Как найти единицу измерения в физике

Единицы физических величин (единицы измерения), метрические системы, соотношения и переводы единиц измерения

Единицы физических величин. Общая информация

Единица физической величины (единица величиныединицаединица измерения) (англ. Measurement unit, unit of measurement, unit) — физическая величина фиксированного размера, которой условно по соглашению присвоено числовое значение, равное 1.

С единицей физической величины можно сравнить любую другую величину того же рода и выразить их отношение в виде числа. Применяется для количественного выражения однородных с ней физических величин.
Единицы измерения имеют присвоенные им по соглашению наименования и обозначения.

Различают основные и производные единицы.

Основные единицы в данной системе единиц устанавливаются для тех физических величин, которые выбраны в качестве основных в соответствующей системе физических величин. Так, Международная система единиц (СИ) основана на Международной системе величин (англ. International System of Quantities, ISQ), в которой основными являются семь величин: длина, масса, время, электрический ток, термодинамическая температура, количество вещества и сила света.
Соответственно, в СИ основными единицами являются единицы указанных величин.
Размеры основных единиц устанавливаются по соглашению в рамках соответствующей системы единиц и фиксируются либо с помощью эталонов (прототипов), либо путём фиксации численных значений фундаментальных физических постоянных.

Производные единицы определяются через основные путём использования тех связей между физическими величинами, которые установлены в системе физических величин.
Существует большое количество различных систем единиц, которые различаются как системами величин, на которых они основаны, так и выбором основных единиц.
Государство, как правило, законодательно устанавливает какую-либо систему единиц в качестве предпочтительной или обязательной для использования в стране.

Соотношение единиц измерения

Меры длины
1 км = 1 000 м
1 дм = 10 см = 100 мм
1 м = 10 дм = 100 см
1 см = 10 мм
1 мм = 1 000 мк

Меры площади  
1 км2 = 100 га = 10 000 а = 1 000 000 м2
1 га = 100 а = 10 000 м2
1 а = 100 м2 = 10 000 дм2
1 м2 = 100 дм2= 10 000 см2
1 дм2 = 100 см2= 10 000 мм2
1 см2 = 100 мм2
1 мм2 = 0,01 см2

Меры объема
1 м3 = 1 000 дм3
1 дм3= 1 000 см3
1 л = 1 дм3
1 см3 = 1 000 мм3
1 мм3 = 0,001 см3

Меры веса
1 т = 10 ц = 1 000 кг
1 ц = 100 кг
1 кг = 1 000 г
1 г = 1 000 мг
1 мг = 0,001 г

Меры времени   
век = 100 лет
год = 12 мес = 365 или 366 сут
мес = 30 сут или 31 сут (в феврале 28 или 29 сут)
неделя = 7 сут
сут = 24 ч= 86 400 сек
1 ч = 60 мин = 3 600 сек
мин = 60 с
1 сек = 1 000 мсек

Меры давления  
1 ат = 1 кГ/см2 = 735,66 мм рт. ст.
1 мм рт. ст. = 1,36 Г/см2

Меры тока  
1 ка = 1 000 а
1 а = 1 000 ма
1 ма = 1 000 мка

Меры напряжения и э.д.с. 
1 кв. = 1 000 в
1 в = 1 000 мв
1 мв = 1 000 мкв

Меры мощности
1 квт = 1 000 вт
1 вт = 1 000 мвт
1 мвт = 1 000 мквт

Меры сопротивления
1 Мом = 1 000 ком
1 ком = 1 000 ом.
1 ом = 0,001 ком

Меры частоты
1 Мгц = 1 000 кгц
1кгц = 1 000 гц

Меры количества информации

1 байт = 8 бит
1 Кб (1 Килобайт) = 210 байт == 1024 байт (~103 байт)
1 Мб (1 Мегабайт) = 220 байт = 1024 килобайт (~ 106 байт)
1 Гб (1 Гигабайт) = 230 байт = 1024 мегабайт (~ 109 байт)
1 Тб (1 Терабайт) = 240 байт = 1024 гигабайт (~ 1012 байт)
1 Пб (1 Петабайт) = 250 байт = 1024 терабайт (~1015 байт)
1 Эксабайт = 260 байт = 1024 петабайт (~1018 байт)
1 Зеттабайт = 270 байт = 1024 эксабайт (~1021 байт)
1 Йоттабайт = 280 байт = 1024 зеттабайт (~ 1024 байт)

Для  единиц измерения информации степени двойки (210, 220 и т.д.) являются точными значениями килобайт, мегабайт, гигабайт. А степени числа 10 (103, 106 и т.п.) – приблизительные значения, округленные в сторону уменьшения.
Такое приближение (или округление) вполне допустимо и является общепринятым 

Системы единиц измерения

Метрические системы

Метрическая система — общее название международной десятичной системы единиц, основанной на использовании метра и килограмма.
На протяжении двух последних веков существовали различные варианты метрической системы, различающиеся выбором основных единиц.

В настоящее время повсеместно признанной является Международная система единиц (СИ).
Метрическая система официально принята во всех государствах мира, кроме США, Либерии и Мьянмы (Бирма).

anr10

НУЖЕН АНГЛИЙСКИЙ?

6 лучших онлайн-школ и сервисов

Инглекс
englex.ru
обучение английскому языку по скайпу- живое общение с преподавателем

Skyeng
skyeng.ru
одна из крупнейших онлайн школ английского для аудитории СНГ

Фоксфорд
foxford.ru
эффективные курсы с погружением в англоязычную среду

Skillbox
eng.skillbox.ru
все программы английского языка

Puzzle English
puzzle-english.com
популярный онлайн-сервис для изучения английского языка

Lingualeo
lingualeo.com/ru
эффективный сервис для увлекательной практики языков

Основное отличие метрической системы от применявшихся ранее традиционных систем заключается в использовании упорядоченного набора единиц измерения. Для любой физической величины существует лишь одна главная единица и набор дольных и кратных единиц, образуемых стандартным образом с помощью десятичных приставок.
Тем самым устраняется неудобство от использования большого количества разных единиц (таких, например, как дюймы, футы, фадены, мили и т. д.) со сложными правилами преобразования между ними. В метрической системе преобразование сводится к умножению или делению на степень числа 10, то есть к простой перестановке запятой в десятичной дроби.

Основная используемая система
СИ
Неиспользуемые или малоиспользуемые системы
СГС
МКС
МКГСС
МТС
МСК
МКСЛ

Системы естественных единиц измерения

Атомная система единиц
Планковские единицы
Геометризованная система единиц
Единицы Лоренца — Хевисайда

Традиционные системы мер

Русская система мер
Английская система мер
Французская система мер
Китайская система мер
Японская система мер
Давно устаревшие (древнегреческая, древнеримская, древнеегипетская, древневавилонская, древнееврейская)

Международная система единиц СИ

Международная система единиц СИ (фр. Système international d’unités, SI) — система единиц физических величин, современный вариант метрической системы.
СИ принята в качестве основной системы единиц большинством стран мира и почти всегда используется в области техники, даже в тех странах, в которых в повседневной жизни используются традиционные единицы.
В этих немногих странах (например, в США) определения традиционных единиц были изменены таким образом, чтобы связать их фиксированными коэффициентами с соответствующими единицами СИ.

Полное официальное описание СИ вместе с её толкованием содержится в действующей редакции Брошюры СИ (фр. Brochure SI, англ. The SI Brochure) и в дополнении к ней, опубликованных Международным бюро мер и весов (МБМВ) и представленных на сайте МБМВ –  bipm.org

Брошюра СИ издаётся с 1970 года, с 1985 года выходит на французском и английском языках, переведена также на ряд других языков, однако официальным считается текст только на французском языке.

Основные единицы СИ

Величина

Единица

Наименование

Символ
размерности

Наименование

Обозначение

русское

французское/
английское

русское

между
народное

Длина

L

метр

mètre/metre

м

m

Масса

M

килограмм

kilogramme/kilogram

кг

kg

Время

T

секунда

seconde/second

с

s

Сила электрического тока

I

ампер

ampère/ampere

А

A

Термодинамическая температура

Θ

кельвин

kelvin

К

K

Количество вещества

N

моль

mole

моль

mol

Сила света

J

кандела

candela

кд

cd

Наименования единиц СИ пишутся со строчной буквы, после обозначений единиц СИ точка не ставится, в отличие от обычных сокращений.
У этого правила есть исключение: обозначения единиц, названных фамилиями учёных, пишутся с заглавной буквы (например, ампер обозначается символом А).

Производные единицы

Остальные единицы СИ являются производными и образуются из основных с помощью уравнений, связывающих друг с другом физические величины используемой в СИ Международной системы величин.
Основная единица может использоваться и для производной величины той же размерности. Например, количество осадков определяется как частное от деления объёма на площадь и в СИ выражается в метрах. В этом случае метр используется в качестве когерентной производной единицы.
Определение СИ через фиксацию констант, в принципе не требует различать основные и производные единицы. Тем не менее, это разделение сохраняется по историческим причинам и для удобства.

Примеры производных единиц СИ, наименования и обозначения которых образованы с использованием наименований и обозначений основных единиц СИ

Величина

Единица

Наименование

Наименование

Обозначение

   

между
народное

русское

Площадь

квадратный метр

m

м

Объем, вместимость

кубический метр

m

м

Скорость

метр в секунду

m/s

м/с

Ускорение

метр на секунду в квадрате

m/s

м/с

Волновое число

метр в минус первой степени

m

м

Плотность

килограмм на кубический метр

kg/m

кг/м

Удельный объем

кубический метр на килограмм

m/kg

м/кг

Плотность электрического тока

ампер на квадратный метр

А/m

А/м

Напряженность магнитного поля

ампер на метр

А/m

А/м

Молярная концентрация компонента

моль на кубический метр

mol/m

моль/м

Яркость

кандела на квадратный метр

cd/m

кд/м

Производные единицы, имеющие специальные наименования и обозначения

Производные единицы могут быть выражены через основные с помощью математических операций — умножения и деления. Некоторым из производных единиц для удобства присвоены собственные наименования, такие единицы тоже можно использовать в математических выражениях для образования других производных единиц.

Величина

Единица измерения

Обозначение

Выражение через
основные единицы

русское
наименование

международное
название

русское

между
народное

Плоский угол

радиан

radian

рад

rad

м·м−1 = 1

Телесный угол

стерадиан

steradian

ср

sr

м2·м−2 = 1

Температура по шкале Цельсия

градус Цельсия

degree Celsius

°C

°C

K

Частота

герц

hertz

Гц

Hz

с−1

Сила

ньютон

newton

Н

N

кг·м·c−2

Энергия

джоуль

joule

Дж

J

Н·м = кг·м2·c−2

Мощность

ватт

watt

Вт

W

Дж/с = кг·м2·c−3

Давление

паскаль

pascal

Па

Pa

Н/м2 = кг·м−1·с−2

Световой поток

люмен

lumen

лм

lm

кд·ср

Освещённость

люкс

lux

лк

lx

лм/м² = кд·ср/м²

Электрический заряд

кулон

coulomb

Кл

C

А·с

Разность потенциалов

вольт

volt

В

V

Дж/Кл = кг·м2·с−3·А−1

Сопротивление

ом

ohm

Ом

Ω

В/А = кг·м2·с−3·А−2

Электроёмкость

фарад

farad

Ф

F

Кл/В = с4·А2·кг−1·м−2

Магнитный поток

вебер

weber

Вб

Wb

кг·м2·с−2·А−1

Магнитная индукция

тесла

tesla

Тл

T

Вб/м2 = кг·с−2·А−1

Индуктивность

генри

henry

Гн

H

кг·м2·с−2·А−2

Электрическая проводимость

сименс

siemens

См

S

Ом−1 = с3·А2·кг−1·м−2

Активность (радиоактивного источника)

беккерель

becquerel

Бк

Bq

с−1

Поглощённая доза 
ионизирующего излучения

грей

gray

Гр

Gy

Дж/кг = м²/c²

Эффективная доза 
ионизирующего излучения

зиверт

sievert

Зв

Sv

Дж/кг = м²/c²

Активность катализатора

катал

katal

кат

kat

моль/с

Существуют другие внесистемные единицы, такие как литр, которые не являются единицами СИ, но принимаются для использования вместе с СИ.

Единицы измерения по измеряемым величинам. Википедия

ru.wikipedia.org/wiki

Единицы измерения по отраслям науки. Википедия 

  • Единицы измерения в астрономии‎
  • Единицы измерения в информатике‎
  • Единицы измерения в медицине‎
  • Единицы измерения в физике‎
  • Единицы измерения в химии‎

Приставки СИ 

Приставки СИ (десятичные приставки) — приставки перед названиями или обозначениями единиц измерения физических величин, применяемые для формирования кратных и дольных единиц, отличающихся от базовой в определённое целое, являющееся степенью числа 10, число раз.
Десятичные приставки служат для сокращения количества нулей в численных значениях физических величин.
Рекомендуемые для использования приставки и их обозначения установлены Международной системой единиц (СИ), однако их использование не ограничено СИ, а многие из них восходят к моменту появления метрической системы (1790-е годы). 

Приставки для кратных единиц

Кратные единицы — единицы, которые в целое число раз (10 в какой-либо степени) превышают основную единицу измерения некоторой физической величины. Международная система единиц (СИ) рекомендует следующие десятичные приставки для обозначений кратных единиц:

Десятичный множитель

Приставка

Обозначение

Пример

русская

между
народная

русское

между
народное

101

дека

deca

да

da

дал — декалитр

102

гекто

hecto

г

h

гПа — гектопаскаль

103

кило

kilo

к

k

кН — килоньютон

106

мега

mega

М

M

МПа — мегапаскаль

109

гига

giga

Г

G

ГГц — гигагерц

1012

тера

tera

Т

T

ТВ — теравольт

1015

пета

peta

П

P

Пфлопс — петафлопс

1018

экса

exa

Э

E

Эм — эксаметр

1021

зетта

zetta

З

Z

ЗэВ — зеттаэлектронвольт

1024

иотта

yotta

И

Y

Иг — иоттаграмм

Приставки для дольных единиц

Дольные единицы составляют определённую долю (часть) от установленной единицы измерения некоторой величины.

