋅ W 1 =9⋅ ε 0 ⋅S d 1 ⋅ U 2 2 =2,86⋅ 10 −7 Дж.
Задача 4. Для схемы (рис. 4) определить напряжение каждого конденсатора в двух случаях: при замкнутом и разомкнутом ключе К.
Даны: C1 = 30 мкФ; C2 = 20 мкФ; r1 = 100 Ом. r2 = 400 Ом. r3 = 600 Ом, U = 20 В.
Решение
Ключ К разомкнут. Конденсаторы соединены между собой последовательно; их ветвь находится под полным напряжением источника; напряжение распределяется между ними обратно пропорционально емкостям
U 1 = C 2 C 1 + C 2 ⋅U= 20⋅ 10 −6 30⋅ 10 −6 +20⋅ 10 −6 ⋅20=8 В; U 2 =U− U 1 =20−8=12 В.
Рис. 4
Ключ К замкнут. Через сопротивления r1 и r2 протекает ток
I= U r 1 + r 2 = 20 500 =0,04 А,
а через сопротивление r3 ток не протекает.
Поэтому точки c и d равнопотенциальны (φc = φd). Следовательно, напряжение между точками a и c (Uac = φa — φc) равно напряжению между точками a и d (Uad = φa — φd).
Таким образом, напряжение на первом конденсаторе равно падению напряжения на сопротивлении r1
UC1 = I·r1 = 0,04·100 = 4 В.
Аналогично напряжение на втором конденсаторе равно
UC2 = I·r2 = 0,04·400 = 16 В.
Задача 5. Определить напряжение на зажимах конденсаторов и их энергию после перевода рубильника из положения 1 в положение 2, показанное пунктиром на рис. 5, если U = 25 В; C1 = 5 мкФ; C2 = 120 мкФ. Конденсатор C2 предварительно не был заряжен.
Рис. 5
Решение
Когда рубильник находится в положении 1, то конденсатор C1 заряжен до напряжения U и его заряд равен
Q = C1·U = 5·10–6·25 = 125·10–6 Кл.
После перевода рубильника в положение 2, заряд Q распределяется между конденсаторами C1 и C2 (рис. 5). Обозначим эти заряды через Q’1 и Q’2.
На основании закона сохранения электричества имеем
Q = Q’1 + Q’2 = 125 10–6 Кл. (1)
По второму закону Кирхгофа имеем
0= U C1 − U C2 = Q ′ 1 C 1 − Q ′ 2 C 2 ,
или
Q ′ 1 5⋅ 10 −6 − Q ′ 2 120⋅ 10 −6 =0. (2)
Решая уравнения (1) и (2), найдем
Q’1 = 5 10–6 Кл; Q’2 = 120 10–6 Кл.
Доставка свежих и аппетитных японских суши в Новороссийске – ям ям..
Напряжение на зажимах конденсаторов станет равным
U C1 = Q ′ 1 C 1 = U C2 = Q ′ 2 C 2 = 5⋅ 10 −6 5⋅ 10 −6 =1 В.
Энергия обоих конденсаторов будет равна
W= C 1 ⋅ U C1 2 2 + C 2 ⋅ U C2 2 2 =62,5⋅ 10 −6 Дж.
Подсчитаем энергию, которая была запасена в конденсаторе С1, при его подключении к источнику электрической энергии
W нач = C 1 ⋅U 2 = 5⋅ 10 −6 ⋅ 25 2 2 =1562,5⋅ 10 −6 Дж.
Как видим, имеет место большая разница в запасе энергии до и после переключения. Энергия, равная 1562,5·10–6 — 62,5·10–6 = 1500·10–6 Дж, израсходовалась на искру при переключении рубильника из положения 1 в положение 2 и на нагревание соединительных проводов при перетекании зарядов из конденсатора C1 в конденсатор C2 после перевода рубильника в положение 2.
Задача 6. Вычислить напряжение, которое окажется на каждом из конденсаторов схемы (рис. 6) после перевода рубильника К из положения 1 в положение 2.
Емкости конденсаторов равны: C1 = 10 мкФ; C2 = 30 мкФ; C3 = 60 мкФ; напряжение U = 30 В, а э. д. с. E = 50 В.
Рис. 6
Решение
Рубильник находится в положении 1. Заряд конденсатора C1 равен
Q1 = C1·U = 10·10–6·30 = 0,3·10–3 Кл.
В указанном положении рубильника конденсаторы C2 и C3 соединены последовательно друг с другом, поэтому их заряды равны: Q2 = Q3. Знаки зарядов показаны на рис. 6 отметками без кружков. По второму закону Кирхгофа имеем
E= U C2 + U C3 = Q 2 C 2 + Q 3 C 3 = Q 2 ⋅ C 2 + C 3 C 2 ⋅ C 3 ,
откуда
Q 2 = Q 3 = C 2 ⋅ C 3 C 2 + C 3 ⋅E= 30⋅ 10 −6 ⋅60⋅ 10 −6 90⋅ 10 −6 ⋅50=1⋅ 10 −3 Кл.
При переводе рубильника в положение 2 произойдет перераспределение зарядов. Произвольно задаемся новой полярностью зарядов на электродах (показана в кружках; предположена совпадающей с ранее имевшей место полярностью); соответствующие положительные направления напряжений на конденсаторах обозначены стрелками. Обозначим эти заряды через Q’1, Q’2 и Q’3. Для их определения составим уравнения на основании закона сохранения электрических зарядов и второго закона Кирхгофа.
Для узла a
Q’1 + Q’2 — Q’3 = Q1 + Q2 — Q3. (1)
Для контура 2ebda2
0= U ′ C1 − U ′ C2 = Q ′ 1 C 1 − Q ′ 2 C 1 .
Для контура bcadb
E= U ′ C2 − U ′ C3 = Q ′ 2 C 2 + Q ′ 3 C 3 .
Уравнения (1) — (3), после подстановки числовых значений величин, примут вид
Q’1 + Q’2 — Q’3 = 0,3·10–3; (4)
3Q’1 — Q’2 = 0; (5)
2Q’2 + Q’3 = 3·10–3. (6)
Решая совместно уравнения (4) — (6), получим
Q’1 = 0,33·10–3 Кл; Q’2 = 0,99·10–3 Кл; Q’3 = 1,02·10–3 Кл.
