Как найти электроемкость плоского конденсатора формула

Конденсатор – радиоэлектронный прибор, способный накапливать и отдавать заряд. Как правило, на его корпусе дается информация о его емкости, но иногда требуется самому рассчитать этот номинал.

Конденсаторами могут выступать и проводники, они также обладают определенной емкостью. Для расчета существует несколько формул емкости конденсатора, их и рассмотрим.

В чем измеряется емкость конденсатора

Что такое заряд еще проходят в школе, когда эбонитовую палочку натирают о шерстяную ткань и подносят к маленьким кусочкам бумаги.

Под действием электромагнитных сил бумага прилипает к палочке. Подобный заряд накапливается в конденсаторе. Но для начала познакомимся с самим конденсатором.

Простейшим конденсатором являются две металлические пластины, разделенные диэлектриком. От качества диэлектрика зависит, как долго энергия заряженного конденсатора может сохраняться.

На этих пластинах, они еще называются обкладками, накапливается разноименный заряд. Как это происходит?

как найти емкость конденсатора
как найти емкость конденсатора

Электрический заряд, а в случае с металлами это электроны, способен перемещаться под действием электродвижущей силы (э. д. с.).

Подключая металлические пластинки к источнику тока, мы получаем замкнутую цепь, но разделенную диэлектриком. Электростатическое поле проходит этот диэлектрик, замыкая цепь, а электроны, дойдя до препятствия, останавливаются и скапливаются.

Полная статья на блоге “Электрик в доме”:

Получается, на одной обкладке наблюдается избыток электронов, и эта пластина имеет отрицательный знак, а на другой пластине электронов недостает настолько же, знак на этой обкладке, конечно же, будет положительным.

Вот теперь нужна для определения емкости конденсатора формула, определяющая, какой заряд способен разместится на конкретном конденсаторе.

В качестве единицы измерения в международной системе (СИ) емкость определяется в Фарадах.

Много это или мало – емкость в 1Ф? Чтобы конденсатор обладал емкостью в 1Ф, он должен содержать в себе заряд в 1К (кулон) и при этом напряжение между обкладками должно равняться 1 вольту.

Интересно. Что такое заряд в 1 кулон? Если два предмета, каждый из которых имеет заряд в один кулон разместить в вакууме на расстоянии один метр, то сила притяжения между ними будет равна силе притяжения землей тела массой в один миллион тонн.

Как и любая буквальная емкость один и тот же конденсатор может вмещать разное количество заряда.

устройство конденсатора
устройство конденсатора

Рассмотрим пример.

  • В трехлитровую банку входит три литра воздуха. Его хватит для дыхания, допустим, на 3 минуты. Но если воздух закачать под каким-то давлением, то емкость так и останется три литра, однако дышать можно будет дольше. Так устроен акваланг для ныряльщиков. Получается, количество воздуха в банке зависит от давления, которое в ней создается. Точно так же есть некая зависимость между различными силами, влияющими на емкость.

Формула емкости плоского конденсатора

Прежде чем узнать, по какой формуле вычисляется емкость плоского конденсатора, рассмотрим формулу для одиночного проводника. Она имеет вид:

формула емкости плоского конденсатора
формула емкости плоского конденсатора
  • где Q – заряд,
  • φ – потенциал.

Как видно емкость конденсатора, формула которого здесь приведена, будет тем больше, чем больший заряд способен накапливаться на нем при незначительном потенциале. Чтобы легче это было понять, рассмотрим получившие широкое распространение плоские конденсаторы разных размеров.

Для получения качественного конденсатора важны любые мелочи:

  1. ровная поверхность каждой обкладки;
  2. обе пластинки по всей площади должны располагаться на одинаковом расстоянии;
  3. размеры обкладок должны быть строго идентичными;
  4. от качества диэлектрика, расположенного между пластинками, будет зависеть ток утечки;
  5. емкость напрямую зависит от расстояния между обкладками, чем оно меньше, тем больше емкость.

