Как найти эквивалентную емкость батареи конденсаторов

Эквивалентная ёмкость конденсаторов

Номиналы ёмкостей конденсаторов, разделенные запятыми

Эквивалентная ёмкость конденсаторов при последовательном соединении
Альтернативное отображение
Эквивалентная ёмкость конденсаторов при паралельном соединении
Альтернативное отображение

Последовательное соединение

Написав бот, расчета размерностей Система единиц измерения онлайн теперь начнем осваивать такую многогранную и сложную область как электротехника.

И первое, что  нам пригодится, это расчет эквивалентных  характеристик  основных электрических элементов( ёмкость, индуктивность, сопротивление).

Хотелось бы напомнить, что ёмкости некоторых типовых конструкций мы уже умеем рассчитывать Ёмкость конденсатора онлайн

Сами по себе формулы очень просты, но нюанс  состоит в том, как нам точно посчитать  ёмкость двух последовательно соединенных конденсаторов  если один из конденсаторов имеет ёмкость 10 пФ, а второй 250нФ. Размерность показывает что они различаются в 1000 раз.  Можно конечно все перевести в абсолютные значения, но это  при большом количестве конденсаторов способствует возникновению ошибок.

Итак, последовательное соединение конденсаторов имеет следующий вид

И формула расчета эквивалентной ёмкости  выглядит так

Последовательное соединение ёмкостей

Паралельное СОЕДИНЕНИЕ

Последовательное соединение нескольних конденсаторов выглядит так, как показано на рисунке

А формула  становится до безобразия простой и наглядной

Паралельное соединение ёмкостей

Синтаксис

Он очень прост 

calc_e  список емкостей с размерностями через запятую.

В ответе мы получим эквививалентное значение  ёмкости при последовательном и паралельных соединениях.

Важное замечание: размерности нужно писать на русском языке. Для пользователей сайта, не знающих русский язык, можем по запросу добавить обработку англоязычных наименований приставок и размерностей. Это не сложно.

Примеры

Рассчитать ёмкость трех конденсаторов  следующих номиналов: 10 пФ, 0.2нФ и 344мФ

В запросе так и пишем calc_e 10пФ,0.2нФ,344мФ

Ответ не заставит себя долго ждать и выглядит вот так

Эквивалентная ёмкость конденсаторов при паралельном соединении

9.5238095235459пикофарад

Альтернативное отображение
Паралельное соединение
Эквивалентная ёмкость конденсаторов при последовательном соединении

344.00000021милифарад

Альтернативное отображение
Последовательное соединение

Удачи в расчетах!

Цель: закрепить знания методов расчета электрической емкости и зарядов конденсаторов при их смешанном соединении.

Теоретические сведения

Электричес­кий конденсатор — это система из двух проводников (обкладок, пластин), разделенных диэлектриком.

Конденсаторы обладают свойством накапливать на своих обкладках электрические заряды, равные по величине и противоположные по знаку.

Электрический заряд q каждой из обкладок пропорционален напряжению U между ними:

Величину С, равную отношению заряда одной из обкладок конденсатора к напряжению между ними, называют электрической емкостью конден­сатора и выражают в фарадах (Ф).

Емкость конденсатора зависит от геометрических размеров, формы, взаимного расположения и рас­стояния между обкладками, а также от свойств диэлектрика.

Конденсаторы могут быть соединены последова­тельно, параллельно и смешанно (последовательно-параллельно).

Последовательное соединение

При таком на обкладках всех конденсаторов будут одинаковые по величине заряды:

Напряжения на конденсаторах будут различны, так как они зависят от их емкостей:

Общее напряжение:

Общая, или эквивалентная, емкость

Параллельное соединение

При параллельном соединении напряжение на всех конденсаторах одинаковое.

Заряды на обкладках отдельных конденсаторов при различной их емкости:

Заряд, полученный всеми параллельно соединен­ными конденсаторами:

Общая (эквивалентная) емкость:

Задание

1. Определить эквивалентную емкость батареи конденсаторов, соединенных по схеме, при соответствующих положениях ключей.

2. Для случая, когда ключи К1, К2 и К3 разомкнуты, найти заряды на каждом конденсаторе и общий заряд схемы.

Порядок выполнения расчета

Задание 1

1. Для своих данных начертить исходную схему.

2. Рассчитать последовательное соединение С3-С7:

3. Рассчитать параллельное соединение С4-С5:

4. Рассчитать последовательное соединение С2-С45:

5. Найти эквивалентную емкость, рассчитав параллельное соединение С245-С37:

Задание 2

1. Для своих данных начертить исходную схему.

2. Рассчитать заряды на каждом конденсаторе:

3. Рассчитать общий заряд схемы:

4. Проверка:

ПРАКТИЧАСКАЯ
РАБОТА №1

«Расчет
эквивалентной емкости при смешанном
соединении конденсаторов, а также
распределения зарядов и напряжений»

На
рисунке 1 дана схема соединения
конденсаторов. Значение емкостей
конденсаторов и значение одного из
напряжений или зарядов для своего
варианта взять из таблицы 1.