Международная система единиц (СИ) рекомендует следующие приставки для обозначений дольных единиц:

Десятичный множитель

Приставка

Обозначение

Пример

русская

между
народная

русское

между
народное

10−1

деци

deci

д

d

дм — дециметр

10−2

санти

centi

с

c

см — сантиметр

10−3

милли

milli

м

m

мH — миллиньютон

10−6

микро

micro

мк

µ

мкм — микрометр

10−9

нано

nano

н

n

нм — нанометр

10−12

пико

pico

п

p

пФ — пикофарад

10−15

фемто

femto

ф

f

фл — фемтолитр

10−18

атто

atto

а

a

ас — аттосекунда

10−21

зепто

zepto

з

z

зКл — зептокулон

10−24

иокто

yocto

и

y

иг — иоктограмм

Семь основных единиц измерения (СИ)+площадь и объем

Базовые единицы СИ.  Международное бюро мер и весов  –   bipm.org/en/measurement-units

1

Единицы измерения массы (масса)

В настоящее время в Международной системе единиц (СИ) в качестве единицы измерения массы принят килограмм, являющийся одной из семи основных единиц СИ.

XXVI Генеральная конференция по мерам и весам c 20 мая 2019г. одобрила новое определение килограмма, основанное на фиксации численного значения постоянной Планка
Теперь килограмм измеряется не весом эталонного цилиндра, а энергией, необходимой для того, чтобы сдвинуть этот килограмм.

Тонна — 106 (1 000 000) граммов, или 1000 килограммов.
Центнер — 105 (100 000) граммов, или 100 килограммов.
Карат — 0,2 грамма.

Единицы массы в науке
Атомная единица массы (а. е. м., дальтон) = 1,660 538 921(73)⋅10−27 кг = 1,660 538 921(73)⋅10−24 г (в химии высокомолекулярных соединений и биохимии применяются также кратные единицы килодальтонмегадальтон).
Солнечная масса M = 1.98847(7)⋅1030 кг.
Электронвольт, 1 эВ = 1,782 661 845(39)⋅10−36 кг; применяются также кратные (килоэлектронвольт, кэВ; мегаэлектронвольт, МэВ, гигаэлектронвольт, ГэВ; тераэлектронвольт, ТэВ) и дольные (миллиэлектронвольт, мэВ) единицы.
Масса электрона me = 9,109 382 91(40)⋅10−31 кг.
Масса протона mp = 1,672 621 777(74)⋅10−27 кг.
Планковская единица массы MPl = 2,176 51(13)⋅10−8 кг.

2

Единицы измерения расстояния (расстояние)

Единицей измерения расстояния и одной из основных единиц в Международной системе единиц (СИ) является метр.

На практике применяются также кратные и дольные единицы метра, образуемые с помощью стандартных приставок СИ:

Кратные

Дольные

величина

название

обозначение

величина

название

обозначение

101 м

декаметр

дам

dam

10−1 м

дециметр

дм

dm

102 м

гектометр

гм

hm

10−2 м

сантиметр

см

cm

103 м

километр

км

km

10−3 м

миллиметр

мм

mm

106 м

мегаметр

Мм

Mm

10−6 м

микрометр

мкм

µm

109 м

гигаметр

Гм

Gm

10−9 м

нанометр

нм

nm

1012 м

тераметр

Тм

Tm

10−12 м

пикометр

пм

pm

1015 м

петаметр

Пм

Pm

10−15 м

фемтометр

фм

fm

1018 м

эксаметр

Эм

Em

10−18 м

аттометр

ам

am

1021 м

зеттаметр

Зм

Zm

10−21 м

зептометр

зм

zm

1024 м

иоттаметр

Им

Ym

10−24 м

иоктометр

им

ym

Единицы, применяемые в астрономии

  • радиус Луны (R) = 1737,10 км;
  • радиус Земли (R) = 6371,0 км;
  • радиус Юпитера(Rили RJ) = 69 911 км;
  • световая секунда = 299 792 458 м ;
  • радиус Солнца (R) = 6,9551⋅105км;
  • световой месяц = 783934206048416.66… м
  • астрономическая единица = 149 597 870,700 км;
  • спат (единица длины)(англ.)= 1⋅1012 м;
  • световой год = 9 460 730 472 581 000 м ;
  • парсек= (648 000/π) а.е. (точно) ≈ 206264,806247 а.е. = 3,08567758491⋅1016м;
  • сириометр = 106а.е. = 149 597 870 700 000 000 м;

Единицы, применяемые в физике

  • планковская длина ≈ 1,616199(97)⋅10−35м;
  • ферми = 1 фм = 1⋅10−15м;
  • классический радиус электрона = 2,8179402894(58)⋅10−15м;
  • икс-единица = 1,00207⋅10−13м;
  • комптоновская длина волны электрона= 2,4263102175(33)⋅10−12м;
  • боровский радиус = 5,2917720859(36)⋅10−11м;
  • ангстрем = 1⋅10−10м;

Единицы измерения площади (площадь)

Квадратный метр (русское обозначение: м², международное: m²) — единица измерения площади в Международной системе единиц (СИ), а также в системах МТС и МКГСС.
1 м² равен площади квадрата со стороной в 1 метр.
1 м² = 1 са (сантиар);

Квадратный километр, 1 км² = 1 000 000 м²;
Гектар, 1 га = 10 000 м²;
Ар (сотка), 1 а = 100 м²:
Квадратный дециметр, 100 дм² = 1 м²;
Квадратный сантиметр, 10 000 см² = 1 м²;
Квадратный миллиметр, 1 000 000 мм² = 1 м²;
Барн, 1 б = 10−28 м².

Единицы измерения объёма (объём)

Объём — количественная характеристика пространства, занимаемого телом или веществом.

Кубический метр (кубометр) — единица объёма, производная в Международной системе единиц (СИ), а также в системах единиц МКГСС и МТС.
Одному кубическому метру равен объём куба с длиной ребра 1 метр.

От неё образуются производные единицы — кубический сантиметр, кубический дециметр (литр) и т. д. В разных странах для жидких и сыпучих веществ используются также различные внесистемные единицы объёма — галлон, баррель и др.
В формулах для обозначения объёма традиционно используется заглавная латинская буква V, являющаяся сокращением от лат. volume — «объём», «наполнение».

Единицы объёма жидкости

1 литр = 1 кубический дециметр = 1,76 пинты = 0,23 галлона

Русские
Ведро = 12,3 литра
Бочка = 40 вёдер = 492 литра

Английские
1 пинта = 0,568 литра
1 кварта (жидкостная) = 2 пинтам = 1,136 литра
1 галлон = 8 пинтам = 4,55 литра
1 галлон (амер.) = 3,785 литра

3

Единицы измерения температуры (температура)

Существует несколько различных единиц измерения температуры. Они делятся на относительные (градус Цельсия, градус Фаренгейта…) и абсолютные (Кельвин, градус Ранкина…).

Наиболее известными являются следующие:
Градус Цельсия (°C)
Градус Фаренгейта (°F)
Кельвин (K)
Градус Реомюра (°Ré, °Re, °R)
Градус Рёмера (°Rø)
Градус Ранкина (°Ra)
Градус Делиля (°Д или °D)
Градус Гука (°H)
Градус Дальтона (°Dа)
Градус Ньютона (°N)
Лейденский градус (°L или ÐL)
Планковская температура (TP)

Кельвин (русское обозначение: К; международное: K) — единица термодинамической температуры в Международной системе единиц (СИ), одна из семи основных единиц СИ. Определяется через значение постоянной Больцмана: 1,380649 × 10-23 Дж / К. Начало шкалы (0 К) совпадает с абсолютным нулём.

Градус Цельсия (обозначение: °C) —единица температуры, применяемая в Международной системе единиц (СИ) наряду с кельвином.
Используется всеми странами, кроме США, Багамских Островов, Белиза, Каймановых Островов и Либерии.

Согласно современному определению, один градус Цельсия равен одному кельвину (K), а ноль шкалы Цельсия установлен таким образом, что температура тройной точки воды равна 0,01 °C. В итоге шкалы Цельсия и Кельвина сдвинуты на 273,15 единиц:

Пересчёт в градусы Цельсия:
t_{C}=t_{K}-273,15}t_{C}=t_{K}-273,15 (температура тройной точки воды +0,01 °C).

Основные международные и российские документы, содержащие описание единиц СИ и регламентирующие их использование, называют градус Цельсия не единицей температуры, а единицей температуры Цельсия (фр. température Celsius, англ. Celsius temperature). Этот термин используется в Брошюре СИ (фр. Brochure SI, англ. The SI Brochure), опубликованной Международным бюро мер и весов (МБМВ)
В свою очередь температуру Цельсия (обозначение t) Брошюра СИ и ГОСТ 8.417-2002 определяют выражением t = T — T0, где T — термодинамическая температура, выражаемая в кельвинах, а T0 = 273,15 К.
В соответствии со сказанным градус Цельсия относится к производным единицам СИ, имеющим специальные наименования и обозначения.

Пересчёт температуры между основными шкалами

Шкала

Условное
обозначение

из Цельсия (°C)

в Цельсий

Фаренгейт

(°F)

[°F] = [°C] × 9⁄5 + 32

[°C] = ([°F] − 32) × 5⁄9

Кельвин

(K)

[K] = [°C] + 273,15

[°C] = [K] − 273,15

Ранкин (Rankin)

(°R)

[°R] = ([°C] + 273,15) × 9⁄5

[°C] = ([°R] − 491,67) × 5⁄9

Делиль (Delisle)

(°Д или °De)

[°De] = (100 − [°C]) × 3⁄2

[°C] = 100 − [°De] × 2⁄3

Ньютон (Newton)

(°N)

[°N] = [°C] × 33⁄100

[°C] = [°N] × 100⁄33

Реомюр (Réaumur)

(°Re, °Ré, °R)

[°Ré] = [°C] × 4⁄5

[°C] = [°Ré] × 5⁄4

Рёмер (Rømer)

(°Rø)

[°Rø] = [°C] × 21⁄40 + 7,5

[°C] = ([°Rø] − 7,5) × 40⁄21

Сравнение температурных шкал

Описание

Кельвин

Цельсий

Фаренгейт

Абсолютный нуль

0

−273,15

−459,67

Температура таяния смеси Фаренгейта (соль,лёд и хлорид аммония)

255,37

−17,78

0

Температура замерзания воды (Нормальные условия)

273,15

0

32

Средняя температура человеческого тела

309,75

36,6

98,2

Температура кипения воды (Нормальные условия)

373,15

100

212

Плавление титана

1941

1668

3034

Солнце

5800

5526

9980

4

Единицы измерения времени (время)

Современные единицы измерения времени основаны на периодах вращения Земли вокруг своей оси и обращения вокруг Солнца, а также обращения Луны вокруг Земли. Такой выбор единиц обусловлен как историческими, так и практическими соображениями: необходимостью согласовывать деятельность людей со сменой дня и ночи или сезонов.
Исторически основной единицей для измерения средних интервалов времени были сутки (часто говорят «день»), отсчитываемые по минимальным полным циклам смены солнечной освещённости (день и ночь).

В результате деления суток на меньшие временны́е интервалы одинаковой длины возникли часы, минуты и секунды.
Сутки делили на два равных последовательных интервала (условно день и ночь). Каждый из них делили на 12 часов. Дальнейшее деление часа восходит к шестидесятеричной системе счисления. Каждый час делили на 60 минут. Каждую минуту — на 60 секунд.
Таким образом, в часе 3600 секунд; в сутках — 24 часа, или 1440 минут, или 86 400 секунд.

Секунда (русское обозначение: с; международное: s) — единица измерения времени, является одной из семи основных единиц в Международной системе единиц (СИ) и одной из трёх основных единиц в системе СГС.
Представляет собой интервал времени, равный 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133, находящегося в покое при 0 К.

В астрономии используют обозначения ч, м, с (или h, m, s) в верхнем индексе: например, 13ч20м10с (или 13h20m10s).

Кратные и дольные единицы

С единицей измерения «секунда», как правило, используются только дольные приставки СИ (кроме деци- и санти-). Для измерения больших интервалов времени используются единицы минута, час, сутки, и т. д.

Кратные

Дольные

величина

название

обозначение

величина

название

обозначение

101 с

декасекунда

дас

das

10−1 с

децисекунда

дс

ds

102 с

гектосекунда

гс

hs

10−2 с

сантисекунда

сс

cs

103 с

килосекунда

кс

ks

10−3 с

миллисекунда

мс

ms

106 с

мегасекунда

Мс

Ms

10−6 с

микросекунда

мкс

µs

109 с

гигасекунда

Гс

Gs

10−9 с

наносекунда

нс

ns

1012 с

терасекунда

Тс

Ts

10−12 с

пикосекунда

пс

ps

1015 с

петасекунда

Пс

Ps

10−15 с

фемтосекунда

фс

fs

1018 с

эксасекунда

Эс

Es

10−18 с

аттосекунда

ас

as

1021 с

зеттасекунда

Зс

Zs

10−21 с

зептосекунда

зс

zs

1024 с

иоттасекунда

Ис

Ys

10−24 с

иоктосекунда

ис

ys

Эквивалентность другим единицам измерения времени

1 секунда равна:

• 1/60 минуты 

• 1/3 600 часа

• 1/86 400 суток (система единиц МАС)

• 1/31 557 600 юлианского года (система единиц МАС)

5

Сила электрического тока 

Средняя сила тока I – физическая величина , равная отношению заряда, прошедшего через поперечное сечение проводника за промежуток времени, к величине этого промежутка времени: I=△q/△t

Если сила тока со временем не меняется, то ток называется постоянным.
Сила тока в данный момент времени определяется так же по этой формуле, но промежуток времени должен быть очень малым.
Обычно обозначается символом I, от фр. intensité du courant.

Сила тока в Международной системе единиц (СИ) измеряется в амперах ((русское обозначение: А; международное: A), ампер является одной из семи основных единиц СИ.
1 А = 1 Кл/с.

В амперах измеряется также магнитодвижущая сила и разность магнитных потенциалов (устаревшее наименование — ампер-виток). Кроме того, ампер является единицей силы тока и относится к числу основных единиц в системе единиц МКСА.

