Лекция № 7
Потери мощности и электроэнергии в элементах сети
План.
-
Потери мощности
в элементах сети. -
Расчет потерь
мощности в линиях электропередач. -
Расчет потерь
мощности в ЛЕП с равномерно распределенной
нагрузкой. -
Расчет потерь
мощности в трансформаторах. -
Приведенные и
расчетные нагрузки потребителей. -
Расчет потерь
электроэнергии. -
Мероприятия по
снижению потерь мощности.
Потери мощности в элементах сети
Для
количественной характеристики работы
элементов электрической сети
рассматриваются ее рабочие режимы.
Рабочий
режим
– это установившееся электрическое
состояние, которое характеризуется
значениями токов, напряжений, активной,
реактивной и полной мощностей.
Основной целью
расчета режимов является определение
этих параметров, как для проверки
допустимости режимов, так и для обеспечения
экономичности работы элементов сетей.
Определение
значений токов в элементах сети и
напряжений в ее узлах начинается с
построения картины распределения полной
мощности по элементу, т.е. с определения
мощностей в начале и конце каждого
элемента. Такую картину называют
потокораспределением.
Рассчитывая
мощности в начале и в конце элемента
электрической сети, учитывают потери
мощности в сопротивлениях элемента и
влияние его проводимостей.
Расчет потерь мощности в линиях электропередач
Потери активной
мощности на участке ЛЕП (см. рис. 7.1)
обусловлены активным сопротивлением
проводов и кабелей, а также несовершенством
их изоляции. Мощность, теряемая в активных
сопротивлениях трехфазной ЛЕП и
расходуемая на ее нагрев, определяется
по формуле:
,
где
полный,
активный и реактивный токи в ЛЕП;
P, Q, S
– активная, реактивная и полная
мощности в начале или конце ЛЕП;
U– линейное напряжение в начале или
конце ЛЕП;
R
– активное сопротивление одной
фазы ЛЕП.
Потери активной
мощности в проводимостях ЛЕП обусловлены
несовершенством изоляции. В воздушных
ЛЕП – появлением короны и, в очень
незначительной степени, утечкой тока
по изоляторам. В кабельных ЛЕП –
появлением тока проводимости а его
абсорбции. Рассчитываются потери по
формуле:
,
где U– линейное напряжение в начале или
конце ЛЕП;
G
– активная проводимость ЛЕП.
При проектировании
воздушных ЛЕП потери мощности на корону
стремятся свести к нулю, выбирая такой
диаметр провода, когда возможность
возникновения короны практически
отсутствует.
Потери реактивной
мощности на участке ЛЕП обусловлены
индуктивными сопротивлениями проводов
и кабелей. Реактивная мощность, теряемая
в трехфазной ЛЕП, рассчитывается
аналогично мощности, теряемой в активных
сопротивлениях:
Генерируемая
емкостной проводимостью зарядная
мощность ЛЕП рассчитывается по формуле:
,
где U– линейное напряжение в начале или
конце ЛЕП;
B
– реактивная проводимость ЛЕП.
Зарядная мощность
уменьшает реактивную нагрузку сети и
тем самым снижает потери мощности в
ней.
Расчет потерь мощности в леп с равномерно распределенной нагрузкой
В линиях местных
сетей ()
потребители одинаковой мощности могут
располагаться на одинаковом расстоянии
друг от друга (например, источники
света). Такие ЛЕП называются линиями с
равномерно распределенной нагрузкой
(см. рис. 7.2).
В равномерно
нагруженной линии трехфазного переменного
тока длиной L
с суммарной токовой нагрузкойIплотность тока на единицу длины составитI/L. При погонном
активном сопротивленииr0
потери активной мощности составят:
Если бы нагрузка
была сосредоточена в конце, то потери
мощности определялись бы как:
.
Сравнивая приведенные
выражения, видим, что потери мощности
в линии с равномерно распределенной
нагрузкой в 3 раза меньше.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
При передаче электрической энергии от генераторов электростанций до потребителя около 12-18% всей вырабатываемой электроэнергии теряется в проводниках воздушных и кабельных линий, а также в обмотках и стальных сердечниках силовых трансформаторов.
