Как найти электрический заряд через массу

ads

Любой физический объект в окружающем нас мире состоит из огромного количества элементарных частиц, обладающих зарядами. Элементарная частица протон имеет элементарный электрический заряд, которому приписывают (условно) положительный знак, элементарная частица электрон имеет элементарный отрицательный заряд.


Содержание:

    • Электрический заряд
    • Напряженность
    • Потенциал, напряжение
  •  

Электрический заряд

Под электрическим зарядом понимают физическую величину, которая характеризует способность тел (объектов) вступать в электрическое взаимодействие. Электрический заряд обозначается через q (иногда для обозначения используют заглавную букву Q) и в Международной системе единиц (СИ) измеряется в Кулонах, [Кл].

Электрический заряд – дискретная величина, кратная элементарному электрическому заряду одного электрона (по модулю) e = 1,60217*10-9 Кл.

Формула Электрического заряда

где N – целое число.

С физической точки зрения 1 кулон [Кл] соответствует электрическому заряду, проходящему через поперечное сечение проводника при силе тока 1 Ампер  за 1 секунду.

Заряды существуют в двух видах: положительные (+) и отрицательные (-). Одноименные заряды отталкиваются, а разноименные – притягиваются.

Сила взаимодействия зарядов направлена вдоль прямой, соединяющей их, пропорциональна величине зарядов и обратно пропорциональна квадрату расстояния между ними (рисунок 1).

Формула кулоновская сила

Сила взаимодействия зарядов

Рис. 1. Сила взаимодействия зарядов

где k – коэффициент пропорциональности, зависящий от выбора системы единиц; 

– единичный вектор, направленный вдоль прямой, соединяющей заряды q1 и q2.

Силу взаимодействия двух зарядов принято называть кулоновской силой в честь ученого-физика Шарля Кулона, обнаружевшего ее существование.

Если объект (система) не обменивается зарядами с окружающей средой, его называют электрически изолированным. В такой системе сумма электрических зарядов (положительных и отрицательных) не меняется со временем, то есть наблюдается закон сохранения заряда.

Большинство тел в природе электрически нейтральны, так как содержат заряды обоих типов в одинаковом количестве. Положительные и отрицательные заряды попарно нейтрализуют действие друг друга. Для перехода тела в заряженное состояние необходимо пространственно перераспределить в нем заряды, сконцентрировав одноименные заряды в одной  области тела. Это возможно сделать, например, при помощи трения или взаимодействия с другим заряженным объектом (рисунок 2).

Переход незаряженного объекта в заряженное состояние

Рис. 2. Переход незаряженного объекта в заряженное состояние

Электрический заряд порождает в окружающем его пространстве непрерывную материю, называемую электрическим полем. Благодаря электрическому полю заряды имеют возможность  взаимодействовать между собой. В электротехнике электрическое поле характеризуется двумя величинами: напряженностью (силовая характеристика) и потенциалом (энергетическая характеристика).

Напряженность электрического поля

Напряженность электрического поляэто векторная физическая количественная характеристика электрического поля. Ее величина показывает силу, которая действует на пробный точечный единичный положительный заряд, помещенный в некоторую точку электрического поля.

Формула Напряженности электрического поля

Под точечным зарядом понимают упрощенную модель положительного заряда, в которой его формой и размером можно пренебречь.

Вектор напряженности по направлению совпадает с вектором силы , с которой электрическое поле действует на положительный точечный заряд, помещенный в заданную точку поля (рисунок 3).

Вектор напряженности E, созданной зарядом q, в точке А

Рис. 3. Вектор напряженности E , созданной зарядом q, в точке А

Величина напряженности поля в точке А определяется согласно формуле

напряженности поля в точке А

где r – расстояние от заряда q до точки А, k – коэффициент пропорциональности, зависящий от выбора системы единиц.

Электрическое поле графически изображается линиями напряженности электрического поля, которые условно принято обозначать исходящими из положительно заряженных элементов и входящими в отрицательно заряженные заряды (рисунок 4).

