Как найти эдс задача

Закон электромагнитной индукции, или закон Фарадея – основной закон электродинамики. В сегодняшней статье разберем решение нескольких задач на применение закона электромагнитной индукции.

Подписывайтесь на наш телеграм – там есть не только задачи, но и много интересного для учащихся всех специальностей. А еще, не пропустите приятные скидки и акции на нашем втором канале!

Электромагнитная индукция: задачи с решением

Прежде чем решать задачи на электромагнитную индукцию, вспомните теорию и держите под рукой полезные формулы.

Не знаете, как подступиться к задаче? Держите универсальную памятку по решению абсолютно любых физических задач.

Задача №1 на закон электромагнитной индукции

Условие

Проводник, свитый в 5 витков, находится в магнитном поле. Магнитный  поток через поверхность витка изменяется по закону Фt=50-3t (Вб) . Определить направление и силу индукционного тока в проводнике, если его сопротивление равно 5 Ом.

Решение

Согласно основному закону электромагнитной индукции в проводнике возникает ЭДС индукции, величина которой определяется скоростью изменения магнитного потока, пронизывающего контур:

ε=-NdФdt

Индукционный ток в проводнике можно найти по закону Ома:

I=εR

Вычислим производную и найдем ток:

dФdt=d50-3tdt=-3

Тогда:

I=3NR=3·55=3 А

Уменьшение потока вызывает увеличение ЭДС, то есть направления потока и поля индукционного тока совпадают:

Задача №1 на закон электромагнитной индукции

Ответ: 3 А.

Задача №2 на закон электромагнитной индукции

Условие

По катушке индуктивностью L=8 мкГн течет ток I=6 А. Определить среднее значение ЭДС самоиндукции, возникающей в контуре, если сила тока изменяется практически до нуля за время ∆t=5 мс.

Решение

По определению, магнитный поток равен:

Ф=L·I

ЭДС самоиндукции определим по закону Фарадея:

<ε>=∆Ф∆t=-L∆I∆t

Учитывая, что индуктивность неизменна, и магнитный поток изменяется только за счёт изменения силы тока до нуля (ΔI = I), можно записать:

<ε>=-LI∆t

Подставим числа и вычислим:

<ε>=-8·10-6·65·10-3=-9,6·10-3 В

Ответ: -9,6 мВ.

Задача №3 на закон электромагнитной индукции

Условие

Магнитный поток через контур проводника сопротивлением 0,04 Ом за 3 секунды изменился на 0,013 Вб. Найдите силу тока в проводнике, если изменение потока происходило равномерно.

Решение

В данном случае силу тока можно выразить через закон Ома с учетом закона электромагнитной индукции:

Ii=εiR=-∆Ф∆t1R

Подставляем значения и вычисляем:

Ii=0,0133·0,04=0,11 А.

Ответ: 0,11 А.

Задача №4 на закон электромагнитной индукции

Условие

Прямой проводящий стержень длиной 40 см находится в однородном магнитном поле с индукцией 0,1 Тл. Концы стержня замкнуты гибким проводом, находящимся вне поля. Сопротивление всей цепи 0,5 Ом. Какая мощность потребуется для равномерного перемещения стержня перпендикулярно линиям магнитной индукции со скоростью 10 м/с?

Решение

Если стержень будет двигаться равномерно, магнитный поток через площадь, «заметаемую» стержнем за некоторое время, будет равен:

Ф=ВS=Blvt

При этом разность потенциалов на стержне будет равна ЭДС и, согласно закону электромагнитной индукции Фарадея:

U=dФdt=Blv

Искомая мощность будет равна мощности, выделяемой на сопротивлении:

P=U2R=Blv2R=0,1·0,4·1020,5=0,32 Вт

Ответ: 0,32 Вт.

Нужно больше задач на мощность? Читайте наш блог!

Задача №5 на закон электромагнитной индукции

Условие

В проволочное кольцо, присоединенное к баллистическому гальванометру, вставили прямой магнит. При этом по цепи прошел заряд q=50мкКл. Определить изменение магнитного потока через кольцо, если сопротивление цепи гальванометра R=10 Oм.

Решение

По закону Фарадея, ЭДС находится как отношения изменения магнитного потока ко времени, за которое оно произошло:

εi=∆Ф∆t∆Ф=εi·t

C другой стороны, по закону Ома, можно записать:

εi=IR

Ток, в свою очередь, равен отношению проходящего заряда ко времени:

I=∆Q∆t

C учетом всего этого выражения для ЭДС и потока можно переписать:

εi=R·∆Q∆t∆Ф=  R∆Q∆t∆t=R∆Q∆Ф=10·50·10-6=5·10-4 Вб

Ответ: 0,5 мВб.