Так как знаки всех зарядов оказались положительными, то фактическая полярность обкладок соответствует предварительно выбранной.
Напряжения на конденсаторах после перевода рубильника будут равны
U C1 = Q ′ 1 C 1 = 0,33⋅ 10 −3 10⋅ 10 6 =33 В; U C2 = Q ′ 2 C 2 = 0,99⋅ 10 −3 30⋅ 10 6 =33 В; U C3 = Q ′ 3 C 3 = 1,02⋅ 10 −3 60⋅ 10 6 =17 В.
Задача 7. Определить заряд и напряжение конденсаторов, соединенных по схеме рис. 7, если C1 = 5 мкФ; C2 = 4 мкФ; C3 = 3 мкФ; э. д. с. источников E1 = 20 В и E2 = 5 В.
Рис. 7
Решение
Составим систему уравнений на основании закона сохранения электричества и второго закона Кирхгофа, предварительно задавшись полярностью обкладок конденсаторов, показанной в кружках
− Q 1 + Q 2 − Q 3 =0; E 1 = U C1 − U C3 = Q 1 C 1 − Q 3 C 3 ; E 2 =− U C2 − U C3 =− Q 2 C 2 − Q 3 C 3 .
Подставляя сюда числовые значения и решая эту систему уравнений, получим, что Q1 = 50 мкКл; Q2 = 20 мкКл; Q3 = –30 мкКл.
Таким образом, истинная полярность зарядов на обкладках конденсаторов C1 и C2 соответствует выбранной, а у конденсатора C3 — противоположна выбранной.
Задача 8. Пять конденсаторов соединены по схеме рис. 3-22, а, емкости которых C1 = 2 мкФ; C2 = 3 мкФ; C3 = 5 мкФ; C4 = 1 мкФ; C5 = 2,4 мкФ.
Рис. 8
Индивидуалка Дана (34 лет) т.8 926 650-82-63 Москва, метро Сокол.
Определить эквивалентную емкость системы и напряжение на каждом из конденсаторов, если приложенное напряжение U = 10 В.
Решение
1-й способ. Звезду емкостей C1, C2 и C3 (рис. 8, а) преобразуем в эквивалентный треугольник емкостей (рис. 8, б)
C 12 = C 1 ⋅ C 2 C 1 + C 2 + C 3 =0,6 мкФ; C 13 = C 1 ⋅ C 3 C 1 + C 2 + C 3 =1,0 мкФ; C 23 = C 2 ⋅ C 3 C 1 + C 2 + C 3 =1,5 мкФ.
Емкости C12 и C5 оказываются соединенными параллельно друг другу и подключенными к точкам 1 и 2; их эквивалентная емкость
C6 = C12 + C5 = 3 мкФ.
Аналогично
C7 = C13 + C4 = 2 мкФ.
Схема принимает вид изображенный на рис. 8, в. Емкость схемы между точками а и b равняется
C ab = C 23 + C 6 ⋅ C 7 C 6 + C 7 =2,7 мкФ.
Вычислим напряжение на каждом из конденсаторов.
На конденсаторе C7 напряжение равно
U 7 = C 6 C 6 + C 7 ⋅U=6 В.
Таково же напряжение и на конденсаторах C4 и C13
U4 = U31 = 6 В.
Напряжение на конденсаторе C6 равно
U6 = U — U7 = 4 В;
U5 = U12 = 4 В.
Вычислим заряды
Q4 = C4·U4 = 6·10–6 Кл;
Q5 = C5·U5 = 9,6·10–6 Кл;
Q12 = C12·U12 = 6·10–6 Кл;
Q13 = C13·U31 = 2,4·10–6 Кл.
По закону сохранения электричества для узла 1 схем 8, а и б имеем
–Q4 — Q1 + Q5 = –Q4 — Q13 + Q12 + Q5,
отсюда
Q1 = Q13 — Q12 = 3,6·10–6 Кл,
а напряжение на конденсаторе, емкостью C1 составляет
U 1 = Q 1 C 1 =1,8 В.
Далее находим напряжения и заряды на остальных конденсаторах
U31 = U1 + U3,
отсюда
U3 = U31 — U1 = 4,2 В;
Q3 = C3·U3 = 21·10–6 Кл,
также
U12 = U2 — U1 = 4,2 В,
откуда
U2 = U12 + U1 = 5,8 В;
Q2 = C2·U2 = 17,4·10–6 Кл.
Так как знаки всех зарядов оказались положительными, то фактическая полярность зарядов на обкладках совпадает с предварительно выбранной.
2-й способ. Выбрав положительные направления напряжений на конденсаторах (а тем самым и знаки зарядов на каждом из них) по формуле закона сохранения электричества (закона сохранения заряда) составляем два уравнения и по второму закону Кирхгофа три уравнения (рис. 8, а)
для узла 1
Q5 — Q1 — Q4 = 0; (1)
для узла О
Q1 + Q2 — Q3 = 0; (2)
для контура О13О
Q 1 C 1 − Q 4 C 4 + Q 3 C 3 =0; (3)
для контура О12О
Q 1 C 1 + Q 5 C 5 − Q 2 C 2 =0; (4)
для контура a3О2b
Q 3 C 3 + Q 2 C 2 =U. (5)
Система уравнений (1) — (5) — содержит пять неизвестных: Q1, Q2, Q3, Q4 и Q5. Решив уравнения, найдем искомые заряды, а затем и напряжения на конденсаторах. При втором способе решения эквивалентную емкость схемы Сab можно найти из отношения
C ab = Q U ,
где Q = Q3 + Q4, или Q = Q2 + Q5.
Задача 9. В схеме рис. 9 найти распределение зарядов, если E1 = 20 В; E2 = 7 В; C1 = 7 мкФ; C2 = 1 мкФ; C3 = 3 мкФ; C4 = 4 мкФ; C5 = C6 = 5 мкФ.
Рис. 9
Решение
При выбранном распределении зарядов (в кружках), как показано на схеме, система уравнений будет иметь вид:
для узла а
Q1 + Q2 + Q3 = 0;
для узла b
–Q3 — Q4 — Q5 = 0;
для узла c
–Q1 + Q4 + Q6 = 0;
для контура afcba
E 1 = U C1 + U C4 − U C3 = Q 1 C 1 + Q 4 C 4 − Q 3 C 3 ;
ля контура gdbag
E 2 = U C5 − U C3 + U C2 = Q 5 C 5 − Q 3 C 3 + Q 2 C 2 ;
для контура cbdc
0= U C4 − U C5 − U C6 = Q 4 C 4 − Q 5 C 5 − Q 6 C 6 .