изолированные заряды

а) изолированные заряды
Распределение линий напряженности для изолированных (а) и взаимодействующих (б) зарядов
б) взаимодействующие заряды

Рис. 4. Распределение линий напряженности для изолированных (а) и взаимодействующих (б) зарядов

Потенциал, напряжение

Физическую величину, равную отношению потенциальной энергии W электрического заряда в электростатическом поле к величине самого заряда q, называют потенциалом φ электрического поля

Формула потенциала электрического поля

Потенциал – это скалярная величина, которая показывает, какую работу способно затратить поле, чтобы переместить единичный пробный положительный заряд в бесконечно удалённую точку. Единицей измерения электрического потенциала является вольт, [В].

При этом важно отметить, что работа сил электростатического поля при перемещении заряда из одной точки электрического поля в другую не зависит от формы траектории перемещения, а зависит только от начального и конечного положения заряда, а также от его величины.

Если имеется некоторая система, состоящая из N точечных зарядов, то потенциал ее электрического поля φ будет равен алгебраической сумме потенциалов полей каждого входящего в него заряда, то есть

Напряжение электрического поля – это разность потенциалов между двумя точками этого поля (рисунок 5).
Напряжение (U) — это работа (А) совершаемая силой поля по перемещению заряженных частиц между двумя точками поля.

U = A/q  [Дж/Кл] или [В]

Графическая интерпретация напряжения электрического поля

Рис. 5. Графическая интерпретация напряжения электрического поля

Напряжение является относительной величиной, то есть всегда определяется относительно некоторого уровня. Нулевой уровень выбирается произвольно и не влияет на итоговое значение напряжения, так как соответствует разности потенциалов в двух точках (то есть изменению потенциальной энергии). Для простоты расчетов в качестве нулевого уровня в большинстве случаев принимают потенциал заземленного проводника или земли.
Как уже было отмечено ранее электрическое напряжение – это разность потенциалов двух точек, следовательно его значение определяется по формуле
Напряжение формула

В системе СИ за единицу измерения напряжения принимается вольт, [В]. Физически величина напряжения, равная 1 вольту, соответствует работе 1 джоуль при перемещении заряда в 1 кулон.

#1. Физическая величина измеряемая в кулонах?

Потенциал

Электрический заряд

Напряжение

Электрический заряд обозначается через q и в Международной системе единиц (СИ) измеряется в Кулонах, [Кл].

#2. Какие пары электрических зарядов будут притягиваться к друг другу?

Два положительных заряда

Один отрицательный заряд, а другой положительный

Два отрицательных заряда

Одноименные заряды отталкиваются, а разноименные – притягиваются.

#3. … – это работа совершаемая силой поля по перемещению заряженных частиц между двумя точками поля.

Потенциал

Напряжение

Сопротивление

Результат

Отлично!

Попытайтесь снова(

Так же как гравитационная масса тела в механике Ньютона, заряд в электродинамике относится к фундаментальным, основным понятиям.

Электрический заряд

Это физическая величина, означающая свойство некоторых частиц или тел вовлекаться в электромагнитные взаимодействия. В физике электрический заряд принято обозначать q, реже Q.

Из установленных экспериментальных фактов следуют следующие выводы:

  • в природе есть два типа электрических зарядов, условно «позитивные» (+) и «негативные» (-);
  • заряды передаются от одного тела к другому (допустим в случае прямого соприкосновения двух объектов). Поэтому электрический заряд, в отличие от массы тела, не является постоянной характеристикой конкретного тела. Одно и то же тело в разных условиях может иметь разные заряды.
  • Одинаковые заряды отталкиваются, противоположные – притягиваются. То есть «+» отталкивает «+», «-» отталкивает «-». Но «+» притягивает «-» и наоборот.

Закон Кулона

К одним из основных законов природы относится установленный экспериментально закон сохранения заряда (более известный как «Закон Кулона»).

В замкнутой системе алгебраическая сумма зарядов сохраняется:

q1+q2+q3+…+qn=constq_1 + q_2 + q_3 + … + q_n = const

Этот закон также значит, что в изолированной системе не могут происходить процессы появления или исчезновения зарядов только одного знака. То есть заряды рождаются и умирают парами («+» с «-»).