На XXVI Генеральной конференции мер и весов было принято новое определение ампера, основанное на использовании численного значения элементарного электрического заряда. Формулировка вступила в силу 20 мая 2019 года.
В соответствии с данной формулировкой, Ампер, символ А, есть единица электрического тока в СИ. Она определена путём фиксации численного значения элементарного заряда равным 1,602 176 634⋅10−19, когда он выражен единицей Кл, которая равна А·с, где секунда определена через .△νCs
△νCs — частота излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.

6

Количество вещества

Количество вещества́ — физическая величина, характеризующая количество однотипных структурных единиц, содержащихся в веществе. Под структурными единицами понимаются любые частицы, из которых состоит вещество (атомы, молекулы, ионы, электроны или любые другие частицы).

Моль (русское обозначение: моль; международное: mol; устаревшее название грамм-молекула (по отношению к количеству молекул); от лат. moles — количество, масса, счётное множество) — единица измерения количества вещества в Международной системе единиц (СИ), одна из семи основных единиц СИ.

Значение одного моля определяется через число Авогадро, один моль — количество вещества, содержащее 6,022 140 76⋅1023 частиц (атомов, молекул, ионов, электронов или любых других объектов).
6,022 140 76 x 10 23 элементарных сущностей. Это число представляет собой фиксированное числовое значение постоянной Авогадро, A , выраженное в единицах моль –1, и называется числом Авогадро.
Количество вещества (символ n ) в системе является мерой количества определенных элементарных сущностей. Элементарным объектом может быть атом, молекула, ион, электрон, любая другая частица или определенная группа частиц.

Кратные и дольные единицы

Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ. Причём, единица измерения «иоктомоль» может использоваться лишь формально, так как столь малые количества вещества должны измеряться отдельными частицами (1 имоль формально равен 0,602 частицы).

Кратные

Дольные

величина

название

обозначение

величина

название

обозначение

101 моль

декамоль

дамоль

damol

10−1 моль

децимоль

дмоль

dmol

102 моль

гектомоль

гмоль

hmol

10−2 моль

сантимоль

смоль

cmol

103 моль

киломоль

кмоль

kmol

10−3 моль

миллимоль

ммоль

mmol

106 моль

мегамоль

Ммоль

Mmol

10−6 моль

микромоль

мкмоль

µmol

109 моль

гигамоль

Гмоль

Gmol

10−9 моль

наномоль

нмоль

nmol

1012 моль

терамоль

Тмоль

Tmol

10−12 моль

пикомоль

пмоль

pmol

1015 моль

петамоль

Пмоль

Pmol

10−15 моль

фемтомоль

фмоль

fmol

1018 моль

эксамоль

Эмоль

Emol

10−18 моль

аттомоль

амоль

amol

1021 моль

зеттамоль

Змоль

Zmol

10−21 моль

зептомоль

змоль

zmol

1024 моль

иоттамоль

Имоль

Ymol

10−24 моль

иоктомоль

имоль

ymol

Молярная масса — характеристика вещества, отношение массы вещества к количеству молей этого вещества, то есть масса одного моля вещества.

7

Сила света

Сила света Iν — физическая величина, одна из основных световых фотометрических величин. Характеризует величину световой энергии, переносимой в некотором направлении в единицу времени.

Количественно равна отношению светового потока, распространяющегося внутри элементарного телесного угла, к этому углу.
Понятие «сила света» возможно применять лишь для расстояний от источника света, существенно превышающих его линейные размеры.
Единица измерения в Международной системе единиц (СИ): кандела.

Канде́ла (от лат. candela — свеча; русское обозначение: кд; международное: cd) — единица силы света, одна из семи основных единиц Международной системы единиц (СИ).
Определена как «сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540⋅1012 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср».
Принята в качестве единицы СИ в 1979 году XVI Генеральной конференцией по мерам и весам.

Из определения следует, что значение спектральной световой эффективности монохроматического излучения для частоты 540⋅1012 Гц равно 683 лм/Вт = 683 кд·ср/Вт точно.
Выбранная частота соответствует длине волны 555,016 нм в воздухе при стандартных условиях и находится вблизи максимума чувствительности человеческого глаза, располагающегося на длине волны 555 нм. Если излучение имеет другую длину волны, то для достижения той же силы света требуется бо́льшая энергетическая сила света.

Световые фотометрические величины СИ   

ru.wikipedia.org

Преобразование единиц измерения.
Таблицы пересчета физических величин

Преобразование единиц — перевод физической величины, выраженной в одной системе единиц, в другую систему, обычно через коэффициент пересчёта.
ru.wikipedia.org

Длина

1 дюйм

= 2,54 см

1 миллиметр

= 0,03937 дюйма

1 фут

= 0,3048 м

1 сантиметр

= 0,3937 дюйма

1 ярд

= 0,9144 м

1 дециметр

= 0,3281 фута

1 род

= 5,0292 м

1 метр

= 3,281 фута

1 чейн

= 20,117 м

1 метр

= 1,094 ярда

1 фурлонг

= 201,17 м

1 декаметр

= 10,94 ярда

1 миля

= 1,6093 м

1 километр

= 0,6214 мили

1 морская миля

= 1,8532 м

1 километр

= 0,539 морской мили

Площадь

1 кв. дюйм

= 6,4516 кв. см

1 кв. сантиметр

= 0,1550 кв. дюйма

1 кв. фут

= 929,03 кв. см

1 кв. метр

= 1,550 кв. дюйма

1 кв. ярд

= 0,8361 кв. м

1 ар

= 119,60 кв. ярда

1 акр

= 4046,9 кв. м

1 гектар

= 2,4711 акра

1 кв. миля

= 259,0 га

1 кв. километр

= 0,3861 кв. мили

Объем

1 куб. дюйм

= 16,387 куб. см

1 куб. сантиметр

= 0,061 куб. дюйма

1 куб. фут

= 0,0283 куб. м

1 куб. дециметр

= 0,035 куб. фута

1 куб. ярд

= 0,7646 куб. м

1 куб. метр

= 1,308 куб. ярда

Меры сыпучих тел и жидкостей

Британия

США

1 пинта

= 0,5506 л

1 пинта

= 0,473 л

1 кварта

= 1,136 л

1 кварта

= 0,9463 л

1 галлон

= 4,546 л

1 галлон

= 3,785 л

1 пек

= 9,092 л

1 пек

= 8,809 л

1 бушель

= 36,369 л

1 бушель

= 35,24 л

Вес

1 унция

= 28,35 г

1 грамм

1 фунт

= 453,59 г

1 гектограмм

1 центнер

= 45,36 г

1 килограмм

1 короткая тонна

= 907,18 г

1 тонна

Энергия, тепло, работа

Единица
измерения энергии

Эквивалентные единицы

кДж

ккал

кВт ч

кГс м

кДж

1

0,239

0,00278

102,0

ккал

4,19

1

0,00116

427

кВт ч

3600

860

1

367200

кГс м

0,00981

0,00234

2,72 х 106

1

Давление

Пересчет

В

Па
(Паскаль)

Бар
(Бар)

мм рт. ст.
(миллиметр
ртутного столба)

мм вод. ст.
(миллиметр
водяного столба)

кгс/см2
(техническая атмосфера)

атм
(физическая атмосфера)

Из

1 Па

1

10-5

7,5 10-3

0,102

1,02 10-5

0,99 10-5

1 бар

105

1

750,1

10 200

1,02

0,987

1 мм рт. ст.

133

13,33 10-4

1

13,6

0,00136

0,001316

1 мм вод. ст.

9,81

0,9806 10-4

0,07355

1

0,0001

9,68 10-5

1 кгс/см2

98 100

0,9807

735,6

10 000

1

0,968

1 атм

101 300

1,013

760

10 330

1,033

1

 ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ


Общероссийский классификатор единиц измерения (ОКЕИ) ОК 015-94 (МК 002-97)

normativ.kontur.ru

Калькулятор перевода единиц измерения физических величин

calc.ru

ПОМОЩЬ В УЧЕБЕ. ПОПУЛЯРНЫЕ СЕРВИСЫ И УСЛУГИ


TutorOnline
tutoronline.ru
репетиторы м онлайн-курсы для школьников и студентов

Фоксфорд
foxford.ru
онлайн-школа, поможет улучшить оценки, сдать ЕГЭ, ОГЭ

Автор24
a24help.ru
преподаватели и эксперты помогают учиться лучше

Напишем
napishem.ru
помощь в учебе для студентов

Всё сдал
vsesdal.com
онлайн-сервис помощи студентам

Kampus
kampus.ai
получение ответа на любой учебный вопрос в течение 30 минут

Инглекс
englex.ru
занятия по английскому с сильными преподавателями

Ваш Репетитор
repetitors.info
профессиональные репетиторы по всем предметам

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 19 мая 2021 года; проверки требуют 8 правок.

В метрологии различают понятия размерность физической величины и единица физической величины. Размерность физической величины определяется используемой системой физических величин, которая представляет собой совокупность физических величин, связанных между собой зависимостями, и в которой несколько величин выбраны в качестве основных. Единица физической величины — это такая физическая величина, которой по соглашению присвоено числовое значение, равное единице[1]. Системой единиц физических величин называют совокупность основных и производных единиц, основанную на некоторой системе величин[2]. В расположенных ниже таблицах приведены физические величины и их единицы, принятые в Международной системе единиц (СИ), основанной на Международной системе величин[3][4].

Основные величины Размерность Символ Описание Единица СИ Примечания
Пространство L, L², L³ l, S, V Протяжённость объекта в одном пространственном измерении.

Площадь в двух пространственных измерениях

Объём в трех пространственных измерениях

метр (м),

метр квадратный [м²],

метр кубический [м³]

Пространство является трёхмерной физической величиной.
Масса M m Величина определяющая количество материи и пропорциональные ему инерционные и гравитационные свойства килограмм (кг) Экстенсивная величина
Время T t Продолжительность события. секунда (с)
Сила тока I I Протекающий в единицу времени заряд. ампер (А)
Температура Θ T Величина, пропорциональная средней кинетической энергии молекул тела. кельвин (К) Интенсивная величина
Количество вещества N n Количество однотипных структурных единиц, из которых состоит вещество. моль (моль) Экстенсивная величина
Сила света J Iv Количество световой энергии, излучаемой в заданном направлении в единицу времени. кандела (кд) Световая, экстенсивная величина
Производные величины Символ Описание Единица СИ Примечания
Площадь S Размер пространства ограниченного замкнутой линией и опирающейся на эту линию поверхностью м2
Объём V Размер пространства заключённого в трёхмерном объекте м3 экстенсивная величина
Скорость v Изменение положения тела в единицу времени м/с вектор
Ускорение a Изменение скорости в единицу времени м/с² вектор
Импульс p Количество движения тела кг·м/с экстенсивная, сохраняющаяся величина
Сила F Мера взаимодействия материи кг·м/с2 (ньютон, Н) вектор
Механическая работа A Скалярное произведение силы и перемещения. кг·м22 (джоуль, Дж) скаляр
Энергия E Способность тела или системы совершать работу. кг·м22 (джоуль, Дж) экстенсивная, сохраняющаяся величина, скаляр
Мощность N Быстрота совершения работы. кг·м23 (ватт, Вт)
Давление p Сила, действующая на единицу площади поверхности перпендикулярно этой поверхности кг/(м·с2) (паскаль, Па) интенсивная величина
Плотность ρ Масса на единицу объёма. кг/м3 интенсивная величина
Поверхностная плотность ρA Масса на единицу площади. кг/м2
Линейная плотность ρl Масса на единицу длины. кг/м
Количество теплоты Q Энергия, передаваемая от одного тела к другому немеханическим путём кг·м22 (джоуль, Дж) скаляр
Электрический заряд q Способность тел быть источником электромагнитного поля и принимать участие в электромагнитном взаимодействии А·с (кулон, Кл) экстенсивная, сохраняющаяся величина
Напряжение U Изменение потенциальной энергии, приходящееся на единицу заряда. м2·кг/(с3·А) (вольт, В) скаляр
Электрическое сопротивление R Сопротивление объекта прохождению электрического тока м2·кг/(с3·А2) (ом, Ом) скаляр в обычном случае, может быть тензорной величиной
Магнитный поток Φ Величина, учитывающая интенсивность магнитного поля и занимаемую им область. кг·м2/(с2·А) (вебер, Вб)
Частота ν Число повторений события за единицу времени. с−1 (герц, Гц)
Угол α Величина изменения направления. радиан (рад)
Угловая скорость ω Скорость изменения угла. с−1 (радиан в секунду)
Угловое ускорение ε Изменение угловой скорости в единицу времени с−2 (радиан на секунду в квадрате)
Момент инерции I Мера инертности объекта при вращении. кг·м2 тензорная величина
Момент импульса L Мера вращения объекта. кг·м2/c сохраняющаяся величина
Момент силы M Произведение силы на длину перпендикуляра, опущенного из точки на линию действия силы. кг·м22 вектор
Телесный угол Ω Часть пространства, которая является объединением всех лучей, выходящих из данной точки и пересекающих некоторую поверхность стерадиан (ср)

Примечания[править | править код]

  1. Единицы физических величин имеют наименования и обозначения, присвоенные им по соглашению.
  2. Чертов А. Г. Единицы физических величин. — М.: Высшая школа, 1977. — С. 7-16. — 287 с.
  3. The International System of Units (SI) and the corresponding system of quantities Архивная копия от 26 марта 2013 на Wayback Machine (англ.) — Брошюра СИ, раздел 1.2 на сайте Международного бюро мер и весов.
  4. Международный словарь по метрологии: основные и общие понятия и соответствующие термины / Пер. с англ. и фр.. — 2-е изд., испр. — СПб.: НПО «Профессионал», 2010. — С. 20. — 82 с. — ISBN 978-5-91259-057-3. Архивная копия от 12 ноября 2012 на Wayback Machine

Система СИ (единицы измерения) в физике

Система СИ (единицы измерения)

В 1875 г. Метрической Конференцией было основано Международное Бюро Мер и Весов его целью стало создание единой системы измерений, которая нашла бы применение во всем мире. Было решено, за основу принять метрическую систему, которая появилась еще во времена Французской революции и основывалась на метре и килограмме. Позднее были утверждены эталоны метра и килограмма. С течением времени система единиц измерения развивалась, в настоящее время в ней принять семь основных единиц измерения. В 1960 г. эта система единиц получила современное название Международная система единиц ( система СИ) (Systeme Internatinal d’Unites (SI)). Система СИ не обладает статичностью, она развивается в соответствии с требованиями, которые в настоящее время предъявляются к измерениям в науке и технике.