Вопросы на тему «Электромагнитная индукция»

Вопрос 1. Что такое электромагнитная индукция?

Ответ. Электромагнитная индукция — это явление, когда в замкнутом проводнике (контур, рамка) возникает ток, при помещении этого проводника в изменяющееся магнитное поле.

Вопрос 2. Что такое магнитный поток?

Ответ. Магнитный поток, или поток магнитной индукции через какую-то поверхность – это скалярная физическая величина, равна произведению модуля магнитной индукции на площадь данной поверхности и косинус угла между вектором индукции и нормалью к поверхности.

Ф=BScosα

Магнитный поток характеризует густоту силовых линий магнитного поля, пронизывающих поверхность. Единица измерения – Вебер.

Вопрос 3. Сформулируйте закон Фарадея

Ответ. Закон электромагнитной индукции Фарадея гласит:

ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока, пронизывающего контур, взятой с противоположным знаком.

εi=-dФdt

Вопрос 4. Что означает знак «-» в формуле для закона электромагнитной индукции.

Ответ. Направление индукционного тока определяется по правилу Ленца: индукционный ток всегда имеет такое направление, что он ослабляет действие причины, возбуждающей этот ток. В соответствии с правилом Ленца ток направлен так, что созданный им магнитный поток противодействует изменению внешнего магнитного потока. Именно поэтому в формуле присутствует знак «-».

Вопрос 5. Как закон Фарадея применяется на практике?

Ответ. Закон электромагнитной индукции Фарадея нашел широчайшее применение. В качестве самого распространенного примера можно привести такое устройство, как электродвигатель, принцип действия которого основан именно на этом законе.

Нужна помощь в решении задач и других заданий по учебе? Профессиональный сервис для студентов всегда поспособствует качественному выполнению всех работ.

Подробности
Обновлено 03.07.2018 17:37
Просмотров: 1894

Задачи по физике – это просто!

Не забываем, что решать задачи надо всегда в системе СИ!

А теперь к задачам!

Элементарные задачи из курса школьной физики на вычисление ЭДС индукции.

Задача 1

За время 5 мс в соленоиде, содержащем 500 витков провода, магнитный поток равномерно убывает от 7 мВб до 3 мВб.
Найдите ЭДС индукции в соленоиде.


Задача 2

Какой магнитный поток пронизывает каждый виток катушки, имеющей 1000 витков, если при равномерном исчезновении магнитного поля в течение 0,1 с в катушке индуцируется ЭДС равная 10 В ?

Задача 3

Виток проводника   площадью 2 см2 расположен перпендикулярно вектору магнитной индукции.
Чему равна ЭДС индукции в витке, если за время 0,05 секунд магнитная индукция равномерно убывает с 0,5 Тл до 0,1 Тл?


Задача 4

В однородном
магнитном поле перпендикулярно к направлению вектора индукции , модуль которого 0,1 Тл, движется провод длиной 2 метра со скоростью 5 м/с, перпендикулярной проводнику.
Какая ЭДС индуцируется в этом проводнике?

Задача 5

Перпендикулярно вектору магнитной индукции перемещается проводник длиной 1,8 метра со скоростью 6 м/c. ЭДС индукции равна 1,44 В.
Найти магнитную индукцию  магнитного поля.


Задача 6

Самолет имеет размах крыльев 15 метров. Горизонтальная скорость полета равна720 км/час.
Определить разность потенциалов, возникающих между концами крыльев. Вертикальная составляющая магнитной индукции (перпендикулярно поверхности Земли) равна 50 мкТл.

Задача 7

Магнитный поток через контур проводника сопротивлением 0,03 Ом за 2 секунды  изменился на 0,012 Вб.
Найдите  силу тока в проводнике если изменение потока происходило равномерно.

Задача 8

В однородном магнитном поле находится плоский виток площадью 10 см2, расположенный перпендикулярно вектору магнитной индукции.
Какой ток течет по витку, если поле будет убывать с постоянной скоростью 0,5 Тл/с?

Задача 9

Сопротивление замкнутого контура равно 0,5 Ом. При перемещении кольца в магнитном поле магнитный поток через кольцо изменился на 5×10-3 Вб.
Какой за это время прошел заряд через поперечное сечение проводника?

Урок

решение
задач по теме:

«Электродвижущая
сила. Закон Ома для замкнутой цепи»

10
класс.

Задача
1 (956)

Какова
ЭДС источника, если сторонние силы совершают 20 Дж работы при перемещении 10
Кл  электричества от одного полюса к другому?

 

Задача
2 (960)

Каково
внутреннее сопротивление элемента, если его ЭДС равна 1,2 В и при внешнем
сопротивлении 5,0 Ом сила тока равна 0,20 А?