Подставляя сюда числовые значения и решая полученную систему шести уравнений, найдем искомые заряды
Q1 = 35 мкКл; Q2 = –5 мкКл; Q3 = –30 мкКл;
Q4 = 20 мкКл; Q5 = 10 мкКл; Q6 = 15 мкКл.
Таким образом, истинные знаки зарядов Q1, Q4, Q5 и Q6 соответствуют выбранным, а знаки Q2 и Q3 противоположны выбранным.
Фактическое расположение знаков зарядов на конденсаторах дано не в кружках.
Задача 10. Определить заряд и энергию каждого конденсатора в схеме (рис. 10). Данные схемы: C1 = 6 мкФ; C2 = 2 мкФ; C3 = 3 мкФ; r1 = 500 Ом; r2 = 400 Ом; U = 45 В.
Рис. 10
Решение
Через сопротивления протекает ток
I= U r 1 + r 2 =0,05 А.
Задавшись полярностью зарядов на обкладках конденсаторов, составим систему уравнений:
− Q 1 + Q 2 + Q 3 =0; U= U C1 + U C2 = Q 1 C 1 + Q 2 C 2 ; I⋅ r 1 = U C1 + U C3 = Q 1 C 1 + Q 3 C 3 ,
или
Q 1 = Q 2 + Q 3 ; 45= Q 1 6⋅ 10 −6 + Q 2 2⋅ 10 −6 ; 25= Q 1 6⋅ 10 −6 + Q 3 3⋅ 10 −6 .
Решив эту систему уравнений, найдем, что
Q1 = 90 мкКл; Q2 = 60 мкКл; Q3 = 30 мкКл.
последовательное соединение конденсаторов,
параллельное соединение конденсаторов,
Расчет цепи конденсаторов,
Конденсатор в цепи постоянного тока,
Цепи с конденсаторами
Комментарии
Цель урока: дать понятие напряжённости электрического поля и ее
определения в любой точке поля.
Задачи урока:
- формирование понятия напряжённости электрического поля; дать понятие о
линиях напряжённости и графическое представление электрического поля; - научить учащихся применять формулу E=kq/r2 в решении
несложных задач на расчёт напряжённости.
Электрическое поле – это особая форма материи, о существовании которой можно
судить только по ее действию. Экспериментально доказано, что существуют два рода
зарядов, вокруг которых существуют электрические поля, характеризующиеся
силовыми линиями.
Графически изображая поле, следует помнить, что линии напряженности
электрического поля:
- нигде не пересекаются друг с другом;
- имеют начало на положительном заряде (или в бесконечности) и конец на
отрицательном (или в бесконечности), т. е. являются незамкнутыми линиями; - между зарядами нигде не прерываются.
Рис.1
Силовые линии положительного заряда:
Рис.2
Силовые линии отрицательного заряда:
Рис.3
Силовые линии одноименных взаимодействующих зарядов:
Рис.4
Силовые линии разноименных взаимодействующих зарядов:
Рис.5
Силовой характеристикой электрического поля является напряженность, которая
обозначается буквой Е и имеет единицы измерения
или
.
Напряженность является векторной величиной, так как определяется отношением силы
Кулона к величине единичного положительного заряда
В результате преобразования формулы закона Кулона и формулы напряженности
имеем зависимость напряженности поля от расстояния, на котором она определяется
относительно данного заряда
где: k – коэффициент пропорциональности, значение которого зависит от
выбора единиц электрического заряда.
В системе СИ
Н·м2/Кл2,
где ε0 – электрическая
постоянная, равная 8,85·10-12 Кл2/Н·м2;
q – электрический заряд (Кл);
r – расстояние от заряда до точки в которой определяется напряженность.
Направление вектора напряженности совпадает с направлением силы Кулона.
Электрическое поле, напряженность которого одинакова во всех точках
пространства, называется однородным. В ограниченной области пространства
электрическое поле можно считать приблизительно однородным, если напряженность
поля внутри этой области меняется незначительно.
Общая напряженность поля нескольких взаимодействующих зарядов будет равна
геометрической сумме векторов напряженности, в чем и заключается принцип
суперпозиции полей:
Рассмотрим несколько случаев определения напряженности.
1. Пусть взаимодействуют два разноименных заряда. Поместим точечный
положительный заряд между ними, тогда в данной точке будут действовать два
вектора напряженности, направленные в одну сторону:
Е31 – напряженность точечного заряда 3 со стороны заряда 1;
Е32 – напряженность точечного заряда 3 со стороны заряда 2.
Согласно принципу суперпозиции полей общая напряженность поля в данной точке
равна геометрической сумме векторов напряженности Е31 и Е32.
Напряженность в данной точке определяется по формуле:
Е = kq1/x2 + kq2/(r – x)2
где: r – расстояние между первым и вторым зарядом;
х – расстояние между первым и точечным зарядом.
Рис.6
2. Рассмотрим случай, когда необходимо найти напряженность в точке удаленной
на расстояние а от второго заряда. Если учесть, что поле первого заряда больше,
чем поле второго заряда, то напряженность в данной точке поля равна
геометрической разности напряженности Е31 и Е32.
Формула напряженности в данной точке равна:
Е = kq1/(r + a)2 – kq2/a2
Где: r – расстояние между взаимодействующими зарядами;
а – расстояние между вторым и точечным зарядом.
Рис.7
3. Рассмотрим пример, когда необходимо определить напряженность поля в
некоторой удаленности и от первого и от второго заряда, в данном случае на
расстоянии r от первого и на расстоянии bот второго заряда. Так как одноименные
заряды отталкиваются , а разноименные притягиваются, имеем два вектора
напряженности исходящие из одной точки, то для их сложения можно применить метод
противоположному углу параллелограмма будет являться суммарным вектором
напряженности. Алгебраическую сумму векторов находим из теоремы Пифагора:
Е = (Е312 +Е322)1/2
Следовательно:
Е = ((kq1/r2 )2 + (kq2/b2)2)1/2
Рис.8
Исходя из данной работы, следует, что напряженность в любой точке поля можно
определить, зная величины взаимодействующих зарядов, расстояние от каждого
заряда до данной точки и электрическую постоянную.