Основные единицы измерения Международной системы единиц

В основу определения всех вспомогательных единиц в системе СИ положены семь основных единиц измерения. Основными физическими величинами в Международной системе единиц (СИ) являются: длина ($l$); масса ($m$); время ($t$); сила электрического тока ($I$); температура по шкале Кельвина (термодинамическая температура) ($T$); количество вещества ($nu $); сила света ($I_v$).

Основными единицами в системе СИ стали единицы выше названных величин:

[left[lright]=м;; left[mright]=кг;; left[tright]=с; left[Iright]=A;; left[Tright]=K;; left[nu right]=моль;; left[I_vright]=кд (кандела).]

Эталоны основных единиц измерения в СИ

Приведем определения эталонов основных единиц измерения как это сделано в системе СИ.

Метром (м) называют длину пути, который проходит свет в вакууме за время равное $frac{1}{299792458}$ с.

Эталоном массы для СИ является гиря, имеющая форму прямого цилиндра, высота и диаметр которого 39 мм, состоящего из сплава платины и иридия массой в 1 кг.

Одной секундой (с) называют интервал времени, который равен 9192631779 периодам излучения, который соответствует переходу между двумя сверхтонкими уровнями основного состояния атома цезия (133).

Один ампер (А) – это сила тока, проходящего в двух прямых бесконечно тонких и длинных проводниках, расположенных на расстоянии 1 метр, находящихся в вакууме порождающая силу Ампера (сила взаимодействия проводников) равную $2cdot {10}^{-7}Н$ на каждый метр проводника.

Один кельвин (К)– это термодинамическая температура равная $frac{1}{273,16}$ части от температуры тройной точки воды.

Один мол (моль) – это количество вещества, в котором имеется столько же атомов, сколько их содержится в 0,012 кг углерода (12).

Одна кандела (кд) равна силе света, который испускает монохроматический источник частотой $540cdot {10}^{12}$Гц с энергетической силой в направлении излучения $frac{1}{683}frac{Вт}{ср}.$

Наука развивается, совершенствуется измерительная техника, определения единиц измерения пересматривают. Чем выше точность измерений, тем больше требований к определению единиц измерения.

Производные величины системы СИ

Все остальные величины рассматриваются в системе СИ как производные от основных. Единицы измерения производных величин определены как результат произведения (с учетом степени) основных. Приведем примеры производных величин и их единиц в системе СИ.

Табл.1.

Система СИ (единицы измерения), рисунок 1

В системе СИ имеются и безразмерные величины, например, коэффициент отражения или относительная диэлектрическая проницаемость. Эти величины имеют размерность единицы.

Система СИ включает производные единицы, обладающие специальными названиями. Эти названия – компактные формы представления комбинации основных величин. Приведем примеры единиц системы СИ, имеющих собственные наименования (табл. 2).

Табл. 2.

Система СИ (единицы измерения), рисунок 2

Каждая величина в системе СИ имеет только одну единицу измерения, но одна и та же единица измерения может использоваться для разных величин. Джоуль – единица измерения количества теплоты и работы.

Система СИ, единицы измерения кратные и дольные

В Международной системе единиц имеется набор приставок к единицам измерения, которые применяют, если численные значения рассматриваемых величин существенно больше или меньше, чем единица системы, которая применяется без приставки. Эти приставки используются с любыми единицами измерения, в системе СИ они являются десятичными.

Приведем примеры таких приставок (табл.3).

Табл.3.

Система СИ (единицы измерения), рисунок 3

При написании приставку и наименование единицы пишут слитно, так, что приставка и единица измерения образуют единый символ.

Отметим, что единица массы в системе СИ (килограмм) исторически уже имеет приставку. Десятичные кратные и дольные единицы килограмма получают соединением приставки к грамму.

Внесистемные единицы

Система СИ универсальна и является удобной в международном общении. Практически все единицы, единицы не входящие в систему СИ можно определить, используя термины системы СИ. Применение системы СИ является предпочтительным в научном образовании. Однако имеются некоторые величины, которые не входят в СИ, но широко используются. Так, единицы времени такие как минута, час, сутки являются частью культуры. Не которые единицы используют по исторически сложившимся причинам. При использовании единиц, которые не принадлежат системе СИ необходимо указывать способы их перевода в единицы СИ. Пример единиц указан в табл.4.

Табл.4

Система СИ (единицы измерения), рисунок 4

Примеры задач с решением

Пример 1

Задание. Приведите примеры известных Вам внесистемных единиц и соотношение их с единицами системы СИ.

Решение. Примерами внесистемных единиц являются:

Система СИ (единицы измерения), пример 1

Пример 2

Задание. Объясните, почему одним метром называют длину пути, который проходит свет за время равное $frac{1}{299792458}$ с в вакууме?

Решение. Сделаем рисунок.

Система СИ (единицы измерения), пример 2

Для того чтобы ответить на вопрос вспомним формулу для вычисления величины скорости при равномерном движении:

[v=frac{l}{t}left(2.1right).]

Вычислим скорость света в вакууме при заданных параметрах $l$ = 1 м; $t=frac{1}{299792458}$ с :

[v=1:frac{1}{299792458}=299792458 left(frac{м}{с}right).]

Так, мы получили точную скорость света в вакууме.

Ответ. Один метр определяют таким образом, чтобы при вычислении скорости света в вакууме получалась величина,
равная $v=299792458 frac{м}{с}.$

Читать дальше: сложение ускорений.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Содержание:

Явления природы и свойства тел в физике описывают с помощью терминов, например: движение, траектория, состояние спокойствия. Описывая движение (рис. 4.1), можно указать, куда движется тело (вперед, назад или вверх), большое оно или маленькое; движется по пря-мой или поворачивает (влево или вправо), а может, вообще не движется. Такая характеристика движения является качественной.

Нас интересуют и количественные характеристики: с какой скоростью двигался автомобиль, какое расстояние он проехал. Количественной характеристикой тела или явления является физическая величина. Физическая величина описывает определенное свойство тела или явления. Она характеризуется числовым значением и единицей измерения. Например: автомобиль проехал путь в 30 километров. Сокращенно можно записать S = 30 км.

Каждая физическая величина имеет свое на-звание и символ, которым она обозначается.

Физические величины и их единицы измерения в физике с примерами

Чтобы описать явление падения определенного тела, можно применить такие физические величины, как масса тела, высота, время падения. Физические величины обычно обозначают латинскими или греческими буквами. Массу тела обозначают буквой «m», высоту – буквой «h», время – буквой «t». Например, если тело массой 2 килограмма упало с высоты 5 метров за одну секунду, то пишут: m = 2 кг, h = 5 м, t = 1 с, употребляя общепринятые сокращения: кг – килограмм, м – метр, с – секунда. 

Если нас интересует единица измерения физической величины, а не ее числовое значение, то эту величину пишут в квадратных скобках. Например, диаметр трубы составляет d = 3,2 см, а название единицы измерения (размерность): [d] =см.

Почему нужно измерять:

Начертите на листе бумаги горизонтальный отрезок. Потом проведите от середины этого отрезка перпендикулярный к нему отрезок такой же длины «на глаз». Измерьте длину отрезков линейкой, и вы убедитесь, что вертикальный отрезок короче. Вот почему нужно проводить измерения.

Средства измерения

Прямые измерения физических величин осуществляют с помощью приборов. Длину измеряют линейкой, время – с помощью часов, массу – на весах. Для определения размеров очень малых тел или больших расстояний используют более сложные приборы. Измерить физическую величину – значит сравнить ее с определенной мерой, которая является копией общепринятого образца-эталона. Эталонов немного, и хранятся они в специальных метрологических лабораториях.

История:

Для измерения времени использовали вытекание или капанье воды в сосуд с делениями или пересыпание песка – водяные или песочные часы (рис. 4.2). Движение Солнца по небу давало возможность измерять время с помощью солнечных часов (рис. 4.3). Такими часами люди пользовались несколько тысячелетий, однако они имели существенный недостаток – были довольно неточными.

Физические величины и их единицы измерения в физике с примерами

Физические величины и их единицы измерения в физике с примерами
Рис. 4.3. Солнечные часы

В настоящее время появились очень точные кварцевые часы, которые отсчитывают время в на-ручных часах, мобильном телефоне или компьютере. Для потребностей навигации и науки используют атомные часы, которые «ходят» настолько точно, что допускают ошибку в одну секунду за 500 000 лет!

Для измерения длины надо иметь образец, дли-на которого соответствует общепринятым единицам измерения. Сейчас это 1 м. Эталон (образец) метра хранится в метрологических лабораториях, главная из которых находится в г. Севре (Франция). Измерить длину можно еще и в других единицах измерения – канцелярскими скрепками, например, или спичками и сказать: мой  рост составляет 80 скрепок или 36 спичечных коробков. Однако у других людей скрепки или спички могут оказаться другого размера, что усложнит обмен информацией. В давние времена так и было: пользовались футами (длина ступни – 30 см), дюймами (длина последней фаланги большого пальца, приблизительно 2,5 см), ярдами, пядями, саженями, локтями.

Инициаторами перехода на метрическую систему единиц были французы. Согласно договоренности, один метр определили как одну сорокамиллионную часть длины меридиана, который проходит через Париж. Для определения длины меридиана достаточно было измерять его часть, которая простирается от юга Испании до севера Норвегии. Начался этот процесс во время Великой французской революции. Днем рождения метрической системы мер считают 10 декабря 1799 г.

На территории нашей страны метрическая система мер была введена специальным декретом 14 сентября в 1918 г. Переход на новые стандарты измерений связан с изменением привычек, необходимостью переиздания справочников, переоборудования метрических лабораторий, с переподготовкой персонала и тому подобным. Все это стоит довольно дорого. США, например, переход на новые стандарты обошелся в 11 млрд. долларов.

Международная система единиц измерения – СИ

В связи с потребностью международного сотрудничества в 1960 году большинство стран мира подписали соглашение о единой Международной системе еди-ниц измерения SI – Systeme International (на русском языке – СИ). 
Физические величины и их единицы измерения в физике с примерами
Рис. 4.4.  Эталон метра хранится в Международном бюро мер и весов в Париже

Физические величины и их единицы измерения в физике с примерами
Рис. 4.5.  Эталон килограмма

В СИ есть 7 основных единицы измерения, которые обеспечены соответствующими эталонами. Остальные единицы измерения могут быть выражены через основные единицы. Для начала нам понадобятся три основные единицы: метр, килограмм и секунда.

Эталон метра изображен на рис. 4.4. Это рельс определенного профиля, длина которого составляет одну сорокамиллионную часть меридиана, проходящего через Париж. Первый эталон метра был изготовлен во Франции в 1795 году.

В 1983 году эталон длины был изменен: теперь метр определен как расстояние, которое проходит свет в вакууме за 1/299 792 458 долю секунды.
Эталон килограмма – цилиндр из платиново-иридиевого сплава, высота которого равна его диаметру и составляет 39 мм (рис. 4.5).

С эталоном секунды вы ознакомитесь в 11 классе.

Таблица 4.1

Величина Символ Размерность
рус. междунар.
Длина l м m
Масса m кг kg
Время t с s
Площадь S, м2 m2
Объем V м3 m3
Скорость v м/с m/s

Площадь в СИ измеряют в м2 (квадратные метры), объем – в м3 (кубические метры).

В таблице 4.1 единицы площади, объема и скорости являются производны-ми единицами, их размерности происходят от основных единиц измерения.

В расчетах используют также кратные и дольные единицы.

Кратные единицы – это единицы, которые больше основных единиц в 10, 100, 1000 и больше раз. Например: 1 дм = 10 см = 101 см, 1 м = 100 см = 102 см,  1 км = 1000 м = 103 м, 1 кг = 1000 г = 103 г.

Дольные единицы – это единицы, которые меньше основных единиц в 10, 100, 1000 и больше раз: 1 см = 0,01 м = 10–2 м, 1 мм = 0,1 см = 10–1 см.
С единицами времени несколько иначе: 1 мин. = 60 с, 1 час = 3600 с. Дольными являются лишь 1 мс (миллисекунда) = 0,001 с = 10–3 с и 1 мкс (микросекунда)= = 0,000001 с = 10–6 с.
Для обозначения кратных и дольных единиц используют приставки (табл. 4.2).

Таблица 4.2 Приставки для обозначения кратных и дольных единиц

Кратность Приставка Обозначение Пример
русское международное русское международное
102 гекто hecto г h 5 гПа (гектопаскаль) =  = 500 Па
103 кило kilo к k 6 кг (килограмм) = 6000 г
106 мега mega М M 2 МДж (мегаджоуль) =  = 2 000 000 Дж
109 гига giga Г G 1 ГГц (гигагерц) =  = 1 000 000 000 Гц
Дольность
10–1 деци deci д d дм – дециметр
10–2 санти centi с c см – сантиметр
10–3 милли milli м м мл – миллилитр
10–6 микро micro мк µ мкм – микрометр, микрон
10–9 нано nano н n нм – нанометр

Итоги

  • Физические величины количественно описывают свойства тел и явлений.
  • Физические величины характеризуются названием, символом, числовым значением и единицей измерения.
  • В международной системе единиц измерения (СИ) основные механические единицы измерения физических величин – метр, килограмм и секунда.
  • Измерить физическую величину – значит сравнить ее с мерой-эталоном.

Физические величины

Физические тела и явления характеризуют физическими величинами. Некоторые из них вам уже знакомы из курса природоведения: это длина, площадь, объем, масса, сила. Рассмотрим их подробнее.

В науке используют единицы физических величин, определенные Международной системой единиц, которую сокращенно называют1 SI – от английских слов System International, что означает «международная система».