Решение:

1.       Закон Ома для замкнутой цепи             ;  

  =IR +Ir ;     ;

r =;

 Вычисления: r = =1 Ом

Ответ: r =1, 0  Ом

 

Дано:                                 

R =5,0  Ом

I  =
0,20 А

r =?

Задача 3 (965)

К полюсам источника с ЭДС  2,0 В  и внутренним
сопротивлением 0,80  Ом  присоединен кусок  никелинево  проволоки длиной 2,1 м
и сечнием 0,21 мм2. Каково напряжение  на зажимах источника?

 

Задача 4 (967)

К полюсам источника тока  присоединяют
поочередно резисторы 4,5 Ом и 10 Ом. При этом сила тока в цепи оказывается
равной 0,2 и 0,1 А соответственно. Найти ЭДС источника  и внутреннее сопротивление.

Задача 5 (961)

ЭДС батарейки от карманного фонаря равна
3,7 В , а внутреннее сопротивление

 1,5 Ом. Батарейка замкнута на
сопротивление 11,7 Ом. Каково напряжение на зажимах батарейки?

Решение:

1.      Используя
закон Ома для замкнутой цепи, находим силу тока вцепи.

2.      Из 
первой формулы находим ЭДС.

 = I∙R + I
∙ r;    U = I∙R;
 = U + I ∙
r;

3.       Из
последней формулы находим напряжение на зажимах.

 U
=
 – I
r;

4.Производим
вычисления: 

U
=
В – 0,28 А∙1,5 Ом
≈3,3 В

Ответ:
U  ≈3,3 В  или

 

Дано:

r = 1, 5 Ом

R=11,7 
O
м

U =?

Задача  6  (973)

Дано

 =100 В
 = 75 В

= 0,15 Ом

= 2,0 Ом

= 0,35 Ом

t=  5 ч =18000 c

 

 Генератор с ЭДС, равной 100  В , и внутренним
сопротивлением 2,0 Ом в течение пяти часов заряжает батарею аккумуляторов. ЭДС
батареи 75 В , внутреннее сопротивление 0,15 Ом. Сопротивление проводящих
проводов 0,35 Ом. Найти напряжение на зажимах гене­ратора и напряжение на
зажимах аккумуля­торной батареи во время зарядки. Какое коли­чество
электричества проходит через аккумуля­торную батарею за 5 ч?

                                                      
UГ
=?  
Uб
=?   
q =?

Решение:

1.      Находим
силав тока в генераторе по закону Ома для замкнутой цепи

 , где  R
=
Rп
+
rб
;

2.      Находим
напряжение на зажимах генгратора  по закону Ома для участка цепи

;   .

3.      Находим
силав тока батарее по закону Ома для замкнутой цепи

 , где  R
=
Rп
+
rб
;

4.Изменение силы тока в замкнутой
цепи ∆
I =Iг
I

 I
=40 А –30 А =10 А

4.      Находим
потерии напряжения на проводящих проводов  ∆
U
=∆
IRп

 ∆U
=10А∙0,35 Ом = 3,5 В.

Находим напряжение на зажимах батареии

 

5.      Находим
количества электричества проходящийся через аккумуляторную батарею за 5ч.

q 
= ∆
I
t;    
q
= 10
A
∙18000
c
= 1, 8∙ 105 Кл.

Ответ: 80 В;   76,5 В; 1,
8∙ 105 Кл.

Задача  7  (974)

ЭДС источника 2,0 В, его внутреннее
сопротивление 1,0 Ом. Какая сила тока в цепи, если мощность тока во внешней
цепи 0,75 Вт? Объяснить смысл двух ответов.

4. Решаем уравнерие (3)  относительно 
силы тока.   
 

 (4);

5.Подставим  значения   в (4) получим
квадратное уравнение отгосительно
I.

.   I1
=0,5( A); I2 = 1,5 (A)

R1 =;    R2 =;

Ответ: I1
=0,5 A
при R1
;    I2 = 1,5
A
при R2
;

С увеличением внешнего сопротивления сила
тока уменьшается, а с уменьшением внешнего сопротивления сила тока
увеличивается при  постоянной мощности внешней цепи.

Задача  8  (979)

ЭДС
батареи (рис.) 3,0 В, ее внут­реннее сопротивление 1,0 Ом, сопротивления
резисторов:
R1 = R2 = 1, 75 Ом, R3 = 2,0  Ом, R4 = 6,0 Ом.   Какова сила тока
в резисторе
I4?