В современной науке, носителями заряда являются элементарные частицы. Все тела во Вселенной состоят из атомов. Но атомы в свою очередь состоят из таких элементарных частиц. Положительно заряженных протонов, отрицательных электронов и частиц без заряда — нейтронов. Протоны и нейтроны входят в состав ядра атома (поэтому оно позитивно заряжено), а электроны в состав оболочки (негативно заряженная). В нейтральном атоме заряд ядра равняется заряду всех электронов в оболочке. Заряд протона и электрона одинаковые по значению.

Экспериментально показано, что заряд может передаваться от одного тела к другому только целыми порциями или дискретно:

q=±ne(n=0,1,2,…),q = ± ne (n = 0, 1, 2, …),

ee – заряд электрона.

Измерение величины заряда

Стандартным методом обнаружения и измерения заряда, является прибор — электрометр. Он состоит из металлического стержня и стрелки, вращающейся вокруг горизонтальной оси. Стержень и стрелка изолированны от металлического корпуса прибора. Когда заряженное тело касается стержня прибора, электрические заряды одного знака перетекают по стержню и стрелке. Силы электростатического отталкивания поворачивают стрелку на некоторый угол. По величине угла можно судить о заряде, который был передан стержню электрометра.

На практике часто используют понятие точечного заряда. Точечным зарядом называют заряженное тело, размерами которого можно пренебречь.

Сила взаимодействия 2 зарядов

Сила взаимодействия неподвижных зарядов прямо пропорциональна модулю зарядов и обратно пропорциональна расстоянию между этими зарядами.

F=k∣q1∣⋅∣q2∣r2F = k frac{| q_1| cdot | q_2|}{r^2}

Закон Кулона хорошо согласуется когда заряды точечные, т.е когда размер заряженных тел гораздо меньше расстоянию между ними. Величина коэффициента kk зависит от выбора системы единиц.

В Международной системе СИ, принятой в большинстве стран:

k=14πε0k = frac {1} {4 pi varepsilon_0}

Также в СИ за 1 единицу заряда принят кулон (обозначается Кл). Кулон — это заряд, который проходит за время 1 с (одна секунда) через поперечное сечение проводника при силе тока 1А (один ампер).

Тест по теме «Электрический заряд. Закон Кулона»

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 5 марта 2023 года; проверки требует 1 правка.

Ароматы в физике элементарных частиц
Ароматы
  • Лептонное число: L
  • Барионное число: B
  • Странность: S
  • Очарование: C
  • Прелесть: B’
  • Истинность: T
Чётность
  • P-чётность: P
  • С-чётность: C
  • T-чётность: T
  • CP-чётность: CP
  • G-чётность: G
  • R-чётность: R
Квантовые числа
  • Главное: n
  • Орбитальное: l
  • Магнитное: m
  • Спин: S
Заряды
  • Изоспин: I или Iz
  • Слабый изоспин: T или Tz
  • Электрический заряд: Q
  • Цветной заряд: r,b,g
Комбинации
  • Гиперзаряд: Y
  • Y = 2(Q − Iz) = B + S + C + B’ + T
  • Слабый гиперзаряд: YW
  • YW = 2(Q − Tz) = B − L
См. также
  • CP-инвариантность
  • CPT-инвариантность
  • CKM-матрица
  • PMNS-матрица
  • Хиральность
Электрический заряд
q, Q
Размерность TI
Единицы измерения
СИ кулон
СГСЭ статкулон (франклин)
СГСМ абкулон
Другие единицы ампер-час, фарадей, элементарный заряд
Примечания
скалярная величина, Квантуется
Классическая электродинамика
VFPt Solenoid correct2.svg
Электричество · Магнетизм

Электростатика

Закон Кулона
Теорема Гаусса
Электрический дипольный момент
Электрический заряд
Электрическая индукция
Электрическое поле
Электростатический потенциал

Магнитостатика

Закон Био — Савара — Лапласа
Закон Ампера
Магнитный момент
Магнитное поле
Магнитный поток
Магнитная индукция

Электродинамика

Векторный потенциал
Диполь
Потенциалы Лиенара — Вихерта
Сила Лоренца
Ток смещения
Униполярная индукция
Уравнения Максвелла
Электрический ток
Электродвижущая сила
Электромагнитная индукция
Электромагнитное излучение
Электромагнитное поле

Электрическая цепь

Закон Ома
Законы Кирхгофа
Индуктивность
Радиоволновод
Резонатор
Электрическая ёмкость
Электрическая проводимость
Электрическое сопротивление
Электрический импеданс

Ковариантная формулировка

Тензор электромагнитного поля
Тензор энергии-импульса
4-потенциал
4-ток

См. также: Портал:Физика

Электри́ческий заря́д (коли́чество электри́чества) — физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии.