Вычислить
эквивалентную емкость батареи
конденсаторов; напряжение сети, напряжение
на каждом конденсаторе; общий заряд и
заряд на каждом конденсаторе; энергию,
накопленную батареей, а также потенциал
заданной точки.

Рисунок
1

Таблица
1

вар.

Емкость
конденсатора, мкФ

Напряжение,

заряд

Точка,
потенциал которой следует вычислить

С1

С2

С3

С4

С5

1

120

280

16

80

70

U=20
В

Б

2

600

200

150

400

200

Q3=72∙10-4
Кл

Б

3

24

12

2

16

14

U5=25
В

А

4

30

20

12

20

16

Q4=4∙10-4
Кл

Б

5

10

15

24

6

9

U1=15
В

А

6

12

6

5

9

9

Q2=282∙10-6
Кл

А

7

30

15

10

65

15

Q5=6∙10-4
Кл

А

8

18

9

12

15

21

U2=84
В

Б

9

140

60

6

30

18

U3=50
В

А

10

150

50

37,5

30

20

Q1=3∙10-4
Кл

Б

11

200

300

40

160

100

U=40
В

Б

12

540

150

90

380

120

Q3=54∙10-4
Кл

А

13

46

26

8

34

28

U5=45
В

Б

14

60

45

25

40

30

Q4=8∙10-4
Кл

А

15

30

25

46

20

18

U1=30
В

Б

16

25

15

10

20

15

Q2=564∙10-6
Кл

Б

17

60

30

45

120

25

Q5=15∙10-4
Кл

Б

18

36

18

24

30

44

U2=160
В

А

19

300

140

12

50

38

U3=100
В

Б

20

280

100

70

65

45

Q1=6∙10-4
Кл

А

21

60

150

9

40

25

U=10
В

Б

22

300

100

70

200

90

Q3=36∙10-4
Кл

А

23

14

6

4

8

10

U5=15
В

А

24

90

60

25

40

26

Q4=12∙10-4
Кл

Б

25

6

8

12

4

12

U1=7
В

А

26

46

18

15

27

18

Q2=846∙10-6
Кл

Б

27

90

45

30

190

65

Q5=18∙10-4
Кл

А

28

560

35

25

45

20

U2=320
В

А

29

400

240

15

35

100

U3=150
В

А

30

390

150

200

90

180

Q1=9∙10-4
Кл

Б

ПРИМЕР

На
рисунке 2 приведена схема соединения
конденсаторов. Определить эквивалентную

емкость
Сэкв
батареи
конденсаторов, общий заряд Q, напряжение
сети U, напряжение и заряд на каждом
конденсаторе, если дано: C1=24
мкФ; С2=С3=8
мкФ; С4=12
мкФ; С5=6
мкФ; напряжение на пятом конденсаторе
U5=30
В.

Рисунок
2

Дано:

C1=24
мкФ;

С2=С3=8
мкФ;

С4=12
мкФ;

С5=6
мкФ;

U5=30
В

Определить:
U, Q, Сэкв,
U1,
U2,
U3,
U4,
Q1.

Решение:

1.
Общая емкость последовательно соединенных
конденсаторов С4
и
С5:

2.
Общая емкость параллельно соединенных
конденсаторов С3
иС4,5:

3.
Общая емкость последовательно соединенных
конденсаторов С1,
С2
и
С3,4,5,
которая и является

эквивалентной
емкостью батареи конденсаторов:

4.
По заданному напряжению U5
и
емкости конденсатора С5
определяем
заряд, накапливаемый

этим
конденсатором:

5.
Заряд конденсатора С4
Q4=Q5=Q4,5=180・10-6
Кл,
т. к. конденсаторы С4
и
С5
соединены

последовательно.

6.
Напряжение на четвертом конденсаторе:

7.
Напряжение на третьем конденсаторе:

8.
Заряд конденсатора С3:

9.
Общий заряд батареи и заряды конденсаторов
С1
и
С2:

10.
Напряжение на первом и втором конденсаторах:

11.
Напряжение сети (напряжение последовательно
соединенных конденсаторов С1,
С2,
С3,4,5):

12.
Энергия электрического поля батареи:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Главная

Примеры решения задач ТОЭ

Расчет электрической цепи постоянного тока с конденсаторами

Расчет электрической цепи постоянного тока с конденсаторами


Расчет электрической цепи постоянного тока с конденсаторами

Основные положения и соотношения

1. Общее выражение емкости конденсатора

C= Q U .

2. Емкость плоского конденсатора

C= ε a ⋅S d = ε r ⋅ ε 0 ⋅S d ,

здесь

S — поверхность каждой пластины конденсатора;

d — расстояние между ними;

εa = εr·ε0 — абсолютная диэлектрическая проницаемость среды;

εr — диэлектрическая проницаемость среды (относительная диэлектрическая проницаемость);

ε 0 = 1 4π⋅ с 2 ⋅ 10 −7 ≈8,85418782⋅ 10 −12    Ф м  – электрическая постоянная.

3. При параллельном соединении конденсаторов С1, С2, …, Сn эквивалентная емкость равна

C= C 1 + C 2 +…+ C n = ∑ k=1 n C k .