4. Закрепление темы.
Проверочная работа.
Вариант № 1.
1. Продолжить фразу: “электростатика – это …
2. Продолжить фразу: электрическое поле – это ….
3. Как направлены силовые линии напряженности данного заряда?
4. Определить знаки зарядов:
5. Указать вектор напряженности.
6. Определить напряженность в точке В исходя из суперпозиции полей.
Своя оценка работы | Оценка работы другим учеником |
Вариант № 2.
1. Продолжить фразу: “электростатика – это …
2. Продолжить фразу: напряженностью называется …
3. Как направлены силовые линии напряженности данного заряда?
4. Определить заряды.
5. Указать вектор напряженности.
6. Определить напряженность в точке В исходя из суперпозиции полей.
Своя оценка работы | Оценка работы другим учеником |
Задачи на дом:
1. Два заряда q1 = +3·10-7 Кл и q2 = −2·10-7
Кл находятся в вакууме на расстоянии 0,2 м друг от друга. Определите
напряженность поля в точке С, расположенной на линии, соединяющей заряды, на
расстоянии 0,05 м вправо от заряда q2.
2. В некоторой точке поля на заряд 5·10-9 Кл действует сила 3·10-4
Н. Найти напряженность поля в этой точке и определите величину заряда,
создающего поле, если точка удалена от него на 0,1 м.
Электрическое поле
Электродинамика – раздел физики, изучающий свойства и взаимодействия электрических зарядов, осуществляемые посредством электромагнитного поля.
Электростатикой называется раздел электродинамики, в котором рассматриваются свойства и взаимодействия неподвижных электрически заряженных тел или частиц.
Электромагнитное взаимодействие – это взаимодействие между электрически заряженными частицами или макротелами.
Точечный заряд – заряженное тело, размер которого мал по сравнению с расстоянием, на котором оценивается его действие.
Содержание
- Электризация тел
- Взаимодействие зарядов. Два вида зарядов
- Закон сохранения электрического заряда
- Закон Кулона
- Действие электрического поля на электрические заряды
- Напряженность электрического поля
- Принцип суперпозиции электрических полей
- Потенциальность электростатического поля
- Потенциал электрического поля. Разность потенциалов
- Проводники в электрическом поле
- Диэлектрики в электрическом поле
- Электрическая емкость. Конденсатор
- Энергия электрического поля конденсатора
- Основные формулы раздела «Электрическое поле»
Электризация тел
Электризация – процесс сообщения телу электрического заряда, т. е. нарушение его электрической нейтральности. Процесс электризации представляет собой перенесение с одного тела на другое электронов или ионов. В результате электризации тело получает возможность участвовать в электромагнитном взаимодействии.
Способы электризации:
- трением, – например, электризация эбонитовой палочки при трении о мех. При тесном соприкосновении двух тел часть электронов переходит с одного тела на другое; в результате этого на поверхности у одного из тел создается недостаток электронов и тело получает положительный заряд, а у другого – избыток, и тело заряжается отрицательно. Величины зарядов тел одинаковы;
- через влияние (электростатическая индукция) – тело остается электрически нейтральным, электрические заряды внутри него перераспределяются так, что разные части тела приобретают разные по знаку заряды;
- при соприкосновении заряженного и незаряженного тела – заряд при этом распределяется между этими телами пропорционально их размерам. Если размеры тел одинаковы, то заряд распределяется между ними поровну;
- при ударе;
- под действием излучения – под действием света с поверхности проводника могут вырываться электроны, при этом проводник приобретает положительный заряд.
Взаимодействие зарядов. Два вида зарядов
Электрический заряд – скалярная физическая величина, характеризующая способность тела участвовать в электромагнитных взаимодействиях.
Обозначение – ( q ), единица измерения в СИ – кулон (Кл).
Существуют два вида электрических зарядов: положительный и отрицательный. Наименьший отрицательный заряд имеет электрон (–1,6·10-19 Кл), наименьший положительный заряд (1,6·10-19 Кл) – протон. Минимальный заряд, который может быть сообщен телу, равен заряду электрона (элементарный заряд). Если тело имеет избыточные (лишние) электроны, то тело заряжено отрицательно, если у тела недостаток электронов, то тело заряжено положительно.
Величина заряда тела будет равна
где ( N ) — число избыточных или недостающих электронов;
( e ) — элементарный заряд, равный 1,6·10-19 Кл.
Важно!
Частица может не иметь заряда, но заряд без частицы не существует.
Электрические заряды взаимодействуют:
- заряды одного знака отталкиваются:
- заряды противоположных знаков притягиваются:
Прибор для обнаружения электрического заряда называется электроскоп. Основная часть прибора – металлический стержень, на котором закреплены два листочка металлической фольги, помещенные в стеклянный сосуд. При соприкосновении заряженного тела со стержнем электроскопа заряды распределяются между листочками фольги. Так как заряд листочков одинаков по знаку, они отталкиваются.
Для измерения зарядов можно использовать и электрометр. Основные части его – металлический стержень и стрелка, которая может вращаться вокруг горизонтальной оси. Стержень со стрелкой закреплен в пластмассовой втулке и помещен в металлический корпус, закрытый стеклянными крышками. При соприкосновении заряженного тела со стержнем стержень и стрелка получают электрические заряды одного знака. Стрелка поворачивается на некоторый угол.
Закон сохранения электрического заряда
Систему называют замкнутой (электрически изолированной), если в ней не происходит обмена зарядами с окружающей средой.
В любой замкнутой (электрически изолированной) системе сумма электрических зарядов остается постоянной при любых взаимодействиях внутри нее.
Полный электрический заряд ( (q) ) системы равен алгебраической сумме ее положительных и отрицательных зарядов ( (q_1, q_2 … q_N) ):
Важно!
В природе не возникают и не исчезают заряды одного знака: положительный и отрицательный заряды могут взаимно нейтрализовать друг друга, если они равны по модулю.
Закон Кулона
Закон Кулона был открыт экспериментально: в опытах с использованием крутильных весов измерялись силы взаимодействия заряженных шаров.