Впервые электрический заряд был введён в законе Кулона в 1785 году.

Единица измерения электрического заряда в Международной системе единиц (СИ) — кулон. Один кулон равен электрическому заряду, проходящему через поперечное сечение проводника с током силой в 1 А за время 1 с. Если два тела, каждое из которых обладает электрическим зарядом (q1 = q2 = 1 Кл), расположены в вакууме на расстоянии 1 м, то они взаимодействуют с силой в 9⋅109 H.

История[править | править код]

Бенджамин Франклин проводит свой знаменитый опыт с летающим змеем, в котором доказывает, что молния — это электричество.

Ещё в глубокой древности было известно, что янтарь (др.-греч. ἤλεκτρον — электрон), потёртый о шерсть, притягивает лёгкие предметы. А уже в конце XVI века английский врач Уильям Гильберт назвал тела, способные после натирания притягивать лёгкие предметы, наэлектризованными.

В 1729 году Шарль Дюфе установил, что существует два рода зарядов. Один образуется при трении стекла о шёлк, а другой — смолы о шерсть. Поэтому Дюфе назвал заряды «стеклянным» и «смоляным» соответственно. Понятие о положительном и отрицательном заряде ввёл Бенджамин Франклин.

В начале XX века американский физик Роберт Милликен опытным путём показал, что электрический заряд дискретен, то есть заряд любого тела составляет целое кратное от элементарного электрического заряда.

Электростатика[править | править код]

Электростатикой называют раздел учения об электричестве, в котором изучаются взаимодействия и свойства систем электрических зарядов, неподвижных относительно выбранной инерциальной системы отсчёта.

Величина электрического заряда (иначе, просто электрический заряд) может принимать и положительные, и отрицательные значения; она является численной характеристикой носителей заряда и заряженных тел. Эта величина определяется таким образом, что силовое взаимодействие, переносимое полем между зарядами, прямо пропорционально величине зарядов, взаимодействующих между собой частиц или тел, а направления сил, действующих на них со стороны электромагнитного поля, зависят от знака зарядов.

Электрический заряд любой системы тел состоит из целого числа элементарных зарядов, равных примерно 1,6⋅10−19 Кл[1] в системе СИ или 4,8⋅10−10 ед. СГСЭ[2]. Носителями электрического заряда являются электрически заряженные элементарные частицы. Наименьшей по массе устойчивой в свободном состоянии частицей, имеющей один отрицательный элементарный электрический заряд, является электрон (его масса равна 9,11⋅10−31 кг). Наименьшая по массе устойчивая в свободном состоянии античастица с положительным элементарным зарядом — позитрон, имеющая такую же массу, как и электрон[3]. Также существует устойчивая частица с одним положительным элементарным зарядом — протон (масса равна 1,67⋅10−27 кг) и другие, менее распространённые частицы. Выдвинута гипотеза (1964 г.), что существуют также частицы с меньшим зарядом (±⅓ и ±⅔ элементарного заряда) — кварки; однако они не выделены в свободном состоянии (и, по-видимому, могут существовать лишь в составе других частиц — адронов), в результате любая свободная частица несёт лишь целое число элементарных зарядов.

Электрический заряд любой элементарной частицы — величина релятивистски инвариантная. Он не зависит от системы отсчёта, а значит, не зависит от того, движется этот заряд или покоится, он присущ этой частице в течение всего времени её жизни, поэтому элементарные заряженные частицы зачастую отождествляют с их электрическими зарядами. В целом, в природе отрицательных зарядов столько же, сколько положительных. Электрические заряды атомов и молекул равны нулю, а заряды положительных и отрицательных ионов в каждой ячейке кристаллических решёток твёрдых тел скомпенсированы.