Длина, Площадь, Объем

Длиной характеризуют физические тела и, например, путь, пройденный телом за время его движения. За единицу длины в SI принят2 I метр (м).

На линейках и мерных лентах (рулетках) нанесены деления, обозначающие сотые и тысячные доли метра — сантиметры и миллиметры (рис. 3.1).

Единицы площади и объема определяют с помощью единицы длины: единицей площади является I м2 (площадь квадрата со стороной I м), а единицей объема — I м3 (объем куба с ребром I м).

Объем жидкости измеряют с помощью измерительных цилиндров, называемых часто мензурками (рис. 3.2). Длину, площадь и объем задают их числовыми значениями. Физические величины, которые задают только числовыми значениями, называют скалярными.

Время

Всякое физическое явление длится в течение определённого промежутка времени. За единицу времени в S1 принята 1 секунда (с), 60 с составляют 1 минуту (мун), а 60 минут — 1 час (ч).

Время измеряют часами (рис. 3.3). Они представляют собой обычно устройства, в которых повторяется определенный процесс. Например, в маятниковых часах повторяются колебания маятника. Сегодня чаще используют кварцевые часы, в которых колеблются крошечные кристаллы кварца.

Физические величины и их единицы измерения в физике с примерами

Перемещение и скорость

При движении тело изменяет свое положение в пространстве.

Перемещением тела называют направленный отрезок, проведенный из начального положения тела в его конечное положение.
 

Перемещение задают числовым значением (длиной указанного отрезка) и направлением. Физические величины, которые характеризуют числовым значением и направлением, называют векторными:

Значение векторной величины называют ее модулем.

Векторную величину обозначают буквой со стрелкой, а модуль — той же буквой без стрелки. Так, перемещение обычно обозначают Физические величины и их единицы измерения в физике с примерами, а его модуль — Физические величины и их единицы измерения в физике с примерами.

Скоростью тела называют физическую величину, равную отношению перемещения тела к промежутку времени, в течение которого произошло это перемещение.

Скорость, как и перемещение, является векторной величиной, то есть ее характеризуют модулем и направлением. Например, скорости двух встречных автомобилей могут быть равными по модулю, но направлены они противоположно. Скорость обозначают обычно Физические величины и их единицы измерения в физике с примерами.

Единицей скорости в SI является 1 метр в секунду (м/с). Тело, которое движется с такой скоростью, за 1 с перемещается на 1 м, — это скорость прогулки. Рекорд скорости в беге — чуть больше 10 м/с.

Скорость современных реактивных самолетов достигает почти километра в секунду (км/с), а космических кораблей — даже больше 10 км/с. Но ни одно тело не может двигаться со скоростью, превышающей скорость света в вакууме, которая равна примерно 300 000 км/с.

Для измерения скорости автомобилей и мотоциклов используют спидометры1 (рис. 3.4-3.6). Они показывают обычно скорость в километрах в час (км/ч). Вы, наверное, замечали, что во время движения автомобиля стрелка спидомстра обычно «покачивается». Дело в том, что скорость автомобиля при движении обычно изменяется.

Физические величины и их единицы измерения в физике с примерами

Масса

Каждое физическое тело имеет определенную массу. Массы двух тел можно сравнить, измерив, как изменяются их скорости при взаимодействии друг с другом: скорость тела большей массы изменяется меньше, чем скорость тела меньшей массы.

Например, на рис. 3.7 схематически показано столкновение, футбольного и теннисного мячей (цифры обозначают положение мячей в три последовательных момента времени). Мы видим, что при столкновении скорость футбольного мяча изменилась намного меньше, чем скорость теннисного. Значит, масса футбольного мяча намного больше массы теннисного мяча.

Физические величины и их единицы измерения в физике с примерами

Далее мы расскажем о намного более простом способе измерения массы тел, который обычно и используют на практике.

Единицей массы в S1 является 1 килограмм (кг). Это примерно масса одного литра воды. Международный эталон килограмма представляет собой металлический цилиндр из специального сплава.

Сила

Мерой взаимодействия тел является сила: чем больше сила, действующая на тело, тем больше изменяется скорость этого тела за 1 с. Сила является векторной величиной: ее задают числовым значением и направлением. На рисунках силу обозначают стрелкой, начало которой находится в точке приложения силы.

Единицу силы в честь Ньютона назвали ньютоном (Н)1. Сила в 1 Н, приложенная к движущемуся телу массой 1 кг в направлении движения тела, увеличивает его скорость за каждую секунду на 1 м/с,

Чтобы вы представили себе, что такое сила в 1 Н, приведем пример: когда вы держите полное ведро воды, то прикладываете к нему силу, равную примерно 100 Н. При этом приложенная вами сила уравновешивает силу, с которой Земля притягивает то же самое ведро с водой.

Силу, с которой Земля притягивает предметы, называют силой тяжести. В многочисленных опытах было установлено, что сила тяжести, действующая на тело, пропорциональна его массе.

Силу измеряют динамометром2. На рис. 3.8 показан пружинный динамометр, действие которого основано на том, что удлинение пружины пропорционально значению растягивающей ее силы.

На рис. 3.9 схематически изображены силы, действующие на тело, подвешенное к динамометру: это сила тяжести со стороны Земли и сила упругости со стороны пружины. Если тело находится в покое, сила упругости уравновешивает силу тяжести, то есть направлена противоположно ей и равна ей по модулю.

Физические величины и их единицы измерения в физике с примерами

Значит, по удлинению пружины в этом случае можно найти значение силы тяжести. А это, в свою очередь, позволяет рассчитать массу тела, поскольку сила тяжести пропорциональна массе тела.

Таким образом, массу тела можно найти с помощью взвешивания. Пружинные весы (рис. 3.10) — это динамометр, шкала которого размечена (проградуирована) так, что она показывает массу подвешенного груза.

Что называется физической величиной

Издавна люди для более точного описания каких-нибудь событий, явлений, свойств тел и веществ используют их характеристики. Например, сравнивая тела, которые нас окружают, мы говорим, что книга меньше, чем книжный шкаф, а конь больше кошки. Это означает, что объем коня больше объема кошки, а объем книги меньше объема шкафа.

Объем — пример физической величины, которая характеризует общее свойство тел занимать ту или иную часть пространства (рис. 1.15, а). При этом числовое значение объема каждого из тел индивидуально.
Физические величины и их единицы измерения в физике с примерами

Рис. 1.15. Для характеристики свойства тел занимать ту или иную часть пространства мы используем физическую величину объем (а, б), для характеристики движения — скорость (б, в)
 

Общая характеристика многих материальных объектов или явлений, которая может приобретать индивидуальное значение для каждого из них, называется физической величиной.

Еще одним примером физической величины может служить известное вам понятие «скорость*. Все движущиеся тела изменяют свое положение в пространстве с течением времени, однако быстрота этого изменения для каждого тела различна (рис. 1.15, б, в). Так, самолет за 1 с полета успевает изменить свое положение в пространстве на 250 м, автомобиль — на 25 м, человек — на 1 м, а черепаха — всего на несколько сантиметров. Поэтому физики и говорят, что скорость — это физическая величина, которая характеризует быстроту движения.

Нетрудно догадаться, что объем и скорость,— это далеко не все физические величины, которыми оперирует физика. Масса, плотность, сила, температура, давление, напряжение, освещенность — это лишь малая часть тех физических величин, с которыми вы познакомитесь, изучая физику.

Что означает измерить физическую величину

Для того чтобы количественно описать свойства какого-либо материального объекта или физического явления, необходимо установить значение физической величины, которая характеризует данный объект или явление.

Значение физических величин получают путем измерений (рис. 1.16— 1.19) или вычислений.
Физические величины и их единицы измерения в физике с примерами

Измерить физическую величину — значит сравнить ее с однородной величиной, принятой за единицу.

Приведем пример из художественной литературы: «Пройдя шагов триста по берегу реки, маленький отряд вступил под своды дремучего леса, извилистыми тропами которого им надо было странствовать на протяжении десяти дней*. (Ж. Верн «Пятнадцатилетний капитан*)

Герои романа Ж. Верна измеряли пройденный путь, сравнивая его с шагом, то есть единицей измерения служил шаг. Таких шагов оказалось триста. В результате измерения было получено числовое значение (триста) физической величины (пути) в избранных единицах (шагах).

Физические величины и их единицы измерения в физике с примерами

Рис. 1.20. Если бабушка и внук будут измерять расстояние в шагах. то они всегда будут получать разные результаты

Очевидно, что выбор такой единицы не позволяет сравнивать результаты измерений, полученные разными людьми, поскольку длина шага у всех разная (рис. 1.20). Поэтому ради удобства и точности люди давным-давно начали договариваться о том, чтобы измерять одну и ту же физическую величину одинаковыми единицами. Ныне в большинстве стран мира действует принятая в I960 году Международная система единиц измерения, которая носит название «Система Интернациональная* (СИ) (рис. 1.21).

В этой системе единицей длины является метр (м), времени — секунда (с); объем измеряется в метрах кубических (м3), а скорость — в метрах в секунду (м/с). Об остальных единицах СИ вы узнаете позже.
 

Кратные и дольные единицы

Из курса математики вы знаете, что для сокращения записи больших и малых значений разных величин пользуются кратными и дольными единицами.

Кратные единицы — это единицы, которые больше основных единиц в 10, 100, 1000 и более раз.

Дольные единицы — это единицы, которые меньше основных в 10, 100, 1000 и более раз.

Для записи кратных и дольных единиц используют приставки. Например, единицы
Физические величины и их единицы измерения в физике с примерами

Рис. 1.21. Основные единицы Международной системы (СИ)

длины, кратные одному метру,— это километр (1000 м), декаметр (10 м). Единицы длины, дольные одному метру,— это дециметр (0,1 м), сантиметр (0,01 м), микрометр (0,000001 м) и так далее.

В таблице приведены наиболее часто употребляемые приставки.

Приставки, служащие для образования кратных и дольных единиц

Физические величины и их единицы измерения в физике с примерами

Измерительные приборы

Измерение физических величин ученые проводят с помощью измерительных приборов. Простейшие из них — линейка, рулетка — служат для измерения расстояния и линейных размеров тела. Вам также хорошо известны такие измерительные приборы, как часы — прибор для измерения времени, транспортир — прибор для измерения углов на плоскости, термометр — прибор для измерения температуры и некоторые другие (рис. 1.22, с. 20). Со многими измерительными приборами вам еще предстоит познакомиться.

Большинство измерительных приборов имеют шкалу, которая обеспечивает возможность измерения. Кроме шкалы, на приборе указывают единицы, в которых выражается измеренная данным прибором величина*.

По шкале можно установить две наиболее важные характеристики прибора: пределы измерения и цену деления.

Пределы измерения — это наибольшее и наименьшее значения физической величины, которые можно измерить данным прибором.

Физические величины и их единицы измерения в физике с примерамиВ наши дни широко используются электронные измерительные приборы, в которых значение измеренных величин высвечивается на экране в виде цифр. Пределы измерения и единицы определяются по паспорту прибора или устанавливаются специальным переключателем на панели прибора.

————————————————

Физические величины и их единицы измерения в физике с примерами

Цена деления — это значение наименьшего деления шкалы измерительного прибора.

Например, верхний предел измерений медицинского термометра (рис. 1.23) равен 42 °С, нижний — 34 °С, а цена деления шкалы этого термометра составляет 0,1 °С.

Напоминаем: чтобы определить цену деления шкалы любого прибора, необходимо разность двух любых значений величин, указанных на шкале, разделить на количество делений между ними.

Итоги:

Общая характеристика материальных объектов или явлений, которая может приобретать индивидуальное значение для каждого из них, называется физической величиной.

Измерить физическую величину — значит сравнить ее с однородной величиной, принятой за единицу.

В результате измерений мы получаем значение физических величин.

Говоря о значении физической величины, следует указать ее числовое значение и единицу.

Для измерения физических величин пользуются измерительными приборами.
Физические величины и их единицы измерения в физике с примерами

Для сокращения записи числовых значений больших и малых физических величин используют кратные и дольные единицы. Они образуются с помощью приставок.

Точность измерений

Теперь вы знаете, что означает измерить физическую величину. И в повсе дневной жизни вам уже приходилось выполнять множество простейших измерений. Но насколько точными были ваши измерения? Можно ли получить абсолютно точное значение физической величины?

Попробуем разобраться в этих непростых вопросах.

Оцениваем размеры и проверяем результат:

Начнем с проверки вашего глазомера.

Оцените на глаз длину иглы, изображенной на рис 1.24. А теперь давайте проверим, насколько результат вашей оценки соответствует действительности, то есть измерим длину той же иглы с помощью линейки. Для этого:

  • —    приложим линейку к игле так, чтобы «ноль» на ее шкале совпал с одним концом иглы (рис. 1.25);
  • —    определим значение деления шкалы, напротив которого расположен ее другой конец.

Мы видим, что он расположен возле отметки 5 см. Отсюда делаем вывод, что длина иглы около 5 см. Если результат вашей предварительной оценки совпадает с этим значением, то у вас хороший глазомер. Определить на глаз размер более точно нам не удастся.

Результат измерений:

Если нам нужен более точный результат, придется обратить внимание на то, что кончик иглы немного более чем на два миллиметра выступает за отметку 5 см. Итак, более точная длина иглы — 5,2 см, или 52 мм.

Вы можете возразить, что это тоже неточно.

Да, неточно! Именно поэтому принято всегда указывать точность, с которой выполнено измерение.

Физические величины и их единицы измерения в физике с примерами

Физические величины и их единицы измерения в физике с примерами

В первом случае наше измерение выполнено с точностью до 1 см, а во втором — с точностью до 0,1 см.

Чтобы произвести еще более точное измерение, необходимо учесть длину той части иглы, которая выступает за отметку 52 мм, и тогда точность повысится до 0,01 см. Но для этого нам придется использовать измерительный прибор с еще меньшей ценой деления, то есть более точный, но даже тогда мы не можем утверждать, что измерили иглу совершенно точно.

Причин для этого достаточно: это и несовершенство конструкции прибора, и погрешности, которые возникают при проведении опыта (например, начало иглы невозможно абсолютно точно совместить с «нулем» линейки). Таким образом, даже если измерение проводится более тщательно и с помощью более совершенного прибора, точность возрастает, но погрешностей все равно не избежать.