Решение:

1)    R0
=2 R1 +R34 ;

2)    ;

3)    R0
=2 R1 +
;

4)  R0
=2∙1,75+
;

5)   ;  I =

6)    I1
= I2 =I34 = 0,5 A;

7)  R34
=1,5
;

8)    U34
= I∙R34 ;

9)  U34
= 0,5 A∙1,5
  =0,75B

10)                      
;

11)           
;

Ответ: I4
= 0,125A

 

                                                           

 Литература

1.      Учебник
физика 10 класс  Г.Я. Мякишева, Б.Б. Буцховцева,Н.Н. Сотского

2.      Сборник
задач по физике   В.П.Демкович, М.П.Демкович 8-10 классов

Задачи №1-3 ,№5 Базовый уровень

Задачи №4,№6-8 для учащихся интересованной
физикой.

ЭДС. Закон Ома для полной цепи

  • Темы кодификатора ЕГЭ: электродвижущая сила, внутреннее сопротивление источника тока, закон Ома для полной электрической цепи.

  • Сторонняя сила

  • Закон Ома для полной цепи

  • КПД электрической цепи

  • Закон Ома для неоднородного участка

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: электродвижущая сила, внутреннее сопротивление источника тока, закон Ома для полной электрической цепи.

До сих пор при изучении электрического тока мы рассматривали направленное движение свободных зарядов во внешней цепи, то есть в проводниках, подсоединённых к клеммам источника тока.

Как мы знаем, положительный заряд q:

• уходит во внешнюю цепь с положительной клеммы источника;

• перемещается во внешней цепи под действием стационарного электрического поля, создаваемого другими движущимися зарядами;

• приходит на отрицательную клемму источника, завершая свой путь во внешней цепи.

Теперь нашему положительному заряду q нужно замкнуть свою траекторию и вернуться на положительную клемму. Для этого ему требуется преодолеть заключительный отрезок пути — внутри источника тока от отрицательной клеммы к положительной. Но вдумайтесь: идти туда ему совсем не хочется! Отрицательная клемма притягивает его к себе, положительная клемма его от себя отталкивает, и в результате на наш заряд внутри источника действует электрическая сила vec{F_E}, направленная против движения заряда (т.е. против направления тока).

к оглавлению ▴

Сторонняя сила

Тем не менее, ток по цепи идёт; стало быть, имеется сила, «протаскивающая» заряд сквозь источник вопреки противодействию электрического поля клемм (рис. 1).

Рис. 1. Сторонняя сила

Эта сила называется сторонней силой; именно благодаря ей и функционирует источник тока. Сторонняя сила vec{F_{CT}} не имеет отношения к стационарному электрическому полю — у неё, как говорят, неэлектрическое происхождение; в батарейках, например, она возникает благодаря протеканию соответствующих химических реакций.

Обозначим через A_{CT} работу сторонней силы по перемещению положительного заряда q внутри источника тока от отрицательной клеммы к положительной. Эта работа положительна, так как направление сторонней силы совпадает с направлением перемещения заряда. Работа сторонней силы A_{CT} называется также работой источника тока.

Во внешней цепи сторонняя сила отсутствует, так что работа сторонней силы по перемещению заряда во внешней цепи равна нулю. Поэтому работа сторонней силы по перемещению заряда q вокруг всей цепи сводится к работе по перемещению этого заряда только лишь внутри источника тока. Таким образом, A_{CT} — это также работа сторонней силы по перемещению заряда по всей цепи.

Мы видим, что сторонняя сила является непотенциальной — её работа при перемещении заряда по замкнутому пути не равна нулю. Именно эта непотенциальность и обеспечивает циркулирование электрического тока; потенциальное электрическое поле, как мы уже говорили ранее, не может поддерживать постоянный ток.

Опыт показывает, что работа A_{CT} прямо пропорциональна перемещаемому заряду q. Поэтому отношение A_{CT}/q уже не зависит от заряда и является количественной характеристикой источника тока. Это отношение обозначается mathcal E:

mathcal E = frac{displaystyle A_{CT}}{displaystyle q vphantom{1^a}}. (1)

Данная величина называется электродвижущей силой (ЭДС) источника тока. Как видим, ЭДС измеряется в вольтах (В), поэтому название «электродвижущая сила» является крайне неудачным. Но оно давно укоренилось, так что приходится смириться.

Когда вы видите надпись на батарейке: «1,5 В», то знайте, что это именно ЭДС. Равна ли эта величина напряжению, которое создаёт батарейка во внешней цепи? Оказывается, нет! Сейчас мы поймём, почему.

к оглавлению ▴

Закон Ома для полной цепи

Любой источник тока обладает своим сопротивлением r, которое называется внутренним сопротивлением этого источника. Таким образом, источник тока имеет две важных характеристики: ЭДС и внутреннее сопротивление.

Пусть источник тока с ЭДС, равной mathcal E, и внутренним сопротивлением r подключён к резистору R (который в данном случае называется внешним резистором, или внешней нагрузкой, или полезной нагрузкой). Всё это вместе называется полной цепью (рис. 2).