Взаимодействие зарядов[править | править код]

Взаимодействие электрически заряженных тел: одноимённо заряженные тела отталкиваются, разноимённо — притягиваются друг к другу

Самое простое и повседневное явление, в котором обнаруживается факт существования в природе носителей электрических зарядов, — электризация тел при соприкосновении[4]. Способность носителей электрических зарядов как к взаимному притяжению, так и к взаимному отталкиванию объясняется существованием двух различных видов электрических зарядов[5]. Один вид электрического заряда называют положительным, а другой — отрицательным. Разноимённо заряженные тела притягиваются, а одноимённо заряженные — отталкиваются друг от друга.

При соприкосновении двух электрически нейтральных тел в результате трения заряды переходят от одного тела к другому. В каждом из них нарушается равенство суммы положительных и отрицательных зарядов, и тела заряжаются разноимённо.

При электризации тела через влияние в нём нарушается равномерное распределение заряда. Они перераспределяются так, что в одной части тела возникает избыток положительного заряда, а в другой — отрицательных. Если две эти части разъединить, то они будут заряжены разноимённо.

Симметрия в физике
Преобразование Соответствующая
инвариантность
Соответствующий
закон
сохранения
↕ Трансляции времени Однородность
времени
…энергии
⊠ C, P, CP и T-симметрии Изотропность
времени
…чётности
↔ Трансляции пространства Однородность
пространства
…импульса
↺ Вращения пространства Изотропность
пространства
…момента
импульса
⇆ Группа Лоренца (бусты) Относительность
Лоренц-ковариантность
…движения
центра масс
~ Калибровочное преобразование Калибровочная инвариантность …заряда

Закон сохранения электрического заряда[править | править код]

Совокупный электрический заряд замкнутой системы[6] сохраняется во времени и квантуется — изменяется порциями, кратными элементарному электрическому заряду, то есть, другими словами, алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, не изменяется при любых процессах, происходящих в этой системе.

В рассматриваемой системе могут образовываться новые электрически заряженные частицы, например, электроны — вследствие явления ионизации атомов или молекул, ионы — за счёт явления электролитической диссоциации и др. Однако, если система электрически изолирована, то алгебраическая сумма зарядов всех частиц, в том числе и вновь появившихся в такой системе, всегда сохраняется.

Закон сохранения электрического заряда — один из основополагающих законов физики. Он был впервые экспериментально подтверждён в 1843 году английским учёным Майклом Фарадеем и считается на настоящее время одним из фундаментальных законов сохранения в физике (подобно законам сохранения импульса и энергии). Всё более чувствительные экспериментальные проверки закона сохранения заряда, продолжающиеся и поныне, пока не выявили отклонений от этого закона.

Свободные носители заряда[править | править код]

В зависимости от концентрации свободных носителей электрических зарядов тела делятся на проводники, диэлектрики и полупроводники.

  • Проводники — тела, в которых носители электрического заряда могут перемещаться по всему его объёму. Проводники делятся на две группы: 1) проводники первого рода (металлы), в которых перемещение носителей элементарных электрических зарядов (свободных электронов) не сопровождается химическими превращениями; 2) проводники второго рода (например, расплавленные соли, растворы кислот), в которых перенос носителей зарядов (положительных и отрицательных ионов) ведёт к химическим изменениям.
  • Диэлектрики (например стекло, пластмасса) — тела, в которых практически отсутствуют свободные носители электрического заряда.
  • Полупроводники (например, германий, кремний) занимают промежуточное положение между проводниками и диэлектриками.

Измерение[править | править код]

Для обнаружения и измерения совокупного электрического заряда тела применяется электроскоп, который состоит из металлического стержня — электрода и подвешенных к нему двух листочков фольги. При прикосновении к электроду заряженным телом носители электрического заряда стекают через электрод на листочки фольги, листочки оказываются одноимённо заряженными и поэтому отклоняются друг от друга.