При проектировании нужно стремиться к уменьшению потерь электроэнергии на всех участках энергосистемы, поскольку потери электроэнергии ведут к увеличению мощности электростанций, что в свою очередь влияет на стоимость электроэнергии.
В сетях до 10кВ потери мощности в основном обусловлены нагревом проводов от действия тока.
Потери мощности в линии.
Потери активной мощности (кВт) и потери реактивной мощности (кВАр) можно найти по следующим формулам:
Формулы для расчета потери мощности в линии
где Iрасч – расчетный ток данного участка линии, А;
Rл – активное сопротивление линии, Ом.
Потери мощности в трансформаторах.
Потери мощности в силовых трансформаторах состоят из потерь, не зависящих и зависящих от нагрузки. Потери активной мощности (кВт) в трансформаторе можно определить по следующей формуле:
Потери активной мощности в трансформаторе
где ?Рст – потери активной мощности в стали трансформатора при номинальном напряжении. Зависят только от мощности трансформатора и приложенного к первичной обмотке трансформатора напряжения. ?Рст приравнивают ?Рх;
?Рх— потери холостого хода трансформатора;
?Роб – потери в обмотках при номинальной нагрузке трансформатора, кВт; ?Роб приравнивают ?Рк.
?Рк– потери короткого замыкания;
?=S/Sном – коэффициент загрузки трансформатора равен отношению фактической нагрузки трансформатора к его номинальной мощности;
Потери реактивной мощности трансформатора (кВАр) можно определить по следующей формуле:
Потери реактивной мощности в трансформаторе
где ?Qст – потери реактивной мощности на намагничивание, кВАр. ?Qст приравнивают ?Qх.
?Qх – намагничивающая мощность холостого хода трансформатора;
?Qрас – потери реактивной мощности рассеяния в трансформаторе при номинальной нагрузке.
Значения ?Рст(?Рх) и ?Роб(?Рк) приведения в каталогах производителей силовых трансформаторов. Значения ?Qст(?Qх) и ?Qрас определяют по данным каталогов из следующих выражений:
Формулы для расчета потери реактивной мощности
где Iх – ток холостого хода трансформатора, %;
Uк – напряжение короткого замыкания, %;
Iном – номинальный ток трансформатора, А;
Xтр – реактивное сопротивление трансформатора;
Sном – номинальная мощность трансформатора, кВА.
Потери электроэнергии.
На основании потерь мощности можно посчитать потери электроэнергии. Здесь следует быть внимательными. Нельзя посчитать потери электроэнергии умножив потери мощности при какой либо определенной нагрузке на число часов работы линии. Этого делать не стоит, т.к в течение суток или сезона потребляемая нагрузка изменяется и таким образом мы получим необоснованно завышенное значение.
Чтобы правильно посчитать потери электроэнергии используют метод, основанный на понятиях времени использования потерь и времени использовании максимума нагрузки.
Время максимальных потерь ? – условное число часов, в течение которых максимальный ток, протекающий в линии, создает потери энергии, равные действительным потерям энергии в год.
Временем использования максимальной нагрузки или временем использования максимума Тмах называют условное число часов, в течение которых линия, работая с максимальной нагрузкой, могла бы передать потребителю за год столько энергии, сколько при работе по действительному переменному графику. Пусть W(кВт*ч) – энергия переданная по линии за некоторый промежуток времени, Рмах(кВт) -максимальная нагрузка, тогда время использования максимальной нагрузки:
Тмах=W/Рмах
На основании статистических данных для отдельных групп электроприемников были получены следующие значения Тмах:
- Для внутреннего освещения – 1500—2000 ч;
- Наружного освещения – 2000—3000 ч;
- Промышленного предприятия односменного – 2000—2500 ч;
- Двухсменного – 3000—4500 ч;
- Трехсменного – 3000—7000 ч;
Время потерь ? можно найти по графику, зная Тмах и коэффициент мощности.
Зависимость времени максимальных потерь от продолжительности использования максимума нагрузки
Теперь зная ? можно посчитать потери электроэнергии в линии и в трансформаторе.
Потери энергии в линии:
Потери энергии в линии
Потери энергии в трансформаторе:
Потери энергии в трансформаторе
где ?Wатр –общая потеря активной энергии (кВт*ч) в трансформаторе;
?Wртр –общая потеря реактивной энергии (кВАр*ч) в трансформаторе.