Рис. 2. Полная цепь

Наша задача — найти силу тока I в цепи и напряжение U на резисторе R.

За время t по цепи проходит заряд q = It. Согласно формуле (1) источник тока совершает при этом работу:

A_{CT} = Eq = EIt. (2)

Так как сила тока постоянна, работа источника целиком превращается в теплоту, которая выделяется на сопротивлениях R и r. Данное количество теплоты определяется законом Джоуля–Ленца:

Q = I^2Rt + I^2rt = I^2(R + r)t. (3)

Итак, A_{CT} = Q, и мы приравниваем правые части формул (2) и (3):

mathcal E It = I^2(R + r)t.

После сокращения на It получаем:

mathcal E = I(R + r).

Вот мы и нашли ток в цепи:

I = frac{displaystyle mathcal E}{displaystyle R + r vphantom{1^a}}. (4)

Формула (4) называется законом Ома для полной цепи.

Если соединить клеммы источника проводом пренебрежимо малого сопротивления (R = 0), то получится короткое замыкание. Через источник при этом потечёт максимальный ток — ток короткого замыкания:

I_{K3} = frac{displaystyle mathcal E}{displaystyle r vphantom{1^a}}.

Из-за малости внутреннего сопротивления ток короткого замыкания может быть весьма большим. Например, пальчиковая батарейка разогревается при этом так, что обжигает руки.

Зная силу тока (формула (4)), мы можем найти напряжение на резисторе R с помощью закона Ома для участка цепи:

U = IR = frac{displaystyle mathcal E R}{displaystyle R + r vphantom{1^a}}. (5)

Это напряжение является разностью потенциалов между точками a и b (рис. 2). Потенциал точки a равен потенциалу положительной клеммы источника; потенциал точки b равен потенциалу отрицательной клеммы. Поэтому напряжение (5) называется также напряжением на клеммах источника.

Мы видим из формулы (5), что в реальной цепи будет Utextless mathcal E — ведь mathcal E умножается на дробь, меньшую единицы. Но есть два случая, когда U = mathcal E.

1. Идеальный источник тока. Так называется источник с нулевым внутренним сопротивлением. При r = 0 формула (5) даёт U = mathcal E.

2. Разомкнутая цепь. Рассмотрим источник тока сам по себе, вне электрической цепи. В этом случае можно считать, что внешнее сопротивление бесконечно велико: R = infty. Тогда величина R + r неотличима от R, и формула (5) снова даёт нам U = mathcal E.

Смысл этого результата прост: если источник не подключён к цепи, то вольтметр, подсоединённый к полюсам источника, покажет его ЭДС.

к оглавлению ▴

КПД электрической цепи

Нетрудно понять, почему резистор R называется полезной нагрузкой. Представьте себе, что это лампочка. Теплота, выделяющаяся на лампочке, является полезной, так как благодаря этой теплоте лампочка выполняет своё предназначение — даёт свет.

Количество теплоты, выделяющееся на полезной нагрузке R за время t, обозначим Q_{polezn}.

Если сила тока в цепи равна I, то

Q_{polezn} = I^2Rt.

Некоторое количество теплоты выделяется также на источнике тока:

Q_{ist} = I^2rt.

Полное количество теплоты, которое выделяется в цепи, равно:

Q_{poln} = Q_{polezn} + Q_{ist} = I^2Rt + I^2rt = I^2(R + r)t.

КПД электрической цепи — это отношение полезного тепла к полному:

eta = frac{displaystyle Q_{polezn}}{displaystyle Q_{poln} vphantom{1^a}} = frac{displaystyle I^2Rt}{displaystyle I^2(R+r)t vphantom{1^a}} = frac{displaystyle R}{displaystyle R+r vphantom{1^a}}.

КПД цепи равен единице лишь в том случае, если источник тока идеальный (r = 0).

к оглавлению ▴

Закон Ома для неоднородного участка

Простой закон Ома U = IR справедлив для так называемого однородного участка цепи — то есть участка, на котором нет источников тока. Сейчас мы получим более общие соотношения, из которых следует как закон Ома для однородного участка, так и полученный выше закон Ома для полной цепи.

Участок цепи называется неоднородным, если на нём имеется источник тока. Иными словами, неоднородный участок — это участок с ЭДС.

На рис. 3  показан неоднородный участок, содержащий резистор R и источник тока. ЭДС источника равна mathcal E, его внутреннее сопротивление считаем равным нулю (если внутреннее сопротивление источника равно r, можно просто заменить резистор R на резистор R + r).