Чтобы уменьшить погрешность, измерение можно выполнить несколько раз, а затем вычислить среднее значение всех полученных результатов (наити их среднее арифметическое).

Точность измерений

Физические величины и их единицы измерения в физике с примерами

Однако не следует думать, что чем точнее измерение, тем лучше: излишняя точность не всегда целесообразна.

Предположим, что вместо длины иглы вам необходимо измерить длину крышки стола. В этом случае нет необходимости учитывать десятые и сотые доли миллиметра, поскольку, измеряя длину стола в разных местах, мы получим величины, отличающиеся на несколько миллиметров. Поэтому долями миллиметра в этом случае можно пренебречь. Также нет смысла измерять длину стены с точностью до одного миллиметра (рис. 1.26).

Из этого можно сделать вывод, что необходимую точность измерения определяет цель эксперимента.

Чаще всего важно не значение погрешности, а то, какую часть от всей измеренной величины составляет возможная погрешность.

Если портной, выкраивая брюки, ошибется на 1    мм, вы этого даже не заметите. А вот если, втягивая нить в ушко иглы, он всякий раз будет ошибаться на 1 мм (рис. 1.27), то едва ли брюки вообще когда-либо будут сшиты.

Роль измерений в физике. Прямые и косвенные измерения

Наука начинается с тех пор, как начинают измерять… Д. И. Менделеев

Вдумайтесь в слова известного ученого. Из них ясна роль измерений в любой науке, особенно в физике. Но, кроме того, измерения важны в практической жизни. Можете ли вы представить свою жизнь без измерений времени, массы, длины, скорости движения, расхода электроэнергии и т. д.?

Как измерить физическую величину? Для этой цели используются измерительные приборы. Некоторые из них вам уже известны. Это разного вида линейки, часы, термометры, весы, транспортиры и др.

Измерительные приборы бывают цифровые и шкальные. В цифровых приборах результат измерений определяется цифрами. Это электронные приборы — часы, термометр, счетчик электроэнергии (рис. 19) и др.

Физические величины и их единицы измерения в физике с примерами

Линейка, стрелочные часы, термометр бытовой, весы, транспортир (рис. 20) — это шкальные приборы. Они имеют шкалу. По ней определяется результат измерений. Вся шкала расчерчена штрихами на деления (рис. 21). Одно деление это не один штрих, как иногда ошибочно считают некоторые учащиеся, а промежуток между двумя ближайшими штрихами. На рисунке 22 на шкале мензурки от значения 10 мл до значения 20 мл два деления, но три штриха. Приборы, которые мы будем использовать в лабораторных работах, в основном шкальные.

Физические величины и их единицы измерения в физике с примерами

Физические величины и их единицы измерения в физике с примерамиФизические величины и их единицы измерения в физике с примерами

Что значит измерить физическую величину? Измерить физическую величину — значит сравнить ее с однородной величиной, принятой за единицу. Например, чтобы измерить длину отрезка прямой между точками A и В, нужно приложить линейку и по ее шкале (рис. 23) определить, сколько миллиметров укладывается между точками А и В. Однородной величиной, с которой проводилось сравнение длины отрезка АВ, в данном случае была длина, равная 1 мм.

Физические величины и их единицы измерения в физике с примерами

Если физическая величина измеряется непосредственно путем снятия данных со шкалы прибора, то такое измерение называют прямым. Например, приложив линейку к разным ребрам бруска, мы определим его длину а, ширину b и высоту с (рис. 24, а). Значение длины, ширины и высоты мы определили непосредственно, сняв данные со шкалы линейки. Из рисунка 24, б следует: a = 28 мм. Это прямое измерение.

Физические величины и их единицы измерения в физике с примерами

А как определить объем бруска? Надо провести прямые измерения его длины а, ширины b и высоты с, а затем по формуле

Физические величины и их единицы измерения в физике с примерами

вычислить объем бруска.

В этом случае мы говорим, что объем бруска определили по формуле, т. е. косвенно, и измерение объема называется косвенным измерением.

В физике измерения физических величин чаще всего косвенные. В дальнейшем вы убедитесь в этом сами.

Главные выводы:

  1. Измерительные приборы бывают цифровые и шкальные.
  2. При прямых измерениях физическая величина определяется непосредственно по шкале прибора.
  3. При косвенных измерениях физическая величина определяется по формуле.

Для любознательных:

Изучая строение человеческого тела и работу его органов, ученые проводят множество измерений. Оказывается, в человеке массой примерно 70 кг около 6 л крови. Сердце человека в спокойном состоянии сокращается 60—80 раз в минуту. За одно сокращение оно выбрасывает в среднем Физические величины и их единицы измерения в физике с примерами крови, в минуту — около 4 л, в сутки — около 6—7 т, в год — более 2000 т. Так что наше сердце — большой труженик!

В течение суток кровь человека около 360 раз проходит через почки, очищаясь там от вредных веществ. Общая протяженность почечных кровеносных сосудов составляет приблизительно 18 км. Ведя здоровый образ жизни, мы помогаем нашему организму работать без сбоев!

Единицы измерения физических величин

Чтобы решить, как быстрее доехать до вокзала — на трамвае или на такси, сравнивают скорости движения этих транспортных средств. Скорость — физическая величина. Она количественно описывает физическое явление — движение. Если скорость автомобиля Физические величины и их единицы измерения в физике с примерами трактора Физические величины и их единицы измерения в физике с примерами (рис. 29), то ясно, что автомобиль движется в 3 раза быстрее трактора.

Физические величины и их единицы измерения в физике с примерами

В физике для описания физических явлений и свойств используется множество физических величин: длина, сила, давление и др. Каждая физическая величина имеет символическое обозначение, числовое значение и единицу измерения. Например, длина бруска Физические величины и их единицы измерения в физике с примерами Здесь длина — физическая величина, Физические величины и их единицы измерения в физике с примерами — ее символическое обозначение, 2 — числовое значение, м — сокращенное обозначение единицы длины (метра). Символами физических величин обычно являются буквы латинского и греческого алфавитов.

Исторически сложилось так, что у разных народов и государств единицы измерения одних и тех же физических величин различались. Часто это были единицы, соответствующие размерам частей тела человека, массе семени бобов и т. д. Пользоваться такими единицами было неудобно, особенно в торговле между разными государствами.

Например, в Англии для измерения длины использовался фут (1 фут = 30,5 см), а на Руси — аршин (1 аршин = 71,1 см) (рис. 30). Нужно было упорядочить систему единиц, сделать ее удобной в использовании всеми странами. В 1960 г. ввели единую Международную систему единиц (сокращенно СИ — Систему Интернациональную). Ею пользуется большинство стран. Основными единицами в СИ являются: метр (м) — для длины, килограмм (кг) — для массы, секунда (с) — для промежутка времени, Кельвин (К) — для температуры.

Физические величины и их единицы измерения в физике с примерами

Но всегда ли удобно измерять время в секундах, а длину — в метрах? Оказывается, нет. Например, время движения поезда из Минска в Москву измеряют в часах (ч), а путь — в километрах (км). Единицы 1 ч и 1 км — это неосновные (кратные) единицы СИ. Между основными и неосновными единицами существует связь. Так, 1 км = 1000 м, 1 ч = 3600 с.

Основные единицы измерения имеют эталоны. Эталоны хранятся в г. Севре (Франция) в Международном бюро мер и весов. На рисунке 31 приведен эталон килограмма — цилиндр из плати но-иридиевого сплава. По эталону делают копии, которыми пользуются разные страны. Позже вы познакомитесь с эталонами других единиц измерения.

Физические величины и их единицы измерения в физике с примерами

Для любознательных

Эталонная база страны обеспечивает единство измерений и является частью национального достояния. В Беларуси, как и в других странах, ведется работа по исследованию и созданию эталонных комплексов. В Белорусском государственном институте метрологии созданы эталоны массы, времени (см. рис.), температуры и др.

Главные выводы

  1. Каждая физическая величина имеет символическое обозначение, числовое значение и единицу измерения.
  2. Основными единицами СИ являются: метр, килограмм, секунда, Кельвин и др.
  3. Основные единицы измерения имеют свои эталоны.

Пример №1

В одной из книг немецкого путешественника XVII в. есть такие строки: «Шелковая материя, привозимая с Востока, называется русскими “китайкой”, и каждый кусок содержит ни больше ни меньше как восемь с четвертью аршин». Сколько метров в куске материи?

Дано:

Физические величины и их единицы измерения в физике с примерами аршина

1 аршин = 71,1 см = 0,711 м

Физические величины и их единицы измерения в физике с примерами

Решение

Так как 1 аршин = 71,1 см = 0,711 м, то длина восьми с четвертью аршин в метрах будет равна:

Физические величины и их единицы измерения в физике с примерами

Ответ: Физические величины и их единицы измерения в физике с примерами

  • Заказать решение задач по физике

Действия над физическими величинами

В математике можно складывать, вычитать и сравнивать любые числа. А какие действия можно производить над физическими величинами? 

Действия сложения, вычитания и сравнения над физическими величинами можно производить только в том случае, если они однородны, т. е. представляют одну и ту же физическую величину.

Мы можем складывать длину с длиной, вычитать из массы массу, сравнивать промежуток времени с промежутком времени (пример 1). Смешно и нелепо было бы складывать 4 м и 5 кг или вычитать 30 с из 9 кг. А вот умножать и делить можно как однородные, так и разные физические величины.

Физические величины и их единицы измерения в физике с примерами

В примере 2 делятся не только числовые значения (10 : 2 = 5), но и единицы физических величин (кг : кг = 1). Результат показывает, во сколько раз одна физическая величина (масса) больше другой.

Физические величины и их единицы измерения в физике с примерами

В примере 3 умножаются числовые значения Физические величины и их единицы измерения в физике с примерами и единицы физических величин Физические величины и их единицы измерения в физике с примерами В результате умножения двух длин Физические величины и их единицы измерения в физике с примерамиполучилась новая физическая величина — площадь Физические величины и их единицы измерения в физике с примерами

Физические величины и их единицы измерения в физике с примерами

В примере 4 в результате деления двух разных физических величин — длины Физические величины и их единицы измерения в физике с примерами на промежуток времени Физические величины и их единицы измерения в физике с примерами — получилась новая физическая величина Физические величины и их единицы измерения в физике с примерами Ее числовое значение равно 5, а единица новой физической величины — Физические величины и их единицы измерения в физике с примерамиЭта физическая величина Физические величины и их единицы измерения в физике с примерами — скорость. Подробнее о ней вы узнаете в 3-й главе.

Физические величины и их единицы измерения в физике с примерами

В примере 5 знак равенства относится не только к числовым значениям, но и к единицам. Знак равенства поставить нельзя, если сравнить Физические величины и их единицы измерения в физике с примерами и Физические величины и их единицы измерения в физике с примерами Здесь Физические величины и их единицы измерения в физике с примерами 

Физические величины и их единицы измерения в физике с примерами

Для любознательных:

Большие единицы времени — год и сутки — дала нам сама природа. Но час, минута и секунда появились благодаря человеку.

Принятое в настоящее время деление суток восходит к глубокой древности. В Вавилоне применялась не десятичная, а шестидесятеричная система счисления. Поскольку 60 делится без остатка на 12, сутки у вавилонян состояли из 12 равных частей. В Древнем Египте было введено деление суток на 24 часа. Позже появились минуты и секунды. То, что в 1 часе 60 минут, а в 1 минуте 60 секунд, — наследие шестидесятеричной системы счисления Вавилона.

Главные выводы:

  1. Складывать, вычитать и сравнивать можно только однородные физические величины.
  2. Умножение и деление разнородных величин приводит к появлению новой физической величины. 

Пример №2

Выберите значения физических величин, которые можно складывать: 120 г, Физические величины и их единицы измерения в физике с примерами Физические величины и их единицы измерения в физике с примерами 8 мин, 0,048 кг. Определите значение физической величины, получившейся в результате сложения.

Решение

Однородными физическими величинами в данном случае являются массы тел: Физические величины и их единицы измерения в физике с примерами = 120 г и Физические величины и их единицы измерения в физике с примерами = 0,048 кг. Для выполнения операции сложения физические величины необходимо выразить в одних единицах. Одну из масс, например Физические величины и их единицы измерения в физике с примерами, выразим в единицах, в которых записана масса Физические величины и их единицы измерения в физике с примерами, т. е. в граммах (г). Так как 1 кг = 1000 г, Физические величины и их единицы измерения в физике с примерами = 0,048 кг = 0,048 • 1000 г = 48 г.

Следовательно, m = Физические величины и их единицы измерения в физике с примерами + Физические величины и их единицы измерения в физике с примерами = 120 г + 48 г = 168 г.

Ответ: результатом сложения является масса m = 168 г.

Пример №3

Определите физические величины, получившиеся в результате

выполнения следующих действий: 1) 35 г : 5 Физические величины и их единицы измерения в физике с примерами 2) 40 см • 0,25 м.

Решение

1) Найдем отношение двух физических величин, разделив их числовые значения и единицы:

Физические величины и их единицы измерения в физике с примерами

Мы получили физическую величину — объем Физические величины и их единицы измерения в физике с примерами

2) Чтобы умножить две однородные физические величины, необходимо выразить их в одних единицах, например в сантиметрах (см):

Физические величины и их единицы измерения в физике с примерами

Мы получили физическую величину — площадь Физические величины и их единицы измерения в физике с примерами

Ответ: 1) в результате деления двух физических величин разного рода (массы и плотности) получена третья физическая величина — объем Физические величины и их единицы измерения в физике с примерами 2) в результате умножения двух однородных физических величин (длин) получена третья физическая величина — площадь Физические величины и их единицы измерения в физике с примерами

физические величины и их измерение

Чем отличается язык физики (и любой другой точной науки) от обычного? язык физики интернационален: он создавался лучшими умами человечества, его однозначно понимают в любом уголке нашей планеты. язык физики объективен: каждое его понятие однозначно, оно имеет один смысл, который может измениться (чаще всего — расшириться) только благодаря опытам. Как и методы научного познания, язык физики родился из практики.