Советую почитать:
Потери мощности в трансформаторе определяются по формулам:
потери активной мощности
потери реактивной мощности
где — потери холостого хода трансформатора (потери в стали), квт;
— потери к. з. трансформатора (потери в обмотках) при номинальной нагрузке, квт;
— ток холостого хода трансформатора, %;
— падение напряжения в реактивном сопротивлении трансформатора, %;
— номинальная мощность трансформатора, ква;
— коэффициент загрузки трансформатора;
где S — фактическая нагрузка трансформатора, ква.
Формула (9-4) для определения потерь реактивной мощности в трансформаторе может быть представлена в виде:
где — потери реактивной мощности в трансформаторе при холостом ходе (потери на намагничивание), квар:
— потери реактивной мощности рассеяния в трансформаторе при номинальной нагрузке, квар:
Падение напряжения в реактивном сопротивлении трансформатора определяется по формуле
где Uк — напряжение к. з. трансформатора, %;
Ur — падение напряжения в активном сопротивлении трансформатора, определяемое из выражения
Для трансформаторов мощностью более 10 Мва можно принять
Некоторые значения величин для понижающих трансформаторов приведены в табл. 9-2. В табл. 9-2 уровень Б потерь активной мощности холостого хода относится к трансформаторам, в которых использована электротехническая сталь толщиной 0,35 мм марки Э 330 А по ГОСТ 802-58 с жаростойким покрытием и отжигом пластин. В табл. 9-2 даны значения активных и реактивных сопротивлений трансформаторов, приведенные по отношению к номинальному напряжению обмотки ВН.
Таблица 9-2 Технические данные трехфазных двухобмоточных силовых масляных трансформаторов общего назначения (ГОСТ 12022-66) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Номинальная мощность, ква | Верхний предел номиналього напряжения обмотки, кв | Схема и группа соединений обмоток | Потери активной мощности, квт | Напряжение к.з., % | Ток холостого хода | Сопротивления обмоток трансформатора, ом | Потери реактивной мощности, квар | ||||
холостого хода | к.з. | ||||||||||
уровень А | уровень Б | активное | реактивное | холостого хода | к.з. | ||||||
25 | 10 10 |
У/Ун-0 У/Zн-11 |
0,105 0,105 |
0,125 0,125 |
0,6 0,69 |
4,5 4,7 |
3,2 3,2 |
96,0 110 |
152 152 |
0,80 0,80 |
0,95 0,95 |
40 | 10 10 |
У/Ун-0 У/Zн-11 |
0,15 0,15 |
0,18 0,18 |
0,88 1,0 |
4,5 4,7 |
3,0 3,0 |
55,0 62,5 |
98,1 99,5 |
1,20 1,20 |
1,57 1,59 |
63 | 10 10 20 20 |
У/Ун-о У/Zн-11 У/Ун-0 У/Zн-11 |
0,22 0,22 0,245 0,245 |
0,265 0,265 0,29 0,29 |
1,28 1,47 1,28 1,47 |
4,5 4,7 5,0 5,3 |
2,8 2,8 2,8 2,8 |
32,3 37,0 129 148 |
63,7 64,8 290 302 |
1,76 1,76 1,76 1,76 |
2,53 2,57 2,88 3,00 |
100 | 10 10 35 35 |
У/Ун-0 У/Zн-11 У/Ун-0 У/Zн-11 |
0,31 0,31 0,39 0,39 |
0,365 0,365 0,465 0,465 |
1,97 2,27 1,97 2,27 |
4,5 4,7 6,5 6,8 |
2,6 2,6 2,6 2,6 |
19,7 22,7 241 278 |
40,5 41,2 759 785 |
2,60 2,60 2,60 2,60 |
4,05 4,12 6,19 6,41 |
160 | 10 10 10 35 35 35 |
У/Ун-0 У/Д-11 У/Zн-11 У/Ун-0 У/Д-11 У/Zн-11 |
0,46 0,46 0,46 0,56 0,56 0,56 |