Закон Кулона формулируется так:
сила взаимодействия ( F ) двух точечных неподвижных электрических зарядов в вакууме прямо пропорциональна их модулям ( q_1 ) и ( q_2 ) и обратно пропорциональна квадрату расстояния между ними ( r ):
где ( k=frac{1}{4pivarepsilon_0}=9cdot10^9 ) (Н·м2)/Кл2 – коэффициент пропорциональности,
( varepsilon_0=8.85cdot10^{-12} ) Кл2/(Н·м2) – электрическая постоянная.
Коэффициент ( k ) численно равен силе, с которой два точечных заряда величиной 1 Кл каждый взаимодействуют в вакууме на расстоянии 1 м.
Сила Кулона направлена вдоль прямой, соединяющей взаимодействующие заряды. Заряды взаимодействуют друг с другом с силами, равными по величине и противоположными по направлению.
Значение силы Кулона зависит от среды, в которой они находятся. В этом случае формула закона:
где ( varepsilon ) – диэлектрическая проницаемость среды.
Закон Кулона применим к взаимодействию
- неподвижных точечных зарядов;
- равномерно заряженных тел сферической формы.
В этом случае ( r ) – расстояние между центрами сферических поверхностей.
Важно!
Если заряженное тело протяженное, то его необходимо разбить на точечные заряды, рассчитать силы их попарного взаимодействия и найти равнодействующую этих сил (принцип суперпозиции).
Действие электрического поля на электрические заряды
Электрическое поле – это особая форма материи, существующая вокруг электрически заряженных тел.
Впервые понятие электрического поля было введено Фарадеем. Он объяснял взаимодействие зарядов следующим образом: каждый заряд создает вокруг себя электрическое поле, которое с некоторой силой действует на другой заряд.
Свойства электрического поля заключаются в том, что оно:
- материально;
- создается зарядом;
- обнаруживается по действию на заряд;
- непрерывно распределено в пространстве;
- ослабевает с увеличением расстояния от заряда.
Действие заряженного тела на окружающие тела проявляется в виде сил притяжения и отталкивания, стремящихся поворачивать и перемещать эти тела по отношению к заряженному телу.
Силу, с которой электрическое поле действует на заряд, можно рассчитать по формуле:
где ( vec{E} ) – напряженность электрического поля, ( q ) – заряд.
Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов механики с учетом закона Кулона и вытекающих из него следствий.
Алгоритм решения задач о точечных зарядах и системах, сводящихся к ним:
- сделать рисунок; указать силы, действующие на точечный заряд, помещенный в электрическое поле;
- записать для заряда условие равновесия или основное уравнение динамики материальной точки;
- выразить силы электрического взаимодействия через заряды и поля и подставить эти выражения в исходное уравнение;
- если при взаимодействии заряженных тел между ними происходит перераспределение зарядов, к составленному уравнению добавить уравнение закона сохранения зарядов;
- записать математически все вспомогательные условия;
- решить полученную систему уравнений относительно неизвестной величины;
- проверить решение
Напряженность электрического поля
Напряженность электрического поля ( vec{E} ) – векторная физическая величина, равная отношению силы ( F ), действующей на пробный точечный заряд, к величине этого заряда ( q ):
Обозначение – ( vec{E} ), единица измерения в СИ – Н/Кл или В/м.
Напряженность поля точечного заряда в вакууме вычисляется по формуле:
где ( k=frac{1}{4pivarepsilon_0}=9cdot10^9 ) (Н·м2)/Кл2,
( q_0 ) – заряд, создающий поле,
( r ) – расстояние от заряда, создающего поле, до данной точки.
Напряженность поля точечного заряда в среде вычисляется по формуле:
где ( varepsilon ) – диэлектрическая проницаемость среды.
Важно!
Напряженность электрического поля не зависит от величины пробного заряда, она определяется величиной заряда, создающего поле.
Направление вектора напряженности в данной точке совпадает с направлением силы, с которой поле действует на положительный пробный заряд, помещенный в эту точку.
Линией напряженности электрического поля называется линия, касательная к которой в каждой точке направлена вдоль вектора напряженности ( vec{E} ).
Линии напряженности электростатического поля начинаются на положительных электрических зарядах и заканчиваются на отрицательных электрических зарядах или уходят в бесконечность от положительного заряда и приходят из бесконечности к отрицательному заряду.
Распределение линий напряженности вокруг положительного и отрицательного точечных зарядов показано на рисунке.
Определяя направление вектора ( vec{E} ) в различных точках пространства, можно представить картину распределения линий напряженности электрического поля.
Поле, в котором напряженность одинакова по модулю и направлению в любой точке, называется однородным электрическим полем. Однородным можно считать электрическое поле между двумя разноименно заряженными металлическими пластинами. Линии напряженности в однородном электрическом поле параллельны друг другу.
Принцип суперпозиции электрических полей
Каждый электрический заряд создает в пространстве электрическое поле независимо от наличия других электрических зарядов.
Принцип суперпозиции электрических полей: напряженность электрического поля системы ( N ) зарядов равна векторной сумме напряженностей полей, создаваемых каждым из них в отдельности:
Электрические поля от разных источников существуют в одной точке пространства и действуют на заряд независимо друг от друга.
Потенциальность электростатического поля
Электрическое поле с напряженностью ( vec{E} ) при перемещении заряда ( q ) совершает работу. Работа ( A ) электростатического поля вычисляется по формуле:
где ( d ) – расстояние, на которое перемещается заряд,
( alpha ) – угол между векторами напряженности электрического поля и перемещения заряда.
Важно!
Эта формула применима для нахождения работы только в однородном электростатическом поле.
Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только начальным и конечным положением заряда.
Потенциальным называется поле, работа сил которого по перемещению заряда по замкнутой траектории равна нулю.
Важно!
Работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю. Электростатическое поле является потенциальным.
Работа электростатического поля по перемещению заряда равна изменению потенциальной энергии, взятому с противоположным знаком. В электродинамике энергию принято обозначать буквой ( W ), так как буквой ( E ) обозначают напряженность поля:
Потенциальная энергия заряда ( q ), помещенного в электростатическое поле, пропорциональна величине этого заряда. Потенциальная энергия взаимодействия зарядов вычисляется относительно нулевого уровня (аналогично потенциальной энергии поля силы тяжести). Выбор нулевого уровня потенциальной энергии определяется исходя из соображений удобства при решении задачи.
Потенциал электрического поля. Разность потенциалов
Потенциал – скалярная физическая величина, равная отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда.