Что такое физическое исследование и каковы его методы

Вспомним, с чего начинается исследовательская работа ученых. Прежде всего — это наблюдение за определенным явлением (телом или материалом) и размышления над его сущностью.

Наблюдение — это восприятие природы с целью получения первичных данных для последующего анализа. Далеко не всегда наблюдения приводят к правильным выводам. Поэтому, чтобы опровергнуть или подтвердить собственные выводы, ученые проводят физические исследования.

Физическое исследование — это целенаправленное изучение явлений и свойств природы средствами физики.

Методы физических исследований
экспериментальный теоретический
Эксперимент — исследование физического явления в условиях, находящихся под контролем исследователя. В своей основе физика является экспериментальной наукой: большинство ее законов основаны на фактах, установленных опытным путем. Анализ данных, полученных в результате экспериментов, формулирование законов природы, объяснение конкретных явлений и свойств на основе этих законов, а главное — предвидение и теоретическое обоснование (с широким использованием математики) еще не известных явлений и свойств.

Какие наблюдения, теоретические и экспериментальные исследования вы провели бы, чтобы исследовать свечение обычной лампы накаливания?

Теоретические исследования проводят не с конкретным физическим телом, а с его идеализированным аналогом — физической моделью, которая должна учитывать только некоторые основные свойства исследуемого тела. Так, изучая движение автомобиля, мы иногда используем его физическую модель — материальную точку (рис. 2.1, а).

Эту модель используют, если размеры тела не существенны для теоретического описания, то есть в модели «материальная точка» учитывается только масса тела, а его форма и размеры во внимание не принимаются. А вот если нужно выяснить, как на движение автомобиля влияет сопротивление воздуха, целесообразно применить уже другую физическую модель — она должна учитывать и форму, и размеры автомобиля (рис. 2.1, б), но может не учитывать, например, размещение пассажиров в салоне. Чем больше выбрано соответствующих параметров для исследования физической системы «автомобиль», тем точнее можно предвидеть «поведение» этой системы.

Физические величины и их единицы измерения в физике с примерамиФизические величины и их единицы измерения в физике с примерами

Рис. 2.1. Определяя скорость и время движения автомобиля, можно применять физическую модель «материальная точка» (а); выясняя аэродинамические свойства автомобиля, эту физическую модель применять нельзя (б)

Целесообразно ли использовать физическую модель «материальная точка», если инженеры должны рассчитать устойчивость автомобиля?

Как измерить физическую величину

Описывая, например, движение автомобиля, мы используем определенные количественные характеристики: скорость, ускорение, время движения, силу тяги, мощность и т. п.

Из предыдущего курса физики вы знаете, что количественную меру свойства тела, физического процесса или явления называют физической величиной. Значение физической величины устанавливают в ходе измерений, которые, в свою очередь, бывают прямые и косвенные. При прямых измерениях величину сравнивают с ее единицей (метром, секундой, килограммом, ампером и т. п.) с помощью измерительного прибора, проградуированного в соответствующих единицах (рис. 2.2).

Физические величины и их единицы измерения в физике с примерамиФизические величины и их единицы измерения в физике с примерами

Рис. 2.2. Современные приборы для прямого измерения температуры (а); массы (б); скорости движения (в)

Назовите несколько физических величин, значения которых вы находили с помощью прямых измерений. В каких единицах измеряют эти величины? какими приборами? При косвенных измерениях величину вычисляют по результатам прямых измерений других величин, связанных с измеряемой величиной некоторой функциональной зависимостью. Так, чтобы найти среднюю плотность ρ тела, нужно с помощью весов измерить массу m тела, с помощью, например, мензурки измерить его объем V, а затем массу разделить на объем: Физические величины и их единицы измерения в физике с примерами

Построение системы единиц

В конце XVIII в., после Великой французской революции, перед французскими учеными была поставлена задача создать систему единиц на научной основе. В результате появилась метрическая система единиц. В 1960 г. была создана Международная система единиц CИ, которая со временем стала в мире доминирующей.

Основные единицы СИ

  • килограмм (1 кг, 1 kg) единица массы
  • метр (1 м, 1 m) единица длины
  • секунда (1 с, 1 s) единица времени
  • ампер (1 А, 1 А) единица силы тока
  • моль (1 моль, 1 mol) единица количества вещества
  • кельвин (1 К, 1 K) единица температуры
  • кандела (1 кд, 1 kd) единица силы света

Исторически единицы физических величин связывали с определенными телами или природными процессами. Так, 1 метр был связан с размерами планеты Земля, 1 килограмм — с определенным объемом воды, 1 секунда — с суточным вращением Земли. Позже для каждой единицы был создан эталон средство (или комплекс средств) для воспроизведения и хранения единицы физической величины. Основные эталоны хранились (и хранятся сейчас) в Международном бюро мер и весов (г. Севр, Франция).

Сейчас все большее распространение получают методы построения системы единиц, основанные на особенностях излучения и распространения электромагнитных волн, а также на фундаментальных физических константах. Рассмотрим основные этапы создания системы единиц на примерах метра и килограмма.

Физические величины и их единицы измерения в физике с примерами

Напомним, что для удобства записи больших и малых значений физических величин используют кратные и дольные единицы. Кратные единицы больше основных единиц в 10, 100, 1000 и более раз. Дольные единицы меньше основных единиц в 10, 100, 1000 и более раз.

Названия кратных и дольных единиц включают в себя специальные префиксы. Например, километр (1000 м, или 103 м) — кратная единица длины, миллиметр (0,001 м, или 10–3 м) — дольная единица длины (см. табл. 1).

Таблица 1. Префиксы для образования названий кратных и дольных единиц

Префикс Символ Множитель
атто- а Физические величины и их единицы измерения в физике с примерами
фемто- ф Физические величины и их единицы измерения в физике с примерами
пико- п Физические величины и их единицы измерения в физике с примерами
нано- н Физические величины и их единицы измерения в физике с примерами
микро- мк Физические величины и их единицы измерения в физике с примерами
милли- м Физические величины и их единицы измерения в физике с примерами
санти- с Физические величины и их единицы измерения в физике с примерами
кило- к Физические величины и их единицы измерения в физике с примерами
мега- М Физические величины и их единицы измерения в физике с примерами
гига- Г Физические величины и их единицы измерения в физике с примерами
тера- Т Физические величины и их единицы измерения в физике с примерами
пета п Физические величины и их единицы измерения в физике с примерами
экса е Физические величины и их единицы измерения в физике с примерами

Погрешности измерений

При измерении любой физической величины обычно выполняют три последовательные операции: 1) выбор, проверка и установка прибора (приборов); 2) снятие показаний прибора (приборов); 3) вычисление искомой величины по результатам измерений (при косвенных измерениях); 4) оценка погрешности.

Например, нужно измерить на местности расстояние около 5 м. Разумеется, что для этого не следует брать ученическую линейку, — удобнее воспользоваться рулеткой. Все приборы имеют определенную точность. Расстояние в 5 м, как правило, не требуется определять с точностью до миллиметра, поэтому шкала рулетки может и не содержать соответствующих делений.

Физические величины и их единицы измерения в физике с примерами

Рис. 2.3. Штангенциркуль. Точность измерения изображенным прибором — сотые доли миллиметра

А вот если для ремонта лабораторного крана необходимо определить размер шайбы, целесообразно воспользоваться штангенциркулем (см. рис. 2.3). Однако даже с помощью сверхточного прибора нельзя выполнить измерения абсолютно точно. Всегда есть погрешности измеренийотклонение значения измеренной величины от ее истинного значения. Модуль разности между измеренным (Физические величины и их единицы измерения в физике с примерами ) xизм и истинным (x) значениями измеряемой величины называют абсолютной погрешностью измерения ∆x : Физические величины и их единицы измерения в физике с примерами

Отношение абсолютной погрешности к измеренному значению измеряемой величины называют относительной погрешностью измерения Физические величины и их единицы измерения в физике с примерами:

Физические величины и их единицы измерения в физике с примерами, или в процентах: Физические величины и их единицы измерения в физике с примерами

Погрешности при измерениях бывают случайные и систематические.

Случайные погрешности

Случайные погрешности связаны с процессом измерения: измеряя расстояние рулеткой, невозможно проложить ее идеально ровно; отсчитывая секундомером время, прибор невозможно мгновенно включить и выключить и т. д. Чтобы результаты были более точными, измерения проводят несколько раз и определяют среднее значение измеряемой величины:

Физические величины и их единицы измерения в физике с примерами

где Физические величины и их единицы измерения в физике с примерами — результаты каждого из N измерений. В данном случае случайную абсолютную погрешность Физические величины и их единицы измерения в физике с примерами можно определить по формуле:

Физические величины и их единицы измерения в физике с примерами

Если измерение проводилось один раз, будем считать, что случайная погрешность равна половине цены деления шкалы прибора.

Систематические погрешности

Систематические погрешности связаны прежде всего с выбором прибора: невозможно найти рулетку с идеально точной шкалой, идеально равноплечие рычаги и т. п. Систематические погрешности определяются классом точности прибора, поэтому их часто называют погрешностями прибора. В процессе эксплуатации точность приборов может снижаться, поэтому их необходимо периодически калибровать при помощи специального оборудования. Абсолютные погрешности некоторых приборов, используемых в школе, приведены в табл. 2. Если используются другие приборы, будем считать, что абсолютная погрешность прибора равна половине цены деления его шкалы.

Абсолютная погрешность прямого измерения (∆x) учитывает как систематическую погрешность, связанную с прибором (Физические величины и их единицы измерения в физике с примерами), так и случайную погрешность (Физические величины и их единицы измерения в физике с примерами), обусловленную процессом измерения:

Физические величины и их единицы измерения в физике с примерами

Обратите внимание! Приведенные формулы очень упрощены. Ученые используют более сложные методы расчетов погрешностей.

Таблица 2. Абсолютные погрешности некоторых физических приборов

Физический прибор Цена деления шкалы прибора Абсолютная погрешность прибора
Линейка ученическая 1 мм ±1 мм
Лента измерительная 0,5 см ±0,5 см
Штангенциркуль 0,1 мм ±0,05 мм
Цилиндр измерительный 1 мл ±1 мл
Секундомер 0,2 с ±1 с за 30 мин
Динамометр учебный 0,1 Н ±0,05 Н
Термометр лабораторный 1 °С ±1 °С

Как определить погрешности косвенных измерений

Многие физические величины невозможно измерить непосредственно. Их косвенное измерение включает два этапа: 1) методом прямых измерений находят значения определенных величин, например x, y; 2) по соответствующей формуле вычисляют искомую величину f. Как в таком случае определить абсолютную ∆f и относительную Физические величины и их единицы измерения в физике с примерами погрешности?

  • Относительную погрешность определяют по специальным формулам (см. табл. 3).
  • Абсолютную погрешность определяют по относительной погрешности: Физические величины и их единицы измерения в физике с примерами
  • Если эксперимент проводят, чтобы выяснить, выполняется ли некое равенство (например, X Y= ), то относительную погрешность экспериментальной проверки равенства X Y= можно оценить по формуле:

Физические величины и их единицы измерения в физике с примерами

Таблица 3. Некоторые формулы для определения относительной погрешности

Функциональная зависимость Относительная погрешность
Физические величины и их единицы измерения в физике с примерами Физические величины и их единицы измерения в физике с примерами
Физические величины и их единицы измерения в физике с примерами Физические величины и их единицы измерения в физике с примерами
Физические величины и их единицы измерения в физике с примерами Физические величины и их единицы измерения в физике с примерами
Физические величины и их единицы измерения в физике с примерами
Физические величины и их единицы измерения в физике с примерами Физические величины и их единицы измерения в физике с примерами

Как правильно записать результаты

Абсолютная погрешность эксперимента определяет точность, с которой имеет смысл вычислять измеряемую величину. Абсолютную погрешность ∆x обычно округляют до одной значащей цифры с завышением, а результат измерения xизм — до величины разряда, оставшегося после округления в абсолютной погрешности. Окончательный результат х записывают в виде:

Физические величины и их единицы измерения в физике с примерами

Абсолютная погрешность — положительная величина, поэтому Физические величины и их единицы измерения в физике с примераминаибольшее вероятное значение измеряемой величины, Физические величины и их единицы измерения в физике с примерами — ее наименьшее вероятное значение (рис. 2.4).

Физические величины и их единицы измерения в физике с примерами

Рис. 2.4. Абсолютная погрешность измерения определяет интервал, в котором находится истинное значение измеряемой величины

Пример. Пусть измеряли ускорение свободного падения (g). После обработки экспериментальных данных получили: Физические величины и их единицы измерения в физике с примерами. Абсолютную погрешность следует округлить до одной значащей цифры с завышением: Физические величины и их единицы измерения в физике с примерами. Тогда результат измерения округляется до того же разряда, что и разряд погрешности, то есть до десятых: Физические величины и их единицы измерения в физике с примерами. Ответ по итогам эксперимента следует представить в виде: Физические величины и их единицы измерения в физике с примерами. Соответственно истинное значение ускорения свободного падения находится в интервале от Физические величины и их единицы измерения в физике с примерами (рис. 2.5).

Физические величины и их единицы измерения в физике с примерами

Рис. 2.5. Табличное значение: Физические величины и их единицы измерения в физике с примерами — принадлежит интервалу [9,5; 9,9] Физические величины и их единицы измерения в физике с примерами, поэтому можно сказать, что результат эксперимента (Физические величины и их единицы измерения в физике с примерами =9,7 Физические величины и их единицы измерения в физике с примерами) совпал с табличным в пределах погрешности измерений

  • Точность измерений и погрешности
  • Определение площади и объема
  • Связь физики с другими науками
  • Макромир, мегамир и микромир в физике
  • Что изучает физика
  • Как зарождалась физика 
  • Единая физическая картина мира
  • Физика и научно-технический прогресс

План урока:

Измерить – значит сравнить

Числа «карлики» и числа «великаны»

Как измерить длину. Погрешности измерений

Площадь и ее измерение

Измерение объема. Мензурка

Измерить – значит, сравнить

На помощь человеку приходят числа, используя которые можно было сравнить предметы по величине. Так в одном известном мультфильме длину удава измеряли в «попугаях», сравнивая величину удава с длиной попугая.