0,54 0,54 0,54 0,66 0,66 0,66 |
2,65 2,65 3,1 2,65 2,65 3,1 |
4,5 4,5 4,7 6,5 6,5 6,8 |
2,4 2,4 2,4 2,4 2,4 2,4 |
10,4 10,4 12,1 127 127 148 |
26,2 26,2 26,8 481 481 499 |
3,84 3,84 3,84 3,84 3,84 3,84 |
6,69 6,69 6,85 10,1 10,1 10,4 |
250 | 10 10 10 35 35 35 |
У/Ун-0 У/Д-11 У/Zн-11 У/Ун-0 У/Д-11 У/Zн-11 |
0,66 0,66 0,66 0,82 0,82 0,82 |
0,78 0,78 0,78 0,96 0,96 0,96 |
3,7 3,7 4,2 3,7 3,7 4,2 |
4,5 4,5 4,7 6,5 6,5 6,8 |
2,3 2,3 2,3 2,3 2,3 2,3 |
5,92 5,92 6,72 72,5 72,5 82,3 |
17,0 17,0 17,6 310 310 322 |
7,25 5,75 5,75 5,75 5,75 5,75 |
10,6 10,6 11,0 15,8 15,8 16,5 |
400 | 10 10 10 35 35 |
У/Ун-0 Ун/Д-11 Д/Ун-11 У/Ун-0 У/Д-11 |
0,62 0,92 0,92 1,15 1,15 |
1,08 1,08 1,08 1,35 1,35 |
5,5 5,5 5,9 5,5 5,5 |
4,5 4,5 4,5 6,5 6,5 |
2,1 2,1 2,1 2,1 2,1 |
3,44 3,44 3,69 42,1 42,1 |
10,7 10,7 10,6 195 195 |
8,40 8,40 8,40 8,40 8,40 |
17,1 17,1 17,0 25,4 25,4 |
630 | 10 10 10 10 35 35 |
У/Ун-0 Ун/Д-11 Д/Ун-11 У/Ун-0 У/Ун-0 У/Д-11 |
1,42 1,42 1,42 1,42 1,7 1,7 |
1,68 1,68 1,68 1,68 2,0 2,0 |
7,6 7,6 8,5 8,5 7,6 7,6 |
5,5 5,5 5,5 5,5 6,5 6,5 |
2,0 2,0 2,0 2,0 2,0 2,0 |
1,91 1,91 2,14 2,14 23,5 23,5 |
8,52 8,52 8,46 8,46 124 124 |
12,6 12,6 12,6 12,6 12,6 12,6 |
33,8 33,8 33,6 33,6 40,2 40,2 |
Для других номинальных напряжений обмоток сопротивления пересчитываются по формулам:
где Uн — номинальное напряжение обмотки, указанное в табл. 9-2, кв;
— номинальное напряжение обмотки, по отношению к которому пересчитываются сопротивления, кв;
R и X — соответственно активное и реактивное сопротивления трансформатора, определяемые по табл. 9-2, ом.
Потери электроэнергии в сети определяются по формуле
где — наибольшие потери мощности в сети, кет;
— число часов максимальных потерь, определенное в зависимости от годового графика нагрузки.
Потери электроэнергии в трансформаторе определяются по формуле
где tТ — число часов работы трансформатора.
Число часов максимальных потерь, если известен годовой график нагрузки, может быть определено по формуле
где — сумма произведений квадратов полных нагрузок на годовую продолжительность каждой из них, вычисленная для всего годового графика нагрузок рассматриваемого элемента сети;
Sб — наибольшая полная нагрузка элемента сети. Для типичного графика, имеющего сниженные нагрузки ночью и утренний и вечерний максимумы, число часов максимальных потерь согласно в зависимости от числа часов использования максимума может определяться по табл. 9-7.
Таблица 9-7 Число часов максимальных потерь | |||||
---|---|---|---|---|---|
Число часов использования максимума | 3000 | 3500 | 4000 | 4500 | 5000 |
Число часов максимальных потерь | 1300 | 1650 | 2000 | 2500 | 3000 |
Число часов использования максимума | 5500 | 6000 | 6500 | 7000 | 7500 |
Число часов максимальных потерь | 3650 | 4300 | 5000 | 5700 | 6450 |
Пример 9-1.
Определить годовые потери электроэнергии в трансформаторе типа ТМ мощностью 6,3 Мва с напряжением высшей стороны 10 кв, если трансформатор включен постоянно и годовой график его нагрузки представлен на рис. 9-1.