Обозначение – ( varphi ), единица измерения в СИ – вольт (В).
Потенциал ( varphi ) является энергетической характеристикой электростатического поля.
Разность потенциалов численно равна работе, которую совершает электрическая сила при перемещении единичного положительного заряда между двумя точками поля:
Обозначение – ( Deltavarphi ), единица измерения в СИ – вольт (В).
Иногда разность потенциалов обозначают буквой ( U ) и называют напряжением.
Важно!
Разность потенциалов ( Deltavarphi=varphi_1-varphi_2 ), а не изменение потенциала ( Deltavarphi=varphi_2-varphi_1 ). Тогда работа электростатического поля равна:
Важно!
Эта формула позволяет вычислить работу электростатических сил в любом поле.
В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки. В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.
Потенциал поля точечного заряда ( q ) в точке, удаленной от него на расстояние ( r ), вычисляется по формуле:
Для наглядного представления электрического поля используют эквипотенциальные поверхности.
Важно!
Внутри проводящего шара потенциал всех точек внутри шара равен потенциалу поверхности шара и вычисляется по формуле потенциала точечного заряда (( r =R ), где ( R ) – радиус шара). Напряженность поля внутри шара равна нулю.
Эквипотенциальной поверхностью, или поверхностью равного потенциала, называется поверхность, во всех точках которой потенциал имеет одинаковое значение.
Свойства эквипотенциальных поверхностей
- Вектор напряженности перпендикулярен эквипотенциальным поверхностям и направлен в сторону убывания потенциала.
- Работа по перемещению заряда по эквипотенциальной поверхности равна нулю.
В случае однородного поля эквипотенциальные поверхности представляют собой систему параллельных плоскостей. Для точечного заряда эквипотенциальные поверхности представляют собой концентрические окружности.
Разность потенциалов и напряженность связаны формулой:
Из принципа суперпозиции полей следует принцип суперпозиции потенциалов:
Потенциал результирующего поля равен сумме потенциалов полей отдельных зарядов.
Важно!
Потенциалы складываются алгебраически, а напряженности – по правилу сложения векторов.
Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил.
Алгоритм решения таких задач:
- установить характер и особенности электростатических взаимодействий объектов системы;
- ввести характеристики (силовые и энергетические) этих взаимодействий, сделать рисунок;
- записать законы сохранения и движения для объектов;
- выразить энергию электростатического взаимодействия через заряды, потенциалы, напряженности;
- составить систему уравнений и решить ее относительно искомой величины;
- проверить решение.
Проводники в электрическом поле
Проводниками называют вещества, в которых может происходить упорядоченное перемещение электрических зарядов, т. е. протекать электрический ток.
Проводниками являются металлы, водные растворы солей, кислот, ионизованные газы. В проводниках есть свободные электрические заряды. В металлах валентные электроны взаимодействующих друг с другом атомов становятся свободными.
Если металлический проводник поместить в электрическое поле, то под его действием свободные электроны проводника начнут перемещаться в направлении, противоположном направлению напряженности поля. В результате на одной поверхности проводника появится избыточный отрицательный заряд, а на противоположной – избыточный положительный заряд.
Эти заряды создают внутри проводника внутреннее электрическое поле, вектор напряженности которого направлен противоположно вектору напряженности внешнего поля. Под действием внешнего электростатического поля электроны проводимости в металлическом проводнике перераспределяются так, что напряженность результирующего поля в любой точке внутри проводника равна нулю. Электрические заряды расположены на поверхности проводника.
Важно!
Если внутри проводника есть полость, то напряженность в ней будет равна нулю независимо от того, какое поле имеется вне проводника и как заряжен проводник. Внутренняя полость в проводнике экранирована (защищена) от внешних электростатических полей. На этом основана электростатическая защита.
Явление перераспределения зарядов во внешнем электростатическом поле называется электростатической индукцией.
Заряды, разделенные электростатическим полем, взаимно компенсируют друг друга, если проводник удалить из поля. Если такой проводник разрезать, не вынося из поля, то его части будут иметь заряды разных знаков.
Важно!
Во всех точках поверхности проводника вектор напряженности направлен перпендикулярно к его поверхности. Поверхность проводника является эквипотенциальной (потенциалы всех точек поверхности проводника равны).
Диэлектрики в электрическом поле
Диэлектриками называют вещества, не проводящие электрический ток. Диэлектриками являются стекло, фарфор, резина, дистиллированная вода, газы.
В диэлектриках нет свободных зарядов, все заряды связаны. В молекуле диэлектрика суммарный отрицательный заряд электронов равен положительному заряду ядра. Различают полярные и неполярные диэлектрики.
В молекулах полярных диэлектриков ядра и электроны расположены так, что центры масс положительных и отрицательных зарядов не совпадают и находятся на некотором расстоянии друг от друга. То есть молекулы представляют собой диполи независимо от наличия внешнего электрического поля. В отсутствие внешнего электрического поля из-за теплового движения молекул диполи расположены хаотично, поэтому суммарная напряженность поля всех диполей диэлектрика равна нулю.
Если в отсутствие внешнего электрического поля центры масс положительных и отрицательных зарядов в молекуле диэлектрика совпадают, то он называется неполярным. Пример такого диэлектрика – молекула водорода. Если такой диэлектрик поместить во внешнее электрическое поле, то направления векторов сил, действующих на положительные и отрицательные заряды, будут противоположными. В результате молекула деформируется и превращается в диполь. При внесении диэлектрика в электрическое поле происходит его поляризация.
Поляризация диэлектрика – процесс смещения в противоположные стороны разноименных связанных зарядов, входящих в состав атомов и молекул вещества в электрическом поле.
Если диэлектрик неполярный, то в его молекулах происходит смещение положительных и отрицательных зарядов. На поверхности диэлектрика появятся поверхностные связанные заряды. Связанными эти заряды называют потому, что они не могут свободно перемещаться отдельно друг от друга.
Внутри диэлектрика суммарный заряд равен нулю, а на поверхностях заряды не скомпенсированы и создают внутри диэлектрика поле, вектор напряженности которого направлен противоположно вектору напряженности внешнего поля. Это значит, что внутри диэлектрика поле имеет меньшую напряженность, чем в вакууме.