Рис. 3. ЭДС «помогает» току: varphi_a - varphi_b + mathcal E = IR

Сила тока на участке равна I, ток течёт от точки a к точке b. Этот ток не обязательно вызван одним лишь источником mathcal E. Рассматриваемый участок, как правило, входит в состав некоторой цепи (не изображённой на рисунке), а в этой цепи могут присутствовать и другие источники тока. Поэтому ток I является результатом совокупного действия всех источников, имеющихся в цепи.

Пусть потенциалы точек a и b равны соответственно varphi_a и varphi_b. Подчеркнём ещё раз, что речь идёт о потенциале стационарного электрического поля, порождённого действием всех источников цепи — не только источника, принадлежащего данному участку, но и, возможно, имеющихся вне этого участка.

Напряжение на нашем участке равно: U = varphi_a - varphi_b. За время t через участок проходит заряд q = It, при этом стационарное электрическое поле совершает работу:

A_{POL} = Uq = UIt.

Кроме того, положительную работу совершает источник тока (ведь заряд q прошёл сквозь него!):

A_{CT} = mathcal Eq = mathcal EIt.

Сила тока постоянна, поэтому суммарная работа по продвижению заряда q, совершаемая на участке стационарным электрическим полем и сторонними силами источника, целиком превращается в тепло: A_{POL} + A_{CT} = Q.

Подставляем сюда выражения для A_{POL}, A_{CT} и закон Джоуля–Ленца:

UIt + mathcal EIt = I^2Rt.

Сокращая на It, получаем закон Ома для неоднородного участка цепи:

U + mathcal E = IR, (6)

или, что то же самое:

varphi a - varphi b + mathcal E = IR. (7)

Обратите внимание: перед mathcal E стоит знак «плюс». Причину этого мы уже указывали — источник тока в данном случае совершает положительную работу, «протаскивая» внутри себя заряд q от отрицательной клеммы к положительной. Попросту говоря, источник «помогает» току протекать от точки a к точке b.

Отметим два следствия выведенных формул (6) и (7).

1. Если участок однородный, то mathcal E = 0. Тогда из формулы (6) получаем U = IR — закон Ома для однородного участка цепи.

2. Предположим, что источник тока обладает внутренним сопротивлением r. Это, как мы уже упоминали, равносильно замене R на R + r:

varphi_a - varphi_b + mathcal E = I(R + r).

Теперь замкнём наш участок, соединив точки a и b. Получим рассмотренную выше полную цепь. При этом окажется, что varphi_a = varphi_b, и предыдущая формула превратится в закон Ома для полной цепи:

mathcal E = I(R + r).

Таким образом, закон Ома для однородного участка и закон Ома для полной цепи оба вытекают из закона Ома для неоднородного участка.

Может быть и другой случай подключения, когда источник mathcal E «мешает» току идти по участку. Такая ситуация изображена на рис. 4. Здесь ток, идущий от a к b, направлен против действия сторонних сил источника.

Рис. 4. ЭДС «мешает» току: varphi_a - varphi_b - mathcal E = IR

Как такое возможно? Очень просто: другие источники, имеющиеся в цепи вне рассматриваемого участка, «пересиливают» источник на участке и вынуждают ток течь против mathcal E. Именно так происходит, когда вы ставите телефон на зарядку: подключённый к розетке адаптер вызывает движение зарядов против действия сторонних сил аккумулятора телефона, и аккумулятор тем самым заряжается!

Что изменится теперь в выводе наших формул? Только одно — работа сторонних сил станет отрицательной:

A_{CT} = mathcal E q = mathcal EIt.

Тогда закон Ома для неоднородного участка примет вид:

varphi_a - varphi_b - mathcal E = IR, (8)

или:

U - mathcal E = IR,

где по-прежнему U = varphi_a - varphi_b — напряжение на участке.

Давайте соберём вместе формулы (7) и (8) и запишем закон Ома для участка с ЭДС следующим образом:

varphi_a - varphi_b pm mathcal E = IR.

Ток при этом течёт от точки a к точке b. Если направление тока совпадает с направлением сторонних сил, то перед mathcal E ставится «плюс»; если же эти направления противоположны, то ставится «минус».

Повторим основные понятия и определения по теме «Закон Ома».

Напомним, что напряжение измеряется в вольтах.

Сила тока измеряется в амперах.

Сопротивление измеряется в омах. Эта единица измерения названа в честь Георга Симона Ома, открывшего взаимосвязь между напряжением, сопротивлением цепи и силой тока в этой цепи.

Основные определения, которые мы используем в решении задач:

Источник тока – это устройство, способное создавать необходимую для существования тока разность потенциалов.

Можно сказать, что источник тока действует, как насос. Он «качает» электроны по проводникам, как водяной насос воду по трубам. Эту аналогию можно продолжить. При этом источник тока совершает работу, за счёт химических реакций, происходящих внутри него.