4. При последовательном соединении конденсаторов эквивалентная емкость определяется из формулы

1 C = 1 C 1 + 1 C 2 +…+ 1 C n = ∑ k=1 n 1 C k .

Для двух последовательно соединенных конденсаторов эквивалентная емкость составляет:

C= C 1 ⋅ C 2 C 1 + C 2 ,

а напряжения между отдельными конденсаторами распределяются обратно пропорционально их емкостям:

U 1 =U⋅ C 2 C 1 + C 2 ;    U 2 =U⋅ C 1 C 1 + C 2 .

5. Преобразование звезды емкостей в эквивалентный треугольник емкостей или обратно (рис. а и б)

Преобразование звезды емкостей в эквивалентный треугольник емкостей

Рис. 0

осуществляется по формулам:

Y→Δ { C 12 = C 1 ⋅ C 2 ΣC ;   C 13 = C 1 ⋅ C 3 ΣC ;   C 23 = C 2 ⋅ C 3 ΣC , где          ΣC= C 1 + C 2 + C 3 , Δ→Y { C 1 = C 12 + C 13 + C 12 ⋅ C 13 C 23 ; C 2 = C 12 + C 23 + C 12 ⋅ C 23 C 13 ; C 3 = C 13 + C 23 + C 13 ⋅ C 23 C 12 .

6. Энергия электростатического поля конденсатора:

W= C⋅ U 2 2 = Q⋅U 2 = Q 2 2C .

7. Расчет распределения зарядов в сложных цепях, содержащих источники э.д.с. и конденсаторы, производится путем составления уравнений по двум законам:

1) По закону сохранения электричества (закон сохранения электрического заряда): алгебраическая сумма зарядов на обкладках конденсаторов, соединенных в узел и не подключенных к источнику энергии, равна алгебраической сумме зарядов, имевшихся на этих обкладках до их соединения:

ΣQ=Σ Q ′ .

2) По второму закону Кирхгофа: алгебраическая сумма э. д. с. в замкнутом контуре равна алгебраической сумме напряжений на участках контура, в том числе на входящих в него конденсаторах:

∑ k=1 n E k = ∑ k=1 n U C k = ∑ k=1 n Q k C k .

Приступая к решению задачи, надо задаться полярностью зарядов на обкладках конденсаторов.

Решение задач на расчет электрической цепи постоянного тока с конденсаторами

Задача. Доказать формулу эквивалентной емкости при последовательном соединении конденсаторов (рис. 1).

эквивалентная емкость при последовательном соединении конденсаторов

Рис. 1

Решение

На рис. 1 представлено последовательное соединение трех конденсаторов. Если батарею конденсаторов подключить к источнику напряжения U12, то на левую пластину конденсатора С1 перейдет заряд +q, на правую пластину конденсатора С3 заряд –q.

Вследствие электризации через влияние правая пластина конденсатора С1 будет иметь заряд –q, а так как пластины конденсаторов С1 и С2 соединены и были электронейтральны, то вследствие закона сохранения заряда заряд левой пластины конденсатора C2 будет равен +q, и т. д. На всех пластинах конденсаторов при таком соединении будет одинаковый по величине заряд.

Найти эквивалентную емкость — это значит найти конденсатор такой емкости, который при той же разности потенциалов будет накапливать тот же заряд q, что и батарея конденсаторов.

Разность потенциалов U12 = φ1 — φ2 складывается из суммы разностей потенциалов между пластинами каждого из конденсаторов

U 12 = φ 1 − φ 2 =( φ 1 − φ A )+( φ A − φ B )+( φ B − φ 2 )= U 1A + U AB + U B2 .

Воспользовавшись формулой напряжения на конденсаторе

U= q C ,

запишем

q C = q C 1 + q C 2 + q C 3 .

Откуда эквивалентная емкость батареи из трех последовательно включенных конденсаторов

1 C = 1 C 1 + 1 C 2 + 1 C 3 .

В общем случае эквивалентная емкость при последовательном соединении конденсаторов

1 C = 1 C 1 + 1 C 2 +…+ 1 C n = ∑ k=1 n 1 C k .

Задача 1. Определить заряд и энергию каждого конденсатора на рис. 2, если система подключена в сеть с напряжением U = 240 В.

Определить заряд и энергию каждого конденсатора, если система подключена в сеть

Рис. 2

Емкости конденсаторов: C1 =50 мкФ; C2 =150 мкФ; C3 =300 мкФ.

Решение

Эквивалентная емкость конденсаторов C1 и C2, соединенных параллельно

C12 = C1 + C2 = 200 мкФ,

эквивалентная емкость всей цепи равна

C= C 12 ⋅ C 3 C 12 + C 3 = 200⋅300 500 =120  мкФ.

Заряд на эквивалентной емкости

Q = C·U = 120·10–6·240 = 288·10–4 Кл.

Той же величине равен заряд Q3 на конденсаторе C3, т.е. Q3 = Q = 288·10–4 Кл; напряжение на этом конденсаторе

U 3 = Q 3 C 3 = 288⋅ 10 −4 300⋅ 10 −6 =96  В.