Решение.
Годовые потери электроэнергии в трансформаторе определяем по (9-10).
По справочным данным находим потери активной мощности в трансформаторе при холостом ходе для уровня Б: ΔРс=9 квт
и нагрузочные потери (потери к. з.) при номинальной нагрузке трансформатора: ΔРк.з=46,5 квт
По условию примера годовое число часов работы трансформатора tТ = 8 760.
Коэффициент загрузки трансформатора при наибольшей нагрузке составляет:
Число часов максимальных потерь определяем из графика на рис. 9-1, подставив в (9-11) значения нагрузок трансформатора в мегавольт-амперах и соответствующие им продолжительности работы в тысячах часов:
Подставив числовые значения в (9-10), определим годовые потери энергии в трансформаторе:
Рис. 9-1.
Годовой график нагрузки
Пример 9-2.
На рис. 9-2 представлена схема линии 6 кв с указанием длин участков линии (км) и расчетных (наибольших) нагрузок (Мва). Магистраль АБ выполнена кабелем с алюминиевыми жилами сечением 3X70 мм.кв, а ответвления БВ и БГ — воздушной линией с алюминиевыми проводами сечением 35 мм.кв.
Определить годовые потери электроэнергии в сопротивлениях проводов и кабелей линии, если годовая продолжительность использования максимума нагрузок составляет 3000 ч и график нагрузок является типичным (имеются утренний и вечерний максимумы и снижение нагрузки в ночное время).
Решение.
Наибольшие потери мощности в сопротивлениях проводов и кабелей линии находим по (9-1), в которой значение коэффициента определяется из табл. 9-1:
Удельные сопротивления участков линии находим по табл. 5-1: для алюминиевого кабеля сечением 70 мм.кв — 0,46 ом/км; для алюминиевого провода сечением 35 мм.кв — 0,92 ом/км.
Определяем значение величины N для магистрали АБ:
для ответвлений БВ и БГ
Из (9-1) находим наибольшие потери мощности в сети:
По табл. 9-7 в зависимости от продолжительности использования максимума Т=3000 ч находим значение числа часов максимальных потерь τ=1300. Величину потерь электроэнергии определяем по (9-9):
Многие СНТ, оплачивающие электроэнергию по общему счётчику, стоят перед вопросом, а не слишком ли много потерь во внутренней электросети им приходится оплачивать? Может, приходится оплачивать не только технологические потери, но и воровство ушлых соседей?
Потери вполне можно оценить расчётом, и сейчас я расскажу, как это сделать. Существует несколько методов теоретического расчёта. Наиболее простым и доступным для широкого круга потребителей мне видится метод расчёта по формулам, изложенным в книге Ю.С. Железко, А.В. Артемьев, О.В. Савченко «Расчёт, анализ и нормирование потерь электроэнергии в электрических сетях», Москва, ЗАО «Издательство НЦЭНАС», 2008 (приложение 2). Его и рассмотрим в этой статье.
О расчёте потерь в однофазных отводах и линиях я рассказывал в предыдущей статье. Сейчас я расскажу о том, как правильно оценить потери в трёхфазных магистральных линиях и трёхфазных отводах. Как и в прошлый раз, расчёт будет включать в себя 4 этапа.
Расчёт сопротивления провода
Сначала посчитаем сопротивление провода (Ом/м) по формуле:
Предположим, магистральная линия селана СИПом сечением 35 мм². СИП — алюминиевый провод. Итого получаем 0,0287 / 35 = 0,00082 Ом/м.
При желании в удельное сопротивление материала провода можно ввести поправку на его температуру под нагрузкой. В данном случае взято сопротивление материала при 20°С.
Расчёт эквивалентного сопротивления линии
Поскольку магистральные линии имеют распределённую нагрузку, то рассчитывается не настоящее сопротивление линии, а эквивалентное, учитывающее эту неравномерность:
Предположим, длина магистральной линии от трансформатора до последней опоры равна 340 метров. Пусть коэффициент распределения нагрузки будет 2,5 (трансформатор стоит чуть в стороне, и от него до первого отвода есть метров 80-90).