Физическая величина, равная отношению модуля напряженности электрического поля в вакууме к модулю напряженности электрического поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества:
В полярном диэлектрике во внешнем электрическом поле происходит поворот диполей, и они выстраиваются вдоль линий напряженности.
Если внесенный в электрическое поле диэлектрик разрезать, то его части будут электрически нейтральны.
Электрическая емкость. Конденсатор
Электрическая емкость (электроемкость) – скалярная физическая величина, характеризующая способность уединенного проводника удерживать электрический заряд.
Обозначение – ( C ), единица измерения в СИ – фарад (Ф).
Уединенный проводник – это проводник, удаленный от других проводников и заряженных тел.
Фарад – электроемкость такого уединенного проводника, потенциал которого изменяется на 1 В при сообщении ему заряда 1 Кл:
Формула для вычисления электроемкости:
где ( q ) – заряд проводника, ( varphi ) – его потенциал.
Электроемкость зависит от его линейных размеров и геометрической формы. Электроемкость не зависит от материала проводника и его агрегатного состояния. Электроемкость проводника прямо пропорциональна диэлектрической проницаемости среды, в которой он находится.
Конденсатор – это система из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников.
Проводники называют обкладками конденсатора. Заряды обкладок конденсатора равны по величине и противоположны по знаку заряда. Электрическое поле сосредоточено между обкладками конденсатора. Конденсаторы используют для накопления электрических зарядов.
Электроемкость конденсатора рассчитывается по формуле:
где ( q ) – модуль заряда одной из обкладок,
( U ) – разность потенциалов между обкладками.
Электроемкость конденсатора зависит от линейных размеров и геометрической формы и расстояния между проводниками. Электроемкость конденсатора прямо пропорциональна диэлектрической проницаемости вещества между проводниками.
Плоский конденсатор представляет две параллельные пластины площадью ( S ), находящиеся на расстоянии ( d ) друг от друга.
Электроемкость плоского конденсатора:
где ( varepsilon ) – диэлектрическая проницаемость вещества между обкладками,
( varepsilon_0 ) – электрическая постоянная.
На электрической схеме конденсатор обозначается:
Виды конденсаторов:
- по типу диэлектрика – воздушный, бумажный и т. д.;
- по форме – плоский, цилиндрический, сферический;
- по электроемкости – постоянной и переменной емкости.
Конденсаторы можно соединять между собой.
Параллельное соединение конденсаторов
При параллельном соединении конденсаторы соединяются одноименно заряженными обкладками. Напряжения конденсаторов равны:
Общая емкость:
Последовательное соединение конденсаторов
При последовательном соединении конденсаторов соединяют их разноименно заряженные обкладки.
Заряды конденсаторов при таком соединении равны:
Общее напряжение:
Величина, обратная общей емкости:
При таком соединении общая емкость всегда меньше емкостей отдельных конденсаторов.
Важно!
Если конденсатор подключен к источнику тока, то разность потенциалов между его обкладками не изменяется при изменении электроемкости и равна напряжению источника. Если конденсатор заряжен до некоторой разности потенциалов и отключен от источника тока, то его заряд не изменяется при изменении электроемкости.
Применение конденсаторов
Конденсаторы используются в радиоэлектронных приборах как накопители заряда, для сглаживания пульсаций в выпрямителях переменного тока.
Энергия электрического поля конденсатора
Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор.
Электрическая энергия конденсатора сосредоточена в пространстве между обкладками конденсатора, то есть в электрическом поле, поэтому ее называют энергией электрического поля. Формулы для вычисления энергии электрического поля:
Так как напряженность электрического поля прямо пропорциональна напряжению, то энергия электрического поля конденсатора пропорциональна квадрату напряженности.
Плотность энергии электрического поля:
где ( V ) – объем пространства между обкладками конденсатора.
Плотность энергии не зависит от параметров конденсатора, а определяется только напряженностью электрического поля.
Основные формулы раздела «Электрическое поле»
Электрическое поле
2.9 (58.48%) 132 votes
Потенциал. Разность потенциалов.
Разность потенциалов (напряжение) между 2-мя точками поля равняется отношению работы поля по перемещению заряда из начальной точки в конечную к этому заряду:
,
Так как работа по перемещению заряда в потенциальном поле не зависит от формы траектории, то, зная напряжение между двумя точками, мы определим работу, которая совершается полем по перемещению единичного заряда.
Если есть несколько точечных зарядов, значит, потенциал поля в некоторой точке пространства определяется как алгебраическая сумма потенциалов электрических полей каждого заряда в данной точке:
.
Эквипотенциальной поверхностью, или поверхностью равного потенциала, является поверхность, для любых точек которой разность потенциалов равна нулю. Это означяет, что работа по перемещению заряда по такой поверхности равна нулю, следовательно, линии напряженности электрического поля перпендикулярны эквипотенциальным поверхностям. Эквипотенциальные поверхности однородного поля представляют собой плоскости, а точечного заряда — концентрические сферы.
Вектор напряженности (как и сила ) перпендикулярен эквипотенциальным поверхностям. Эквипотенциальной является поверхность любого проводника в электростатическом поле, так как силовые линии перпендикулярны поверхности проводника. Внутри проводника разность потенциалов между любыми его точками равна нулю.
Напряжение и напряженность однородного поля .
В однородном электрическом поле напряженность E в каждой точке одинакова, и работа A по перемещению заряда q параллельно на расстояние d между двумя точками с потенциалами φ1, и φ2 равна:
,
.
Т.о., напряженность поля пропорциональна разности потенциалов и направлена в сторону уменьшения потенциала. Поэтому положительный заряд будет двигаться в сторону уменьшения потенциала, а отрицательный — в сторону его увеличения.
Единицей напряжения (разности потенциалов) является вольт. Исходя из формулы , , разность потенциалов между двумя точками равна одному вольту, если при перемещении заряда в 1 Кл между этими точками поле совершает работу в 1 Дж.
Электрический потенциал простыми словами: формулы, единица измерения
Электрический потенциал – это скалярная энергетическая характеристика электростатического поля, характеризующая потенциальную энергию, которой обладает единичный положительный пробный заряд, помещённый в данную точку поля.
Если вы хотите расширить свои знания об электрическом потенциале или сначала узнать, что такое электрический потенциал, то вы пришли по адресу.