Также может применяться электрометр, в простейшем случае состоящий из металлического стержня и стрелки, которая способна вращаться вокруг горизонтальной оси. При соприкосновении электрически заряженного тела со стержнем электрометра носители электрического заряда распределяются по стержню и стрелке, и силы отталкивания, действующие между носителями одноимённых электрических зарядов на стержне и стрелке, вызывают её поворот. Для измерения малых электрических зарядов используются более чувствительные электронные электрометры.

См. также[править | править код]

  • Заряд (физика)
  • Точечный электрический заряд
  • Элементарный электрический заряд
  • Плотность заряда

Примечания[править | править код]

  1. Или, более точно, 1,602176487(40)⋅10−19 Кл.
  2. Или, более точно, 4,803250(21)⋅10−10 ед СГСЭ.
  3. Обычная для позитрона неустойчивость, связанная с аннигиляцией электрон-позитронной пары, при этом не рассматривается
  4. Но это далеко не единственный способ электризации тел. Электрические заряды могут возникнуть, например, под действием света
  5. Сивухин Д. В. Общий курс физики. — М.: Физматлит; Изд-во МФТИ, 2004. — Т. III. Электричество. — С. 16. — 656 с. — ISBN 5-9221-0227-3.
  6. Электрически замкнутая система — это система, у которой через ограничивающую её поверхность не могут проникать электрически заряженные частицы (система, не обменивающаяся зарядами с внешними телами).

Литература[править | править код]

  • М. Ю. Хлопов. Заряд // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия (т. 1—2); Большая Российская энциклопедия (т. 3—5), 1988—1999. — ISBN 5-85270-034-7.

Ссылки[править | править код]

  • Roller, Duane; Roller, D.H.D. (1953). “The Prenatal History of Electrical Science”. American Journal of Physics. 21 (5): 351. Bibcode:1953AmJPh..21..343R. DOI:10.1119/1.1933449.
  • Roller, Duane; Roller, D.H.D. (1953). “The Prenatal History of Electrical Science”. American Journal of Physics. 21 (5): 356. Bibcode:1953AmJPh..21..343R. DOI:10.1119/1.1933449.
Определение 1

Многие из окружающих нас физических явлений, происходящих в природе, не находят объяснения в законах механики, термодинамики и молекулярно-кинетической теории. Такие явления основываются на влиянии сил, действующих между телами на расстоянии и независимых от масс взаимодействующих тел, что сразу отрицает их возможную гравитационную природу. Данные силы называются электромагнитными.

Еще древние греки имели некоторое представление об электромагнитных силах. Однако только в конце XVIII века началось систематическое, количественное изучение физических явлений, связанных с электромагнитным взаимодействием тел.

Определение 2

Благодаря кропотливому труду большого количества ученых в XIX веке было завершено создание абсолютно новой стройной науки, занимающейся изучением магнитных и электрических явлений. Так один из важнейших разделов физики, получил название электродинамики.

Создаваемые электрическими зарядами и токами электрические и магнитные поля стали ее основными объектами изучения.

Электрическое поле

Понятие заряда в электродинамике играет ту же роль, что и гравитационная масса в механике Ньютона. Оно входит в фундамент раздела и является для него первичным.

Определение 3

Электрический заряд представляет собой физическую величину, которая характеризует свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Буквами q или Q в электродинамике обычно обозначают электрический заряд.

В комплексе все известные экспериментально доказанные факты дают нам возможность сделать следующие выводы:

Определение 4

Существует два рода электрических зарядов. Это, условно названные, положительные и отрицательные заряды.

Определение 5

Заряды могут переходить (к примеру, при непосредственном контакте) между телами. Электрический заряд, в отличие от массы тела, не является его неотъемлемой характеристикой. Одно конкретное тело в различных условиях может принимать разное значение заряда.

Определение 6

Одноименные заряды отталкиваются, разноименные – притягиваются. В данном факте проявляется очередное принципиальное различие электромагнитных и гравитационных сил. Гравитационные силы всегда представляют собой силы притяжения.

Закон сохранения электрического заряда является одним из фундаментальных законов природы.

В изолированной системе алгебраическая сумма зарядов всех тел неизменна:

q1+q2+q3+…+qn=const.