Таким образом, эквивалентное сопротивление такой линии будет:
0,00082 * 340 / 2,5 = 0,112 Ом
Замечу, что для трёхфазной линии мы рассчитываем сопротивление только одного провода, а не суммируем длины всех четырёх проводов. Эти особенности учтены в последующих формулах расчёта.
Расчёт квадрата коэффициента формы графика нагрузки
Квадрат коэффициента формы графика нагрузки — это промежуточный параметр, который также потребуется нам в итоговой расчётной формуле.
При отсутствии исходных данных о коэффициенте заполнения графика нагрузки, в промышленных сетях допускается использовать коэффициент 0,5. Однако в СНТ ввиду сезонного и других факторов этот коэффициент может достигать значений 0,1 и даже менее (низкая плотность, высокие нагрузки).
В нашем случае используем коэффициент 0,2. Тогда квадрат коэффициента будет равен (1 + 2 * 0,2) / (3 * 0,3) = 2,33.
Расчёт потерь за расчётный период
Теперь осталось посчитать потери за расчётный период (Вт*ч):
Давайте посчитаем годовые потери в магистральной линии. Пусть годовое потребление по этой линии равно 51000 кВт*ч, а коэффициент мощности в сети 0,9 (при этом tg φ = 0,48):
(51000² * (1 + 0,48²) * 2,33) / (24 * 365 * 0,4²) * 0,112 = 600 кВт*ч
600 кВт*ч — это 1,2% от годового потребления 51000 кВт*ч (600 / 51000 * 100).
Таким образом, потери в магистральной линии составляют 1,2% от электроэнергии, отданной в неё.
Заключение
Внимание! Никакой теоретический расчёт, конечно, не может являться точным. Он может быть лишь оценочным, для приблизительного представления самого порядка технологических потерь.
Повысить точность расчёта можно, например, введя температурную поправку на удельное сопротивление материала провода в связи с его повышенной температурой при работе под нагрузкой. Также можно более точно подогнать коэффициент заполнения графика нагрузок именно под ваше СНТ, хотя это не всегда осуществимо.
Для облегчения расчётов мною написана специальная программа под Windows для расчёта электропотерь:
Скачать её можно с официальной страницы:
http://макс.мск.рус/products/losses/losses.html
На последней вкладке имеется подробная встроенная справка. Также в программе можно произвести расчёт потерь в однофазных отводах (вторая вкладка). На третьей вкладке имеется калькулятор эквивалентной длины провода. Надеюсь, программа окажется вам полезной.
Спасибо за то, что дочитали статью до конца. Если вы посчитаете информацию полезной, отметьте её, пожалуйста, лайком! Напишите свои мысли в комментариях. Подписывайтесь на мой канал. Спасибо и удачи!
Потери электроэнергии в электрических сетях неминуемы, поэтому важно чтобы они не превышали экономически обоснованного уровня. Превышение норм технологического расхода говорит о возникших проблемах. Чтобы исправить ситуацию необходимо установить причины возникновения нецелевых затрат и выбрать способы их снижения. Собранная в статье информация описывает многие аспекты этой непростой задачи.
Виды и структура потерь
Под потерями подразумевается разница между отпущенной потребителям электроэнергией и фактически поступившей к ним. Для нормирования потерь и расчетов их фактической величины, была принята следующая классификация:
- Технологический фактор. Он напрямую зависит от характерных физических процессов, и может меняться под воздействием нагрузочной составляющей, условно-постоянных затрат, а также климатических условий.
- Расходы, затрачиваемые на эксплуатацию вспомогательного оборудования и обеспечение необходимых условий для работы техперсонала.
- Коммерческая составляющая. К данной категории относятся погрешности приборов учета, а также другие факторы, вызывающие недоучет электроэнергии.
Ниже представлен среднестатистический график потерь типовой электрокомпании.
Как видно из графика наибольшие расходы связаны с передачей по воздушным линиям (ЛЭП), это составляет около 64% от общего числа потерь. На втором месте эффект коронированния (ионизация воздуха рядом с проводами ВЛ и, как следствие, возникновение разрядных токов между ними) – 17%.
Исходя из представленного графика, можно констатировать, что наибольший процент нецелевых расходов приходится на технологический фактор.