Если эту работу разделить на переносимый источником заряд q (суммарный заряд всех проходящих через источник электронов), то мы получим величину, которую называют электродвижущей силой или сокращённо ЭДС.

Измеряется эта ЭДС, как и разность потенциалов, в вольтах и имеет примерно тот же смысл.

По определению, сила тока равна отношению суммарного заряда электронов, проходящих через сечение проводника, ко времени прохождения. Измеряется сила тока в амперах (А).

Свойство проводника препятствовать прохождению по нему тока характеризуется величиной, которую назвали электрическим сопротивлением – R. Проходя через проводник, электрический ток нагревает его.

Сопротивление измеряют в омах (Ом).

Сам источник тока тоже обладает сопротивлением. Такое сопротивление принято называть внутренним сопротивлением источника  r (Ом).

Именно немецкому учёному Георгу Ому удалось установить, от чего может зависеть электрическое сопротивление проводника. Проведя многочисленные эксперименты, Ом сделал следующие выводы:

  1. Сопротивление проводника тем больше, чем больше его длина.
  2. Сопротивление проводника тем больше, чем меньше его толщина или площадь поперечного сечения.

Кроме того, Ом выяснил, что каждый материал обладает своим электрическим сопротивлением. Величина, которая показывает, каким сопротивлением будет обладать проводник единичной длины и единичной площади сечения из данного материала, называется удельным электрическим сопротивлением:  (Ом*мм2/м). Эта величина справочная. Таким образом, получается, что электрическое сопротивление проводника равно:

Рассмотрим задачи ЕГЭ по теме «Закон Ома» для полной цепи.

Задача 1. На ри­сун­ке приведён гра­фик за­ви­си­мо­сти на­пря­же­ния на кон­цах же­лез­но­го про­во­да пло­ща­дью по­пе­реч­но­го се­че­ния 0,05 мм2 от силы тока в нём. Чему равна длина провода? Ответ дайте в метрах. Удельное сопротивление железа 0,1 Ом*мм2/м.

Решение:

Из закона Ома для проводника или участка цепи без источника следует:

displaystyle I=frac{U}{R};

displaystyle R=frac{U}{I}.

По графику: при U=60 B, I=3 B.

Из формулы сопротивления выражаем и находим длину проводника:

Ответ: 10.

Задача 2. Через по­пе­реч­ное се­че­ние про­вод­ни­ков за 8 с про­шло 1020 элек­тро­нов. Ка­ко­ва сила тока в про­вод­ни­ке? Ответ дайте в амперах.

Решение:

По определению силы тока:

displaystyle I=frac{q}{t}.

Заряд всех электронов: q=Ncdot e, где е — модуль заряда электрона, e=1,6cdot 10^{-19} Кл.

Тогда displaystyle I=frac{Ncdot e}{t}=frac{10^{20}cdot 1,6cdot 10^{-19}}{8}=2 A.

Ответ: 2.

Задача 3. Иде­аль­ный ам­пер­метр и три ре­зи­сто­ра общим со­про­тив­ле­ни­ем 66 Ом вклю­че­ны по­сле­до­ва­тель­но в элек­три­че­скую цепь, со­дер­жа­щую ис­точ­ник с ЭДС рав­ной 5 В, и внут­рен­ним со­про­тив­ле­ни­ем r=4 Ом. Ка­ко­вы по­ка­за­ния ам­пер­мет­ра? (Ответ дайте в ам­пе­рах, округ­лив до сотых.)

Решение:

По закону Ома для полной цепи:

Тогда displaystyle I=frac{5}{66+4}=0,07 A.

Ответ: 0,07.

Задача 4. ЭДС источника тока равна 1,5 В. Определите сопротивление внешней цепи, при котором сила тока будет равна 0,6 А, если сила тока при коротком замыкании равна 2,5 А. Ответ дайте в Ом, округлив до десятых.

Решение:

Сила тока короткого замыкания определяется следующим образом:

Отсюда выражаем и находим внутреннее сопротивление источника:

При внешнем сопротивлении, не равном нулю, сила тока в цепи определяется законом Ома для полной цепи:

Отсюда выражаем сопротивление резистора и находим его:

Ответ: 1,9.

Задача 5. На ри­сун­ке изоб­ра­же­на схема элек­три­че­ской цепи, со­сто­я­щей из ис­точ­ни­ка по­сто­ян­но­го на­пря­же­ния с ЭДС 5 В и пре­не­бре­жи­мо малым внут­рен­ним со­про­тив­ле­ни­ем, ключа, ре­зи­сто­ра с со­про­тив­ле­ни­ем 2 Ом и со­еди­ни­тель­ных про­во­дов. Ключ за­мы­ка­ют. Какой заряд про­те­чет через ре­зи­стор за 10 минут? Ответ дайте в ку­ло­нах.