Определение 7

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

С точки зрения современной науки, носителями зарядов являются элементарные частицы. Любой обычный объект состоит из атомов. В их состав входят несущие положительный заряд протоны, отрицательно заряженные электроны и нейтральные частицы – нейтроны. Протоны и нейтроны являются составной частью атомных ядер, электроны же образуют электронную оболочку атомов. По модулю электрические заряды протона и электрона эквивалентны и равняются значению элементарного заряда e.

В нейтральном атоме количество электронов в оболочке и протонов в ядре одинаково. Число любых из списка приведенных частиц называется атомным номером.

Подобный атом имеет возможность как потерять, так и приобрести один или несколько электронов. Когда такое происходит, нейтральный атом становится положительно или отрицательно заряженным ионом.

Заряд может переходить от одного тела к другому лишь порциями, в которых содержится целое число элементарных зарядов. Выходит, что электрический заряд тела является дискретной величиной: 

q=±ne (n=0, 1, 2,…).

Определение 8

Физические величины, имеющие возможность принимать исключительно дискретный ряд значений, называются квантованными.

Определение 9

Элементарный заряд e представляет собой квант, то есть наименьшую возможную порцию электрического заряда.

Определение 10

Несколько выбивается из всего вышесказанного факт существования в современной физике элементарных частиц так называемых кварков – частиц с дробным зарядом ±13e и ±23e.

Однако наблюдать кварки в свободном состоянии ученым так и не довелось.

Определение 11

Для обнаружения и измерения электрических зарядов в лабораторных условиях обычно используют электрометр – прибор, состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 1.1.1).

Стержень со стрелкой изолирован от металлического корпуса. Соприкасаясь со стержнем электрометра, заряженное тело провоцирует распределение по стержню и стрелке электрических зарядов одного знака. Воздействие сил электрического отталкивания становится причиной отклонения стрелки на некоторый угол, по которому можно определить заряд, переданный стержню электрометра.

Электрическое поле

Рисунок 1.1.1. Перенос заряда с заряженного тела на электрометр.

Электрометр – достаточно грубый прибор. Его чувствительность не позволяет исследовать силы взаимодействия зарядов. В 1785 году был впервые открыт закон взаимодействия неподвижных зарядов. Первооткрывателем стал французский физик Ш. Кулон. В своих опытах он измерял силы притяжения и отталкивания заряженных шариков с помощью сконструированного им прибора для измерения электрического заряда – крутильных весов (рис. 1.1.2), обладающих крайне высокой чувствительностью. Коромысло весов поворачивалось на 1° под действием силы приблизительной 10–9 Н.

Идея измерений основывалась на догадке физика о том, что при контакте заряженного шарика с таким же незаряженным, имеющийся заряд первого разделится на равные части между телами. Так был получен способ изменять заряд шарика в два или более раз.

Определение 12

Кулон в своих опытах измерял взаимодействие между шариками, размеры которых значительно уступали разделяющему их расстоянию, из-за чего ими можно было пренебречь. Подобные заряженные тела принято называть точечными зарядами.

Электрическое поле

Рисунок 1.1.2. Прибор Кулона.

Электрическое поле

Рисунок 1.1.3. Силы взаимодействия одноименных и разноименных зарядов.

Основываясь на множестве опытов, Кулон установил следующий закон:

Определение 13

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними: F=kq1·q2r2.

Силы взаимодействия являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках (рис. 1.1.3), а также подчиняются третьему закону Ньютона:
F1→=-F2→.

Определение 14

Кулоновским или же электростатическим взаимодействием называют воздействие друг на друга неподвижных электрических зарядов.

Определение 15

Раздел электродинамики, посвященный изучению кулоновского взаимодействия, называется электростатикой.

Закон Кулона может быть применим по отношению к точечным заряженным телам. На практике, он в полной мере выполняется в том случае, если размерами заряженных тел можно пренебречь из-за значительно превышающего их расстояния между объектами взаимодействия.

Коэффициент пропорциональности k в законе Кулона зависим от выбора системы единиц.

В Международной системе СИ единицу измерения электрического заряда представляет кулон (Кл).

Определение 16

Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения.

Коэффициент k в системе СИ в большинстве случаев записывается в виде следующего выражения: 

k=14πε0.