Основные причины потерь электроэнергии
Разобравшись со структурой, перейдем к причинам, вызывающим нецелевой расход в каждой из перечисленных выше категорий. Начнем с составляющих технологического фактора:
- Нагрузочные потери, они возникают в ЛЭП, оборудовании и различных элементах электросетей. Такие расходы напрямую зависят от суммарной нагрузки. В данную составляющую входят:
- Потери в ЛЭП, они напрямую связаны с силой тока. Именно поэтому при передаче электроэнергии на большие расстояния используется принцип повышения в несколько раз, что способствует пропорциональному уменьшению тока, соответственно, и затрат.
- Расход в трансформаторах, имеющий магнитную и электрическую природу ( 1 ). В качестве примера ниже представлена таблица, в которой приводятся данные затрат на трансформаторах напряжения подстанций в сетях 10 кВ.
Нецелевой расход в других элементах не входит в данную категорию, ввиду сложностей таких расчетов и незначительного объема затрат. Для этого предусмотрена следующая составляющая.
- Категория условно-постоянных расходов. В нее входят затраты, связанные со штатной эксплуатацией электрооборудования, к таковым относятся:
- Холостая работа силовых установок.
- Затраты в оборудовании, обеспечивающем компенсацию реактивной нагрузки.
- Другие виды затрат в различных устройствах, характеристики которых не зависят от нагрузки. В качестве примера можно привестисиловую изоляцию, приборы учета в сетях 0,38 кВ, змерительные трансформаторы тока, ограничители перенапряжения и т.д.
- Климатическая составляющая. Нецелевой расход электроэнергии может быть связан с климатическими условиями характерными для той местности, где проходят ЛЭП. В сетях 6 кВ и выше от этого зависит величина тока утечки в изоляторах. В магистралях от 110 кВ большая доля затрат приходится на коронные разряды, возникновению которых способствует влажность воздуха. Помимо этого в холодное время года для нашего климата характерно такое явление, как обледенение на проводах высоковольтных линий, а также обычных ЛЭП.
Гололед на ЛЭП
Учитывая последний фактор, следует учитывать затраты электроэнергии на расплавление льда.
Расходы на поддержку работы подстанций
К данной категории отнесены затраты электрической энергии на функционирование вспомогательных устройств. Такое оборудование необходимо для нормальной эксплуатации основных узлов, отвечающих за преобразование электроэнергии и ее распределение. Фиксация затрат осуществляется приборами учета. Приведем список основных потребителей, относящихся к данной категории:
- системы вентиляции и охлаждения трансформаторного оборудования;
- отопление и вентиляция технологического помещения, а также внутренние осветительные приборы;
- освещение прилегающих к подстанциям территорий;
- зарядное оборудование АКБ;
- оперативные цепи и системы контроля и управления;
- системы обогрева наружного оборудования, например, модули управления воздушными выключателями;
- различные виды компрессорного оборудования;
- вспомогательные механизмы;
- оборудование для ремонтных работ, аппаратура связи, а также другие приспособления.
Коммерческая составляющая
Под данными затратами подразумевается сальдо между абсолютными (фактическими) и техническими потерями. В идеале такая разница должна стремиться к нулю, но на практике это не реально. В первую очередь это связано с особенностями приборов учета отпущенной электроэнергии и электросчетчиков, установленных у конечных потребителей. Речь идет о погрешности. Существует ряд конкретных мероприятий для уменьшения потерь такого вида.
К данной составляющей также относятся ошибки в счетах, выставленных потребителю и хищения электроэнергии. В первом случае подобная ситуация может возникнуть по следующим причинам:
- в договоре на поставку электроэнергии указана неполная или некорректная информация о потребителе;
- неправильно указанный тариф;
- отсутствие контроля за данными приборов учета;
- ошибки, связанные с ранее откорректированными счетами и т.д.
Что касается хищений, то эта проблема имеет место во всех странах. Как правило, такими противозаконными действиями занимаются недобросовестные бытовые потребители. Заметим, что иногда возникают инциденты и с предприятиями, но такие случаи довольно редки, поэтому не являются определяющими. Характерно, что пик хищений приходится на холодное время года, причем в тех регионах, где имеются проблемы с теплоснабжением.