1
Из мультфильма «38 попугаев». 

Длина удава 38 «попугаев». Понятно, что удав в 38 раз длиннее попугая. Но попугаи бывают разными. Если взять другого попугая, тот же удав будет, например, 45 «попугаев». Что делать?

Нужно найти тело, принимаемое за единицу измерения, с которой сравниваются другие тела.

В практической деятельности человеку приходится часто измерять длину, массу и время. В разных странах вводились разные единицы измерения этих величин. Существовали такие единицы, как «лошадиная сила», локоть, бочка. Но ведь и локоть, и бочка могут быть разными, поэтому о точности выполнения работы говорилось приблизительно.

2(Источник)

Сравнивать нужно только однородные физические величины. Длину тела нужно сравнивать с длиной другого тела, а массу тела – только с массой другого тела, принятого за единицу измерения. Так массу удава из мультфильма можно было сравнить с массой обезьянки. Удав имеет массу 195 «обезьянок». Что бы это значило?

Выход был найден, когда ввели систему единиц СИ. Чтобы измерить любую величину, нужно сравнить ее с однородной величиной, принятой за единицу. Как же выбирают эти единицы?

Наиболее распространено измерение длины, размеров пройденного пути, расстояния. Все эти величины измеряются в метрах. Один метр получили следующим образом. Взяли одну сорока миллионную часть меридиана, который проходит через столицу Франции – Париж. Длину этой части и приняли за 1 метр. На стержне, изготовленном из иридия и платины, нанесли два деления, расстояние между которыми равно одному метру. Такой сплав меньше всего подвержен температурному влиянию, которое может изменить длину тела. Это стержень и есть эталон длины, с которым сравнивают единицу длины во многих странах мира. Метровые линейки – это многочисленные копии эталона, которыми как раз и можно пользоваться.

Эталон длины

etalon
(Источник)

Первый эталон метра был изготовлен из латуни в 1795 г. С 1960 г. используется изготовленный с помощью электронных технологий эталон из сплава иридия и платины.  

Существует и эталон массы, равный одному килограмму. Он также изготовлен из сплава иридия и платины.

massa
(Источник)

Эталоны длины и массы хранятся в г. Севр, вблизи Парижа, где располагается Международная палата мер и весов. В 1960 году метр начали сравнивать с величинами, относящимися к разделу «Световые явления». Подробности о свете изучаются в старших классах.

Со светом связана и единица времени – 1 секунда. А до 1960 года (год введения СИ) за основу подсчета времени брали время оборота Земли вокруг Солнца – 1 год, который по календарю состоит из 12 месяцев. Месяцы делятся на сутки – время полного оборота Земли вокруг своей оси, сутки – 24 часа, в каждом из которых 60 минут. А одна шестидесятая часть минуты и есть одна секунда.

3

Время «хранят» при помощи очень точных часов – устройств, предназначенных для измерения времени. Действие любых часов основано на повторяющихся процессах – колебаниях. Чем меньше период (время одного полного колебания), тем часы более точные.

     При изучении быстро протекающих процессов требуется измерять миллиардные и еще более мелкие доли секунды. Для этого служат атомные часы.

4(Источник)

Ученик седьмого класса, конечно же, умеет измерять длину и время, массу продуктов определяют продавцы с помощью весов.

По мере изучения физики будет идти знакомство с различными физическими величинами, способами и приборами их измерения. А сейчас надо знать:

  • чтобы измерить физическую величину, ее надо сравнить с однородной величиной, принятой за единицу;
  • за основу физических величин берутся эталонные значения, то есть образец сравнения.
  • для всех величин существуют свои способы, устройства и единицы измерения.

Числа «карлики» и числа «великаны»

123
Солнечная система.                                                        Лапка мухи под микроскопом. 

Чтобы достать до Альфа Центавры, звезды, ближайшей к Солнечной системе, надо со скоростью света (300 000 км/с) лететь четыре года. Расстояния до небесных тел огромны.

7
К звездам. (Источник)

Если определить расстояние от Земли до Солнца, то оно выразится числом 150 000 000 000 м. А бывают числа с еще большим количеством нулей. Масса Земли в килограммах выражается числом с 24 нулями. Такие числа называют «гигантами». Их записывать и использовать очень неудобно.

Существует способ краткой записи больших чисел в виде степени. Например, 1 000 000 = 106. 10 – основание, а 6 – показатель степени.

Используя этот способ, расстояние от нашей планеты до Солнца запишется так:

150 000 000 000 = 15 ∙ 1010 м – это промежуток называется астрономической единицей (1 а.е.) и служит единицей сравнения в Солнечной системе.

До Альфа-Центавры расстояние в 270 000 а.е., или 4 световых года. Световой год – это тоже астрономическая единица измерения расстояния. Астрономия – наука о космосе и космических телах. (1 св. год = 9,46 ∙ 1015 м = 68 000а.е.).

8
Фото двойной звезды Альфа созвездия Центавра. (Источник)

Большие числа записываются при помощи кратных приставок. Например, километр – это тысяча метров, килограмм – тысяча граммов. Приставка «кило» обозначает «тысяча». Есть и другие приставки, которые обозначают умножение величины на число, кратное десяти. Примеры и форма записи даны в таблице кратных приставок.

table

Используя эти приставки можно записывать очень большие числа.

1 а.е. = 150 000 000 000 м = 150 ∙ 109 м = 150Гм;

1 св. год = 9 460 000 000 000 м = 9,46 ∙ 1012 м = 9,46 Тм;

А теперь о числах – «карликах». Если сделать попытку измерить толщину одного листа книги, то сразу это не получится. Надо действовать по простому плану:

  • отобрать в книге некоторое число страниц N (N = 100, например);
  • измерить толщину L этих страниц (пусть L = 11 мм);
  • найти толщину одной страницы d по формуле d = L/N.

Получится d = 0,11 мм = 0, 00011 м. Это число очень маленькое.

Такой способ измерения малых величин называется методом рядов. Он достаточно прост.

124
Размеры пшена.                                           Толщина проволоки. 

Но существуют и гораздо меньшие величины. Маленькие числа, так называемые «карлики», также записывают при помощи степеней или дольных приставок. (С приставками деци, санти, милли знакомятся еще в начальной школе).

Число меньше единицы, поэтому показатель степени – отрицательное число. Оно показывает количество цифр после запятой. Например, 0, 00011 м = 11 ∙ 10-5 м.

Число 0,00000625 можно записать по-разному, применяя степень:

625 ∙ 10-8, 62,5 ∙ 10-7, 6,25 ∙ 10-6 и т. д.

Очень маленькие числа по-другому можно записывать, используя таблицу дольных приставок.

tab2

Например, при изготовлении сверхточных приборов (телескопов, микроскопов и др.), детали ошлифовываются до очень гладкой поверхности. Неровности должны быть меньше 2,5 ∙ 10-6 м или 2,5 мкм.

Большие и маленькие числа помогают человеку в различных отраслях деятельности: в науке, промышленности, медицине и т.д.

Как измерить длину. Погрешности измерений

На практике измерить длину отрезка достаточно просто:

line

  • Приложить линейку к отрезку.
  • Совместить ноль с началом отрезка.
  • Определить число, соответствующее концу отрезка.
  • Записать результат измерения.    

В приведенном примере длина отрезка 9,9 см. Как точен этот результат? Он точен до 1 мм, так как на линейке нет меньших делений. Не надо путать значения слов «штрих» и «деление».

10(Источник)

Численное значение самого маленького деления шкалы прибора называется ценой деления.

Чтобы определить цену деления прибора (например, линейки), нужно взять любые два рядом стоящие числа и их разность поделить на число делений между ними (т.е. промежутков между штрихами).

Цена деления линейки = (7 см – 6 см)/10 = 0,1 см = 1 мм.

delen
 

И чтобы начать измерение, прежде всего надо найти цену деления прибора, который используется в данном случае. Любое измерение дает некоторую погрешность, зависящую от качества прибора. Поэтому ее называют погрешностью прибора.

11
Шкалы различных приборов. (Источник)

Известно, что измерить какую-то величину – это значит сравнить ее с эталоном. На практике пользуются не эталонами, а специальными приборами (линейка, часы и др.), которые являются копиями с эталонов, изготовленными с определенной точностью. Абсолютно точных измерений не бывает. При использовании линейки допускается погрешность отсчета, которая равна половине цены деления прибора (0,5 мм). Сумма погрешностей прибора и отсчета называется абсолютной погрешностью. Она равна цене деления прибора.

Абсолютная погрешность обозначается значком Δ (дельта). Для школьной линейки Δ = 1 мм. Δ показывает, на сколько совершается ошибка при использовании того или иного прибора. Для более точных измерений используется штангенциркуль. В устройстве штангенциркуля заложено две шкалы, неподвижная (Δ = 1 мм) и подвижная (Δ = 0,1 мм).

                               125
Штангенциркуль.                                           Микрометр.  

А вот при помощи микрометра, где используется не перемещение шкалы, а ее вращение измерить длину можно с точностью до 0,01 мм. Но это еще не предел. В очень точных технологиях определяются размеры с точностью до 10-7м, в научных разработках точность возрастает во много раз. Но для этого нужны сверхточные приборы.

На практике, используя приборы, необходимо учитывать качество измерения. Величина, которая помогает это учесть, называется относительной погрешностью σ (сигма) и выражается в процентах.

σ = Δ / L ( L – измеренная величина)

     Пример: Требуется замерить длину L отрезка различными приборами: 1) линейкой, 2) штангенциркулем и 3) микрометром. Длина отрезка получилась 55 мм. Какова относительная погрешность этих трех измерений?

 1) Δ1 = 1 мм, L = 55 ± 1 мм, σ1 = 1 мм / 55 мм ≈ 0,018 (1,8%);

   2) Δ2 = 0,1 мм, L = 55 ± 0,1 мм, σ2 = 0,1 мм / 55мм ≈ 0,0018 (0,18);

   3) Δ3 = 0,01 мм, L = 55 ± 0,01 мм, σ3 = 0,01 мм / 55мм ≈ 0,00018 (0,018%).

Как видно, более точный прибор (микрометр) дает меньший процент ошибки.

Для каждого конкретного измерения в технике, практической деятельности человека и в науке существует своя точность измерения, в соответствии с которой применяются измерительные приборы.

Площадь и ее измерение

С измерением длин очень тесно связано измерение площадей. Из математики известны формулы площадей квадрата и прямоугольника. У квадрата все стороны равны, поэтому достаточно измерить одну сторону, а у прямоугольника противоположные стороны равны, поэтому надо знать длину и ширину. Площадь обозначается буквой S, и формулы для расчета площадей следующие:

Sкв = a2, Sпр = а ∙ в. Единицей измерения площади является квадратный метр (м2).

Для измерения малых площадей применяются см2 и мм2, а большие площади – в км2. В сельском хозяйстве для измерения земельных участков используют внесистемные единицы: гектар (га) – для больших, ар (а) или «сотка» – для небольших (приусадебных или дачных) участков земли. 1га = 10 000 м2, 1 а = 100 м2.

Очень часто на практике имеют дело с различными кругами. Это может быть цирковая арена, крышка стола, разрез ствола дерева. Формула нахождения площади круга: S = πR2. (π (пи) – это бесконечная дробь ≈ 3,14 подробно изучается в курсе алгебры).

126
Арена цирка.                                    Круглый стол.                            Спил дерева.  

А как определить площадь, ограниченную произвольной кривой линией? Такая площадь может быть у озера, полянки в лесу, листочка с дерева.

list
 

Существует правило нахождения площади тел произвольной формы:

  • Разбить всю поверхность на равные квадраты с известной площадью.
  • Подсчитать количество целых квадратов.
  • Подсчитать число нецелых квадратов и поделить это число на два. (Это будет примерное количество целых квадратов).
  • Сложить результаты пунктов 2 и 3.
  • Умножить площадь одного квадрата на общее число целых квадратов.

Площадь больших территорий изображают в условном масштабе или фотографируют, применяют прием разбиения на квадраты и находят площадь фотографии. Используя масштаб вычисляют реальную площадь поверхности.

13 

Довольно часто площадь приходится находить в географии. Каждое государство, область, город имеют свои площади. В строительстве – любое здание имеет площадь, которую необходимо знать строителям. В сельском хозяйстве ведется постоянный учет площадей для посевных культур.

Измерение объема. Мензурка

При измерении пространства нужно перейти к трем измерениям, так как представление о пространстве дает объем. Известны формулы объемов параллелепипеда, куба, шара, цилиндра.

14(Источник)

Объем любого тела измеряется в кубических метрах (есть кратные и дольные единицы). Из математики известны формулы объемов:

Vпар = а ∙ в ∙ с (произведение длины, ширины и высоты),

Vк = а3 (а – ребро куба),

Vцил = π ∙ r2 ∙ h (r – радиус основания, h – высота цилиндра),

Vш = 4/3 π ∙ R3 (R – радиус шара).

О вычислении объемов более сложной, но правильной, формы рассказывается в старших классах. А как определить объем, например, камня, форма которого может быть самой различной? Для измерения объемов таких тел используется специальный и очень простой прибор, который называется мензурка (или измерительный цилиндр). Это стеклянный сосуд с делениями. При помощи этого цилиндра легко найти объемы сыпучих тел и жидкостей. Для этого достаточно их засыпать вещество или налить в мензурку жидкость и, зная цену деления, определить объем.

15(Источник)

На мензурке обычно ставится единица измерения в миллилитрах. Литр – это широко применяемая единица объема, равная одной тысячной кубического метра. 1 мл = 1 см3 = 10-6 м3.

Определить объем камня или любого другого тела неправильной формы с помощью мензурки можно при условии, что тело имеет размеры, позволяющие опустить его в мензурку.

16(Источник)

Налить в мензурку воду и зафиксировать ее объем. Прикрепить тело неправильной формы к нити. Осторожно опустить полностью в воду. Уровень воды поднимется ровно на столько, чему равен объем тела.

Пользуясь измерительным цилиндром, нельзя забывать, что это прибор, имеющий шкалу, а значит, результат получится с погрешностью.

Добавить комментарий