В котором ε0=8,85·10-12Кл2Н·м2 является электрической постоянной.

В системе СИ элементарный заряд e равняется:

e=1,602177·10-19 Кл≈1,6·10-19 Кл.

Опираясь на опыт, можно сказать, что силы кулоновского взаимодействия подчиняются принципу суперпозиции.

Теорема 1

Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Принцип суперпозиции

На рисунке 1.1.4 на примере электростатического взаимодействия трёх заряженных тел поясняется принцип суперпозиции.

Принцип суперпозиции

Рисунок 1.1.4. Принцип суперпозиции электростатических сил F→=F21→+F31→; F2→=F12→+F32→; F3→=F13→+F23→.

Принцип суперпозиции

Рисунок 1.1.5. Модель взаимодействия точечных зарядов.

Несмотря на то, что принцип суперпозиции является фундаментальным законом природы, его использование требует некоторой осторожности, когда он применяется по отношению к взаимодействию заряженных тел конечных размеров. Примером таковых могут послужить два проводящих заряженных шара 1 и 2. Если к подобной системе, состоящей из двух обладающих зарядом шаров поднести еще один заряженный шар, то взаимодействие между 1 и 2 претерпит изменения по причине перераспределения зарядов.

Принцип суперпозиции предполагает, что силы электростатического взаимодействия между двумя любыми телами не зависят от наличия других обладающих зарядом тел, при условии, что распределение зарядов фиксировано (задано).

Как найти заряд

В задачах по физике иногда нужно найти заряд какого-либо тела на основе его взаимодействия с электрическим полем или другими телами. В большинстве случаев размерами самого тела пренебрегают, чтобы не рассчитывать распределение элементарных зарядов по его массе или поверхности.

Нахождение величины элементарного заряда

Инструкция

Например, как найти заряд пылинки массой 1 мг, которая влетела в однородное электрическое поле напряженностью 100 кВ/м, пролетела 4 см и при этом ее скорость увеличилась с 1 м/с до 3 м/с?

Сделайте краткую запись условий поставленной задачи: m=1 мг,V1=1 м/с, V2=3 м/с, S=4см, E=кВ/м, q-?

Приравняйте силу, сообщающую пылинке ускорение, к силе, действующей на пылинку со стороны однородного электрического поля. Из этого равенства алгебраически выразите заряд пылинки: получается, что произведение массы пылинки и ускорения пылинки равно произведению напряженности электрического поля и заряда; в итоге заряд пылинки находится как отношение произведения массы пылинки и ускорения к величине напряженности электрического поля.

Запишите кинематическое уравнение для определения ускорения пылинки: ускорение определяется как отношение разности квадратов конечной и начальной скорости к удвоенному значению пройденного пылинкой пути.

Подставьте это уравнение в выражение для определения заряда пылинки. В окончательном варианте заряд пылинки равен отношению произведения массы пылинки и разности квадратов конечной и начальной скоростей к удвоенному произведению пройденного пути и напряженности электрического поля.

Проверьте размерность искомой величины: для этого в конечную формулу для определения заряда вместо букв, обозначающих физические величины, подставьте единицы физических величин, выраженные в системе СИ: единица измерения заряда определится как отношение произведения кг•(м/с)2 к произведению м•В/м; сократите в этой дроби одинаковые единицы измерения; используйте определение физических величин 1 Ньютон и 1 Джоуль и замените ими определенные комбинации физических величин.

Подставив числовые значения, вычислите заряд пылинки. Получится q=10 нКл

Видео по теме

Полезный совет

Пояснения: согласно второму закону Ньютона ускорение пылинке сообщает равнодействующая всех сил, действующих на пылинку; так как о сопротивлении движению пылинки не упомянуто, на нее действует единственная сила – со стороны электрического поля.

1 Ньютон: [1Н] = [кг∙м/с2]; [Дж] =[Н∙м]; [Дж/В]=[Кл]

При подстановке числовых значений переведите значения всех физических величин в систему СИ; при переводе некоторых величин для исключения очень громоздких чисел или неудобных десятичных дробей используйте в качестве множителя число 10 в положительной или отрицательной степени.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Добавить комментарий