Напряжение на конденсаторах C1 и C2 равно

U1 = U2 = U — U3 = 240 — 96 = 144 В.

их заряды имеют следующие значения

Q1 = C1·U1 = 50·10–6·144 = 72·10–4 Кл;

Q2 = C2·U2 = 150·10–6·144 = 216·10–4 Кл.

Энергии электростатического поля конденсаторов равны

W 1 = Q 1 ⋅ U 1 2 = 72⋅ 10 −4 ⋅144 2 ≈0,52  Дж; W 2 = Q 2 ⋅ U 2 2 = 216⋅ 10 −4 ⋅144 2 ≈1,56  Дж; W 3 = Q 3 ⋅ U 3 2 = 288⋅ 10 −4 ⋅96 2 ≈1,38  Дж.

Задача 2. Плоский слоистый конденсатор (рис. 3), поверхность каждой пластины которого S = 12 см2, имеет диэлектрик, состоящий из слюды (εr1 = 6) толщиною d1 = 0,3 мм и стекла (εr2 = 7) толщиною d2 =0,4 мм.

Пробивные напряженности слюды и стекла соответственно равны E1 = 77 кВ/мм, E2 = 36 кВ/мм.

Емкость плоского двухслойного конденсатора

Рис. 3

Вычислить емкость конденсатора и предельное напряжение, на которое его можно включать, принимая для более слабого слоя двойной запас электрической прочности.

Решение

Эквивалентная емкость слоистого конденсатора определится как емкость двух последовательно соединенных конденсаторов

C= C 1 ⋅ C 2 C 1 + C 2 = ε a1 ⋅S d 1 ⋅ ε a2 ⋅S d 2 ε a1 ⋅S d 1 + ε a2 ⋅S d 2 = ε a1 ⋅ ε a2 ⋅S ε a1 ⋅ d 2 + ε a2 ⋅ d 1 .

Подставляя сюда числовые значения, предварительно заменив εa1 = εr1·ε0 и εa2 = εr2·ε0, получим

C= ε 0 ⋅ ε r1 ⋅ ε r2 ⋅S ε r1 ⋅ d 2 + ε r2 ⋅ d 1 =8,85⋅ 10 −12 ⋅ 6⋅7⋅12⋅ 10 −4 6⋅0,4⋅ 10 −3 +7⋅0,3⋅ 10 −3 =99⋅ 10 −12   Ф.

Обозначим общее напряжение, подключаемое к слоистому конденсатору, через Uпр, при этом заряд конденсатора будет равен

Q = C·Uпр.

Напряжения на каждом слое будут равны

U 1 = Q C 1 = C⋅ U пр ε a1 ⋅S d 1 = ε a2 ⋅ d 1 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U пр ; U 2 = Q C 2 = C⋅ U пр ε a2 ⋅S d 2 = ε a1 ⋅ d 2 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U пр .

Напряженности электростатического поля в каждом слое

E 1 = U 1 d 1 = ε a2 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U ′ пр ; E 2 = U 2 d 2 = ε a1 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U ″ пр .

Здесь U’np — общее напряжение, подключаемое к конденсатору, при котором пробивается первый слой, a U”np — общее напряжение, при котором происходит пробой второго слоя.

Из последнего выражения находим

U ′ пр = E 1 ⋅ ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ε a2 =49,5  кВ; U ″ пр = E 2 ⋅ ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ε a1 =27,0  кВ.

Таким образом, более слабым слоем является второй; согласно условию, принимая для него двойной запас прочности, находим, что конденсатор может быть включен на напряжение, равное

27,0 кВ / 2 = 13,5 кВ.

Задача 3. Обкладки плоского конденсатора с воздушным диэлектриком расположены на расстоянии d1 = 1 см друг от друга. Площадь обкладок S = 50 см2. Конденсатор заряжается до напряжения U = 120 В и затем отсоединяется от источника электрической энергии.

Определить, какую надо совершить работу, если увеличить расстояние между пластинами до d2 = 10 см. Краевым эффектом можно пренебречь; другими словами, емкость конденсатора можно считать обратно пропорциональной расстоянию между обкладками.

Решение

Энергия заряженного плоского конденсатора равна

W 1 = C 1 ⋅ U 2 2 = ε 0 ⋅S d 1 ⋅ U 2 2 ,

где С1 — емкость до раздвижения обкладок.

Так как конденсатор отключен от источника, то при изменении расстояния между обкладками его заряд остается постоянным. Поэтому из~ соотношения

Q = C2·U2,

где C2 — емкость конденсатора после раздвижения обкладок, следует, что, так как C2 = ε0·S/d2 стало меньше в 10 раз (d2 увеличилось в 10 раз), то напряжение на конденсаторе U2 увеличилось в 10 раз, т. е. U2 = 10U.

Таким образом, энергия конденсатора после отключения и раздвижения обкладок на расстояние d2 будет больше первоначальной

W 2 = ε 0 ⋅S d 2 ⋅ U 2 2 2 = ε 0 ⋅S 10 d 1 ⋅ ( 10U ) 2 2 =10⋅ ε 0 ⋅S d 1 ⋅ U 2 2 =10⋅ W 1 .