Простое объяснение
В классической механике рассмотрение проблемы с точки зрения энергии может значительно упростить ситуацию по сравнению с рассмотрением ее с точки зрения сил, действующих на систему. В частности, в этом контексте существенную роль играет тот факт, что энергия является сохраняющейся переменной.
Также в классической электродинамике рассмотрение на энергетическом уровне оказывается очень полезным. Поэтому электрический потенциал φ (также называемый электростатическим потенциалом) определяется как отношение потенциальной энергии Eпот пробного электрического заряда и его величины электрического заряда q: φ = Eпот / q .
Возможность определения такого электрического потенциала обусловлена тем, что электрическое поле E распределения заряда и результирующая электростатическая сила Fc на пробном электрическом заряде является консервативной силой, подобной гравитационной силе.
Электрический потенциал имеет единицу измерения вольт В или также джоуль на кулон Дж / Кл .
Формулы
В этом разделе мы познакомим вас с двумя важными формулами для электрического потенциала определенных распределений электрических зарядов. Мы также кратко обсудим аналогию между электрическим потенциалом и гравитацией.
Пластинчатый конденсатор
Мы рассматриваем ситуацию, когда две плоские пластины расположены параллельно на расстоянии d друг от друга. Кроме того, пусть одна из двух пластин заряжена положительно, а другая – отрицательно. Такая комбинация также называется пластинчатым конденсатором. Обозначим точку на положительной пластине через A, а точку на отрицательной пластине через B. Тогда для разности потенциалов между этими двумя точками получим:
Здесь E – величина электрического поля между двумя пластинами, которое предполагается однородным. Такая разность потенциалов также называется электрическим напряжением, которое существует между этими двумя точками.
Из этого уравнения видно, что электрический потенциал на положительно заряженной пластине (пластина A) выше, чем потенциал на отрицательно заряженной пластине (пластина B). Поэтому положительный заряд в пластинчатом конденсаторе перемещается к отрицательной пластине. В общем случае электрическое поле – а значит, и направление движения положительного заряда – направлено в ту сторону, в которой электрический потенциал убывает быстрее всего.
Рис. 1. Пластинчатый конденсатор
Аналогия с гравитационным полем
Если умножить уравнение (приведенное выше в статье) на величину электрического заряда q пробного электрического заряда и предположить, что отрицательно заряженная пластина имеет электрический потенциал, равный нулю, то электрическая потенциальная энергия на расстоянии h от пластины равна:
Eпот. эл = q * φ = q * E * h
Здесь φ обозначает электрический потенциал в точке пробного электрического заряда.
Сравним это уравнение с потенциальной энергией в однородном гравитационном поле:
Eпот. гр = m * g * h .
Мы определяем, что количество заряда электрического q играет роль массы m, а величина электрического поля E играет роль гравитационного ускорения g. Масса, находящаяся на высоте h над землей, ускоряется по направлению к земле под действием земного притяжения.
Таким образом, масса движется в том направлении, в котором уменьшается ее потенциальная энергия. Аналогично, положительный электрический заряд движется в направлении, в котором его электрическая потенциальная энергия будет уменьшаться. Поскольку электрическая потенциальная энергия и электрический потенциал линейно связаны, это наблюдение аналогично тому, что положительно заряженная частица движется в направлении уменьшения электрического потенциала.
Рис. 2. Аналогия с гравитационным полем
Подобно потенциальной энергии, только разность потенциалов имеет физический смысл, поскольку при определении электрического потенциала необходимо произвольно определить точку отсчета, от которой затем можно обозначить другие точки в пространстве. В этом смысле электрический потенциал сам по себе не имеет реального физического смысла, поскольку для данной точки в пространстве его значение можно изменить, выбрав другую точку отсчета. Таким образом, электрический потенциал ведет себя подобно высоте, потому что вы не можете говорить о высоте, пока у вас нет точки отсчета.
На топографической карте – пути, вдоль которых высота не меняется, называются изолиниями. Аналогично, пути, вдоль которых электрический потенциал постоянен, называются эквипотенциальными линиями.
Заряженные частицы
Предположим, что частица с зарядом q находится в начале выбранной нами системы координат. Пусть положение другой точки равно r и пусть r – расстояние между двумя точками. Для электрического потенциала в точке r действует следующее соотношение:
φ (r) = q / 4 * π * ε0 * r ,
здесь ε0 – электрическая постоянная.
В этом уравнении предполагается, что под действием электрического поля положительный пробный электрический заряд переносится из бесконечности в положение r.
Примеры задач
Наконец, давайте вместе рассчитаем небольшой пример. Предположим, что электрон ускоряется от отрицательно заряженной пластины к положительно заряженной через разность потенциалов 2000 В. Как изменяется потенциальная энергия электрона?
Для разности электрических потенциалов между двумя пластинами: φB – φA = ΔEпот / q , преобразованной в искомое изменение потенциальной энергии, получаем:
Величина электрического заряда электрона равна qe = e = – 1,6 * 10 -19 Кл и поэтому получаем:
ΔEпот = e * ( φB – φA ) = – 1,6 * 10 -19 Кл * 2000 В = -3,2 * 10 -19 Дж.
Обратите внимание, что [ В ] = Дж / Кл. Кроме того, мы предположили, что пластина с точкой B заряжена положительно, поэтому перед 2000 В нет знака минус. Расчет показывает, что потенциальная энергия электрона уменьшается.
Найти потенциал электрического поля в точке, лежащей посредине между двумя
Найти потенциал электрического поля в точке, лежащей посредине между двумя зарядами по 50 нКл, расположенными на расстоянии 1 м в вакууме.
Задача №6.3.9 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»
Решение задачи:
Так как заряды одинаковы, и они находятся на одинаковом расстоянии (r) от точки A, в которой нужно определить потенциал, значит потенциалы электрических полей в точке A, создаваемых каждым зарядом, также одинаковы. Это видно из формулы:
Здесь (k) – коэффициент пропорциональности, равный 9·10 9 Н·м 2 /Кл 2 .
Учитывая, что точка A находится посредине между двумя зарядами ((r=frac)), то:
Искомый потенциал (varphi) равен сумме потенциалов электрических полей в точке A, создаваемых каждым зарядом, поскольку потенциал – величина скалярная. Учитывая вышесказанное, имеем:
В итоге решение задачи в общем виде выглядит так:
Ответ: 1,8 кВ.
Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.