Различают три способа хищения (занижения показаний прибора учета):
- Механический. Под ним подразумевается соответствующее вмешательство в работу прибора. Это может быть притормаживание вращения диска путем прямого механического воздействия, изменение положения электросчетчика, путем его наклона на 45° (для той же цели). Иногда применяется более варварский способ, а именно, срываются пломбы, и производится разбалансирование механизма. Опытный специалист моментально обнаружит механическое вмешательство.
- Электрический. Это может быть как незаконное подключение к воздушной линии путем «наброса», метод инвестирования фазы тока нагрузки, а также использование специальных приборов для его полной или частичной компенсации. Помимо этого есть варианты с шунтированием токовой цепи прибора учета или переключение фазы и нуля.
- Магнитный. При данном способе к корпусу индукционного прибора учета подносится неодимовый магнит.
Практически все современные приборы учета «обмануть» вышеописанными способами не удастся. Мало того, подобные попытки вмешательства могут быть зафиксированы устройством и занесены в память, что приведет к печальным последствиям.
Понятие норматива потерь
Под данным термином подразумевается установка экономически обоснованных критериев нецелевого расхода за определенный период. При нормировании учитываются все составляющие. Каждая из них тщательно анализируется отдельно. По итогу производятся вычисления с учетом фактического (абсолютного) уровня затрат за прошедший период и анализа различных возможностей, позволяющих реализовать выявленные резервы для снижения потерь. То есть, нормативы не статичны, а регулярно пересматриваются.
Под абсолютным уровнем затрат в данном случае подразумевается сальдо между переданной электроэнергией и техническими (относительными) потерями. Нормативы технологических потерь определяются путем соответствующих вычислений.
Кто платит за потери электричества?
Все зависит от определяющих критериев. Если речь идет о технологических факторах и расходах на поддержку работы сопутствующего оборудования, то оплата потерь закладывается в тарифы для потребителей.
Совсем по иному обстоит дело с коммерческой составляющей, при превышении заложенной нормы потерь, вся экономическая нагрузка считается расходами компании, осуществляющей отпуск электроэнергии потребителям.
Способы уменьшения потерь в электрических сетях
Снизить затраты можно путем оптимизации технической и коммерческой составляющей. В первом случае следует принять следующие меры:
- Оптимизация схемы и режима работы электросети.
- Исследование статической устойчивости и выделение мощных узлов нагрузки.
- Снижение суммарной мощности за счет реактивной составляющей. В результате доля активной мощности увеличится, что позитивно отразится на борьбе с потерями.
- Оптимизация нагрузки трансформаторов.
- Модернизация оборудования.
- Различные методы выравнивания нагрузки. Например, это можно сделать, введя многотарифную систему оплаты, в которой в часы максимальной нагрузки повышенная стоимость кВт/ч. Это позволит существенно потребление электроэнергии в определенные периоды суток, в результате фактическое напряжение не будет «проседать» ниже допустимых норм.
Уменьшить коммерческие затраты можно следующим образом:
- регулярный поиск несанкционированных подключений;
- создание или расширение подразделений, осуществляющих контроль;
- проверка показаний;
- автоматизация сбора и обработки данных.
Методика и пример расчета потерь электроэнергии
На практике применяют следующие методики для определения потерь:
- проведение оперативных вычислений;
- суточный критерий;
- вычисление средних нагрузок;
- анализ наибольших потерь передаваемой мощности в разрезе суток-часов;
- обращение к обобщенным данным.
Полную информацию по каждой из представленных выше методик, можно найти в нормативных документах.
В завершении приведем пример вычисления затрат в силовом трансформаторе TM 630-6-0,4. Формула для расчета и ее описание приведены ниже, она подходит для большинства видов подобных устройств.
Для понимания процесса следует ознакомиться с основными характеристиками TM 630-6-0,4.
Теперь переходим к расчету.
Список использованной литературы
- Ю. Железко «Потери электроэнергии. Реактивная мощность. Качество электроэнергии: Руководство для практических расчетов» 2009
- Поспелов Г.Е. «Потери мощности и энергии в электрических сетях» 1981
- Шведов Г.В., Сипачева О.В., Савченко О.В. «Потери электроэнергии при ее транспорте по электрическим сетям: расчет, анализ, нормирование и снижение» 2013
- Фурсанов М.И. «Определение и анализ потерь электроэнергии в электрических сетях энергосистем» 2005