Увеличение энергии произошло за счет работы внешних сил, затраченной на раздвижение обкладок.

Таким образом, надо совершить работу, равную

W 2 − W 1 =9⋅ W 1 =9⋅ ε 0 ⋅S d 1 ⋅ U 2 2 =2,86⋅ 10 −7   Дж.

Задача 4. Для схемы (рис. 4) определить напряжение каждого конденсатора в двух случаях: при замкнутом и разомкнутом ключе К.

Даны: C1 = 30 мкФ; C2 = 20 мкФ; r1 = 100 Ом. r2 = 400 Ом. r3 = 600 Ом, U = 20 В.

Решение

Ключ К разомкнут. Конденсаторы соединены между собой последовательно; их ветвь находится под полным напряжением источника; напряжение распределяется между ними обратно пропорционально емкостям

U 1 = C 2 C 1 + C 2 ⋅U= 20⋅ 10 −6 30⋅ 10 −6 +20⋅ 10 −6 ⋅20=8  В; U 2 =U− U 1 =20−8=12  В.

Определить напряжение каждого конденсатора

Рис. 4

Ключ К замкнут. Через сопротивления r1 и r2 протекает ток

I= U r 1 + r 2 = 20 500 =0,04  А,

а через сопротивление r3 ток не протекает.

Поэтому точки c и d равнопотенциальны (φc = φd). Следовательно, напряжение между точками a и c (Uac = φa — φc) равно напряжению между точками a и d (Uad = φa — φd).

Таким образом, напряжение на первом конденсаторе равно падению напряжения на сопротивлении r1

UC1 = I·r1 = 0,04·100 = 4 В.

Аналогично напряжение на втором конденсаторе равно

UC2 = I·r2 = 0,04·400 = 16 В.

Задача 5. Определить напряжение на зажимах конденсаторов и их энергию после перевода рубильника из положения 1 в положение 2, показанное пунктиром на рис. 5, если U = 25 В; C1 = 5 мкФ; C2 = 120 мкФ. Конденсатор C2 предварительно не был заряжен.

Определить напряжение на зажимах конденсаторов и их энергию

Рис. 5

Решение

Когда рубильник находится в положении 1, то конденсатор C1 заряжен до напряжения U и его заряд равен

Q = C1·U = 5·10–6·25 = 125·10–6 Кл.

После перевода рубильника в положение 2, заряд Q распределяется между конденсаторами C1 и C2 (рис. 5). Обозначим эти заряды через Q’1 и Q’2.

На основании закона сохранения электричества имеем

Q = Q’1 + Q’2 = 125 10–6 Кл. (1)

По второму закону Кирхгофа имеем

0= U C1 − U C2 = Q ′ 1 C 1 − Q ′ 2 C 2 ,

или

Q ′ 1 5⋅ 10 −6 − Q ′ 2 120⋅ 10 −6 =0.   (2)

Решая уравнения (1) и (2), найдем

Q’1 = 5 10–6 Кл; Q’2 = 120 10–6 Кл.

Доставка свежих и аппетитных японских суши в Новороссийске – ям ям..

Напряжение на зажимах конденсаторов станет равным

U C1 = Q ′ 1 C 1 = U C2 = Q ′ 2 C 2 = 5⋅ 10 −6 5⋅ 10 −6 =1  В.

Энергия обоих конденсаторов будет равна

W= C 1 ⋅ U C1 2 2 + C 2 ⋅ U C2 2 2 =62,5⋅ 10 −6   Дж.

Подсчитаем энергию, которая была запасена в конденсаторе С1, при его подключении к источнику электрической энергии

W нач = C 1 ⋅U 2 = 5⋅ 10 −6 ⋅ 25 2 2 =1562,5⋅ 10 −6   Дж.

Как видим, имеет место большая разница в запасе энергии до и после переключения. Энергия, равная 1562,5·10–6 — 62,5·10–6 = 1500·10–6 Дж, израсходовалась на искру при переключении рубильника из положения 1 в положение 2 и на нагревание соединительных проводов при перетекании зарядов из конденсатора C1 в конденсатор C2 после перевода рубильника в положение 2.

Задача 6. Вычислить напряжение, которое окажется на каждом из конденсаторов схемы (рис. 6) после перевода рубильника К из положения 1 в положение 2.

Емкости конденсаторов равны: C1 = 10 мкФ; C2 = 30 мкФ; C3 = 60 мкФ; напряжение U = 30 В, а э. д. с. E = 50 В.

Вычислить напряжение, которое окажется на каждом из конденсаторов схемы (рис. 6) после перевода рубильника К из положения 1 в положение 2

Рис. 6

Решение

Рубильник находится в положении 1. Заряд конденсатора C1 равен

Q1 = C1·U = 10·10–6·30 = 0,3·10–3 Кл.

В указанном положении рубильника конденсаторы C2 и C3 соединены последовательно друг с другом, поэтому их заряды равны: Q2 = Q3. Знаки зарядов показаны на рис. 6 отметками без кружков. По второму закону Кирхгофа имеем

E= U C2 + U C3 = Q 2 C 2 + Q 3 C 3 = Q 2 ⋅ C 2 + C 3 C 2 ⋅ C 3 ,

откуда

Q 2 = Q 3 = C 2 ⋅ C 3 C 2 + C 3 ⋅E= 30⋅ 10 −6 ⋅60⋅ 10 −6 90⋅ 10 −6 ⋅50=1⋅ 10 −3   Кл.