Решение:

Выражаем время в секундах: t = 10 минут = 600 с.

Определяем силу тока по закону Ома для полной цепи:

Внутреннее сопротивление пренебрежимо мало, поэтому r = 0.

По определению силы тока:

displaystyle I=frac{q}{t}.

Отсюда q=Icdot t=2,5cdot 600=1500 Кл.

Ответ: 1500.

Если вам нравятся наши материалы – записывайтесь на курсы подготовки к ЕГЭ по физике онлайн

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «ЭДС. Закон Ома для полной цепи» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

«Прежде
чем решать задачу, прочитай условие!».

Жак
Адамар

Данная
тема посвящена решению задач на ЭДС индукции в движущихся проводниках.

Задача
1.

В однородном магнитном поле движется проводник со скоростью 10 км/ч под
углом 45º к вектору магнитной индукции, модуль которого равен 50 мТл.
Найдите длину проводника, если при таком движении в нём возникает ЭДС индукции 0,5 В.

ДАНО:

СИ

РЕШЕНИЕ

Закон электромагнитной индукции для движущихся проводников

Выразим длину проводника из этой формулы

Ответ:
5 м.

Задача
2.

Алюминиевый проводник с площадью поперечного сечения 5 мм2
движется в магнитном поле со скоростью 8 м/с под углом 30º к вектору
магнитной индукции. Найдите индукционный ток, возникающий в проводнике, если
индукция поля равна 20 мТл.

ДАНО:

РЕШЕНИЕ

Запишем закон электромагнитной индукции для движущихся
проводников

Индукционный ток можно определить по формуле

Сопротивление проводника можно рассчитать по формуле

С учетом последней формулы получаем, что индукционный ток
равен

Ответ:
14,8 А.

Задача
3.

Проводник с сопротивлением 10 Ом входит в магнитное поле со скоростью 5 м/с
так, как показано на рисунке. Индукция магнитного поля равна 8×10–4 Тл.
Постройте график зависимости индукционного тока от времени, учитывая то, что
длина проводника равна 10 м.

ДАНО:

РЕШЕНИЕ

Закон электромагнитной индукции для движущихся проводников

Индукционный ток

Поскольку проводник только
начал входить в магнитное поле и двигается равномерно, длина активной части
будет определяться произведением скорости и времени движения

Нетрудно убедиться, что уже
через две секунды проводник полностью окажется в магнитном поле. Таким
образом, длина активной части проводника будет линейно зависеть от времени в
первые две секунды рассматриваемого промежутка времени. После этого,
проводник полностью окажется в магнитном поле. Подставив данную функцию
зависимости в выражение для индукционного тока, получим аналогичную функцию
зависимости индукционного тока от времени.

Индукционный ток в начальный момент времени равен

Через 2 с индукционный ток

Поскольку зависимость
линейная, график представляет собой прямую, и двух точек достаточно для его
построения.

Задача
4.

Проводник длиной 40 см и сопротивлением 5 Ом помещён в магнитное поле с
индукцией 50 мТл. Этот проводник подключают к источнику тока с внутренним сопротивлением
0,5 Ом. С какой скоростью нужно перемещать данный проводник перпендикулярно
линиям магнитной индукции, чтобы в нём не протекал ток? Известно, что в
состоянии покоя по проводнику течёт ток 0,8 А.

ДАНО:

СИ

РЕШЕНИЕ

Полная ЭДС цепи определяется по формуле

В цепи не будет существовать
ток, если полная ЭДС цепи будет равна нулю (то есть, не будет совершаться
работа по перемещению зарядов). Из этого можем заключить, что ЭДС индукции
должна быть равна ЭДС источника с противоположным знаком (напомним, что
отрицательная ЭДС означает, что данная ЭДС создаёт ток, направление которого
противоположно направлению обхода тока).

Запишем закон электромагнитной индукции

Запишем закон Ома для полной цепи

Тогда

Выразим искомую скорость движения проводника

Ответ:
2200 м/с.

Задача
5.

Проводник длиной 80 см падает в магнитном поле с индукцией 100 мТл, так, как
показано на рисунке. Достигнув скорости 15 м/с, он больше не ускоряется. Если
масса данного проводника равна 450 г, то каково его сопротивление?

ДАНО:

СИ

РЕШЕНИЕ

Т.к. проводник движется с постоянной скоростью, то его
ускорение равно нулю

Запишем второй закон Ньютона

Из второго закона Ньютона следует

Силу Ампера можно определить по формуле

Закон электромагнитной индукции имеет вид

Индукционный ток

В рассматриваемом случаи ток в проводнике – это
индукционный ток

Проверим размерности

Ответ:
20 мОм.

Добавить комментарий