При переводе рубильника в положение 2 произойдет перераспределение зарядов. Произвольно задаемся новой полярностью зарядов на электродах (показана в кружках; предположена совпадающей с ранее имевшей место полярностью); соответствующие положительные направления напряжений на конденсаторах обозначены стрелками. Обозначим эти заряды через Q’1, Q’2 и Q’3. Для их определения составим уравнения на основании закона сохранения электрических зарядов и второго закона Кирхгофа.

Для узла a

Q’1 + Q’2 — Q’3 = Q1 + Q2 — Q3. (1)

Для контура 2ebda2

0= U ′ C1 − U ′ C2 = Q ′ 1 C 1 − Q ′ 2 C 1 .

Для контура bcadb

E= U ′ C2 − U ′ C3 = Q ′ 2 C 2 + Q ′ 3 C 3 .

Уравнения (1) — (3), после подстановки числовых значений величин, примут вид

Q’1 + Q’2 — Q’3 = 0,3·10–3; (4)

3Q’1 — Q’2 = 0; (5)

2Q’2 + Q’3 = 3·10–3. (6)

Решая совместно уравнения (4) — (6), получим

Q’1 = 0,33·10–3 Кл; Q’2 = 0,99·10–3 Кл; Q’3 = 1,02·10–3 Кл.

Так как знаки всех зарядов оказались положительными, то фактическая полярность обкладок соответствует предварительно выбранной.

Напряжения на конденсаторах после перевода рубильника будут равны

U C1 = Q ′ 1 C 1 = 0,33⋅ 10 −3 10⋅ 10 6 =33  В; U C2 = Q ′ 2 C 2 = 0,99⋅ 10 −3 30⋅ 10 6 =33  В; U C3 = Q ′ 3 C 3 = 1,02⋅ 10 −3 60⋅ 10 6 =17  В.

Задача 7. Определить заряд и напряжение конденсаторов, соединенных по схеме рис. 7, если C1 = 5 мкФ; C2 = 4 мкФ; C3 = 3 мкФ; э. д. с. источников E1 = 20 В и E2 = 5 В.

Определить заряд и напряжение конденсаторов, соединенных по схеме

Рис. 7

Решение

Составим систему уравнений на основании закона сохранения электричества и второго закона Кирхгофа, предварительно задавшись полярностью обкладок конденсаторов, показанной в кружках

− Q 1 + Q 2 − Q 3 =0; E 1 = U C1 − U C3 = Q 1 C 1 − Q 3 C 3 ; E 2 =− U C2 − U C3 =− Q 2 C 2 − Q 3 C 3 .

Подставляя сюда числовые значения и решая эту систему уравнений, получим, что Q1 = 50 мкКл; Q2 = 20 мкКл; Q3 = –30 мкКл.

Таким образом, истинная полярность зарядов на обкладках конденсаторов C1 и C2 соответствует выбранной, а у конденсатора C3 — противоположна выбранной.

Задача 8. Пять конденсаторов соединены по схеме рис. 3-22, а, емкости которых C1 = 2 мкФ; C2 = 3 мкФ; C3 = 5 мкФ; C4 = 1 мкФ; C5 = 2,4 мкФ.

Определить эквивалентную емкость системы и напряжение на каждом из конденсаторов

Рис. 8

Индивидуалка Дана (34 лет) т.8 926 650-82-63 Москва, метро Сокол.

Определить эквивалентную емкость системы и напряжение на каждом из конденсаторов, если приложенное напряжение U = 10 В.

Решение

1-й способ. Звезду емкостей C1, C2 и C3 (рис. 8, а) преобразуем в эквивалентный треугольник емкостей (рис. 8, б)

C 12 = C 1 ⋅ C 2 C 1 + C 2 + C 3 =0,6  мкФ; C 13 = C 1 ⋅ C 3 C 1 + C 2 + C 3 =1,0  мкФ; C 23 = C 2 ⋅ C 3 C 1 + C 2 + C 3 =1,5  мкФ.

Емкости C12 и C5 оказываются соединенными параллельно друг другу и подключенными к точкам 1 и 2; их эквивалентная емкость

C6 = C12 + C5 = 3 мкФ.

Аналогично

C7 = C13 + C4 = 2 мкФ.

Схема принимает вид изображенный на рис. 8, в. Емкость схемы между точками а и b равняется

C ab = C 23 + C 6 ⋅ C 7 C 6 + C 7 =2,7  мкФ.

Вычислим напряжение на каждом из конденсаторов.

На конденсаторе C7 напряжение равно

U 7 = C 6 C 6 + C 7 ⋅U=6  В.

Таково же напряжение и на конденсаторах C4 и C13

U4 = U31 = 6 В.

Напряжение на конденсаторе C6 равно

U6 = U — U7 = 4 В;

U5 = U12 = 4 В.

Вычислим заряды

Q4 = C4·U4 = 6·10–6 Кл;

Q5 = C5·U5 = 9,6·10–6 Кл;

Q12 = C12·U12 = 6·10–6 Кл;

Q13 = C13·U31 = 2,4·10–6 Кл.

По закону сохранения электричества для узла 1 схем 8, а и б имеем

Q4 — Q1 + Q5 = –Q4 — Q13 + Q12 + Q5,

отсюда

Q1 = Q13 — Q12 = 3,6·10–6 Кл,

а напряжение на конденсаторе, емкостью C1 составляет

U 1 = Q 1 C 1 =1,8  В.

Далее находим напряжения и заряды на остальных конденсаторах

U31 = U1 + U3,

отсюда

U3 = U31 — U1 = 4,2 В;

Q3 = C3·U3 = 21·10–6 Кл,

также

U12 = U2 — U1 = 4,2 В,

откуда

U2 = U12 + U1 = 5,8 В;

Q2 = C2·U2 = 17,4·10–6 Кл.

Так как знаки всех зарядов оказались положительными, то фактическая полярность зарядов на обкладках совпадает с предварительно выбранной.

2-й способ. Выбрав положительные направления напряжений на конденсаторах (а тем самым и знаки зарядов на каждом из них) по формуле закона сохранения электричества (закона сохранения заряда) составляем два уравнения и по второму закону Кирхгофа три уравнения (рис. 8, а)

для узла 1

Q5 — Q1 — Q4 = 0; (1)

для узла О

Q1 + Q2 — Q3 = 0; (2)

для контура О13О

Q 1 C 1 − Q 4 C 4 + Q 3 C 3 =0;  (3)

для контура О12О

Q 1 C 1 + Q 5 C 5 − Q 2 C 2 =0;  (4)

для контура a3О2b

Q 3 C 3 + Q 2 C 2 =U.  (5)

Система уравнений (1) — (5) — содержит пять неизвестных: Q1, Q2, Q3, Q4 и Q5. Решив уравнения, найдем искомые заряды, а затем и напряжения на конденсаторах. При втором способе решения эквивалентную емкость схемы Сab можно найти из отношения

C ab = Q U ,

где Q = Q3 + Q4, или Q = Q2 + Q5.

Задача 9. В схеме рис. 9 найти распределение зарядов, если E1 = 20 В; E2 = 7 В; C1 = 7 мкФ; C2 = 1 мкФ; C3 = 3 мкФ; C4 = 4 мкФ; C5 = C6 = 5 мкФ.

В схеме найти распределение зарядов

Рис. 9

Решение

При выбранном распределении зарядов (в кружках), как показано на схеме, система уравнений будет иметь вид:

для узла а

Q1 + Q2 + Q3 = 0;

для узла b

Q3 — Q4 — Q5 = 0;

для узла c

Q1 + Q4 + Q6 = 0;

для контура afcba

E 1 = U C1 + U C4 − U C3 = Q 1 C 1 + Q 4 C 4 − Q 3 C 3 ;

ля контура gdbag

E 2 = U C5 − U C3 + U C2 = Q 5 C 5 − Q 3 C 3 + Q 2 C 2 ;

для контура cbdc

0= U C4 − U C5 − U C6 = Q 4 C 4 − Q 5 C 5 − Q 6 C 6 .

Подставляя сюда числовые значения и решая полученную систему шести уравнений, найдем искомые заряды

Q1 = 35 мкКл; Q2 = –5 мкКл; Q3 = –30 мкКл;

Q4 = 20 мкКл; Q5 = 10 мкКл; Q6 = 15 мкКл.

Таким образом, истинные знаки зарядов Q1, Q4, Q5 и Q6 соответствуют выбранным, а знаки Q2 и Q3 противоположны выбранным.

Фактическое расположение знаков зарядов на конденсаторах дано не в кружках.

Задача 10. Определить заряд и энергию каждого конденсатора в схеме (рис. 10). Данные схемы: C1 = 6 мкФ; C2 = 2 мкФ; C3 = 3 мкФ; r1 = 500 Ом; r2 = 400 Ом; U = 45 В.

Определить заряд и энергию каждого конденсатора в схеме

Рис. 10

Решение

Через сопротивления протекает ток

I= U r 1 + r 2 =0,05  А.

Задавшись полярностью зарядов на обкладках конденсаторов, составим систему уравнений:

− Q 1 + Q 2 + Q 3 =0; U= U C1 + U C2 = Q 1 C 1 + Q 2 C 2 ; I⋅ r 1 = U C1 + U C3 = Q 1 C 1 + Q 3 C 3 ,

или

Q 1 = Q 2 + Q 3 ; 45= Q 1 6⋅ 10 −6 + Q 2 2⋅ 10 −6 ; 25= Q 1 6⋅ 10 −6 + Q 3 3⋅ 10 −6 .

Решив эту систему уравнений, найдем, что

Q1 = 90 мкКл; Q2 = 60 мкКл; Q3 = 30 мкКл.


последовательное соединение конденсаторов,
параллельное соединение конденсаторов,
Расчет цепи конденсаторов,
Конденсатор в цепи постоянного тока,
Цепи с конденсаторами

Комментарии

Содержание

  • 1 Как рассчитывается электрическая ёмкость конденсаторов?
  • 2 Как определить емкость конденсатора формула?
  • 3 Как можно увеличить общую емкость конденсаторов?
  • 4 Что происходит при последовательном соединении конденсаторов?
  • 5 Как рассчитать емкость конденсатора при последовательном соединении?
  • 6 Сколько в одном фараде Микрофарад?
  • 7 Как определить емкость плоского конденсатора?
  • 8 Как найти заряд q?
  • 9 Как работать с конденсатором?
  • 10 Какие физические величины сохраняются при последовательном соединении конденсаторов?
  • 11 Чему равна общая емкость батареи конденсаторов?
  • 12 Что произойдет с электрической емкостью конденсаторов Если они соединены последовательно?
  • 13 В каком случае используют параллельное соединение конденсаторов?

Как рассчитывается электрическая ёмкость конденсаторов?

Он состоит из двух концентрических проводящих сферических поверхностей с пространством между обкладками, заполненным диэлектриком, как показано на рисунке 2 . Емкость рассчитывается по формуле: C=4πεε0R1R2R2−R1 C = 4 π ε ε 0 R 1 R 2 R 2 — R 1 , где R1 и R2 являются радиусами обкладок.

Как определить емкость конденсатора формула?

Емкость конденсатора с диэлектриком из воздуха можно подсчитать по формуле C=S/(4∙π∙d)∙1,11, пФ, где S – площадь одной обкладки, см2; d – расстояние между обкладками, см; C – емкость конденсатора, пФ. Емкость конденсатора, состоящего из n пластин (рис. 3), равна: C=(n-1)∙ S/(4∙π∙d)∙1,11, пФ.

Как можно увеличить общую емкость конденсаторов?

Для увеличения ёмкости конденсаторы соединяются параллельно. Для увеличения сопротивления резисторы соединяются последовательно. Вода через трубу с двумя валенками течёт хуже, чем через трубу с одним валенком.

Что происходит при последовательном соединении конденсаторов?

При последовательном соединении конденсаторов уменьшается общая емкость и увеличивается общее напряжение конденсаторов. А общее напряжение будет равняться сумме напряжений всех конденсаторов. Например: мы имеем три конденсатора по 30 мкФ x 100 В каждый.

Как рассчитать емкость конденсатора при последовательном соединении?

Общая емкость равнозначного (эквивалентного) конденсатора C = Q / U = Q / (U1 + U2 + U3), т. е. при последовательном соединении конденсаторов величина, обратная общей емкости, равна сумме обратных величин емкостей отдельных конденсаторов.

Сколько в одном фараде Микрофарад?

Так как 1 фарад — очень большая емкость, поэтому используются меньшие значения, такие как: микрофарад (мкФ), равный одной миллионной фарада; нанофарад (нФ), равный одной миллиардной; пикофарад (пФ), равный одной триллионной фарада. В системе СГСЭ основной единицей емкости является сантиметр (см).

Как определить емкость плоского конденсатора?

Ёмкость плоского конденсатора находиться по формуле: Где ε0=8,854187817·10 −12 Ф/м — электрическая постоянная, ε — диэлектрическая проницаемость диэлектрика расположенного между обкладками конденсатора, S — площадь обкладки конденсатора, d — расстояние между обкладками.

Как найти заряд q?

Формула нахождения заряда

В соответствии с ней, нужно перемножить силу тока на время его прохождения по проводнику. Количество заряда можно узнать через формулу +-ne, где n служит целым числом, а е равно значению = -1,6*10^-19 Кулон. Обратите внимание!

Как работать с конденсатором?

Принцип работы конденсатора: его заряд и разряд

В момент подключения к источнику постоянного тока через конденсатор начинает протекать ток заряда. Он убывает по мере зарядки конденсатора и в итоге падает до величины тока саморазряда, определяющегося проводимостью материала диэлектрика.

Какие физические величины сохраняются при последовательном соединении конденсаторов?

Последовательное соединение конденсаторов

заряды одинаковы, складываются величины, обратные емкости.

Чему равна общая емкость батареи конденсаторов?

Исходя из этого, всю систему параллельно соединенных конденсаторов можно рассматривать как один эквивалентный (равноценный) конденсатор. Тогда общая емкость конденсаторов при параллельном соединении равна сумме емкостей всех соединенных конденсаторов.

Что произойдет с электрической емкостью конденсаторов Если они соединены последовательно?

Вследствие того что через все последовательно соединенные конденсаторы течет одинаковый ток, количество накопленого электрического заряда для каждого конденсатора будет одинаковым, независимо от его емкости. … Это означает, что в режиме постоянного тока конденсатор С2 электрически изолирован от общей цепи.

В каком случае используют параллельное соединение конденсаторов?

Токи через конденсаторы группы протекают разные: через конденсатор с большей емкостью потечет больший ток. На практике параллельное соединение применяется для получения емкости нужной величины, когда она выходит за границы диапазона, выпускаемого промышленностью, или не укладываются в стандартный ряд емкостей.

Добавить комментарий