Теперь обратимся к плоскому конденсатору. Формула определения емкости конденсатора несколько отличается от приведенной выше:

емкость конденсатора формула
емкость конденсатора формула
  • где S – площадь одной обкладки,
  • εr – диэлектрическая проницаемость диэлектрика,
  • ε0 – электрическая постоянная,
  • d – расстояние между обкладками.

Электрическая постоянная выражается числом 8,854187817×10-12.

емкость конденсатора
емкость конденсатора

Внимание! Эта формула справедлива только тогда, когда расстояние между пластинами намного меньше их площади.

Попробуем разобраться с каждой переменной подробнее. Площадь измеряется в м2, точнее, приводится к этой величине. А вот проницаемость диэлектрика может обозначаться по-разному.

В России это εr (также означает относительная проницаемость), в англоязычной литературе встречается εa (также означает абсолютная проницаемость), а то может и вовсе использоваться без индекса, просто ε. О том, что здесь используется диэлектрическая проницаемость диэлектрика можно понять из контекста.

Дальше идет ε0. Это уже вычисленное значение, измеряемое в Ф/м. Последняя переменная – d. Измеренное расстояние также приводится к метру. Емкость конденсатора, формула которого сейчас рассматривается, показывает сильную зависимость от расстояния обкладок. Поэтому стараются это расстояние по возможности сокращать. Почему этот показатель так важен?

Идеальными условиями для получения наибольшей емкости – это отсутствие промежутка между обкладками, чего, конечно, добиться невозможно. Чем ближе находятся разноименные заряды, тем сильнее сила притяжения, но здесь возникает компромисс.

При уменьшении толщины диэлектрика, а именно он разделяет разноименные заряды, возникает вероятность его пробоя из-за разности потенциалов на обкладках. С другой стороны, как уже говорилось, при увеличении напряжения увеличивается количество зарядов. Вот и приходится выбирать между емкостью и рабочим напряжением конденсатора.

Есть другая формула для плоского переменного конденсатора:

Формула для расчета емкости плоского конденсатора
Формула для расчета емкости плоского конденсатора

Здесь диэлектрическая проницаемость обозначена буквой ε, π = 22/7 ≈ 3,142857142857143, d – толщина диэлектрика. Формула предназначена для конденсатора, состоящего из нескольких пластин.

Допустимая толщина диэлектрика d также зависит от εr, чем выше коэффициент, тем тоньше можно использовать диэлектрик, тем большую емкость будет иметь конденсатор. Это был самый сложный материал, дальше будет легче.

Формула емкости цилиндрического конденсатора

Теперь поговорим о том, как найти емкость конденсатора цилиндрической формы. К ним относятся конденсаторы, состоящие из двух металлических цилиндров, вставленных один в другой.

Для разделения между ними расположен диэлектрик. Формула емкости конденсатора выглядит следующим образом:

Формула электрической емкости цилиндрического конденсатора
Формула электрической емкости цилиндрического конденсатора

Здесь видим несколько новых переменных:

  • l – высота цилиндра;
  • R1 и R2 – радиус первого и второго (внешнего) цилиндров;
  • ln – это не переменная, а математический символ натурального логарифма. На некоторых калькуляторах он имеется.

Всегда нужно помнить, что все величины должны приводиться к единой системе, в приведенной ниже таблице указаны международные системы единиц (СИ).

международные системы единиц (СИ)
международные системы единиц (СИ)

Из нее видно, что все расстояния нужно приводить к метру.

Формулы для расчета емкости конденсаторов
Формулы для расчета емкости конденсаторов

Еще стоит обращать внимание на качество диэлектрика. Если толщина диэлектрика влияет только на емкость конденсатора, то его качество затрагивает сохранность энергии. Другими словами, конденсатор с качественным диэлектриком будет иметь меньший саморазряд.

Определить качество можно по числу, стоящему возле вещества, чем оно больше, тем лучше качество. Сравнение производится по вакууму, значение которого равно единице.

Формула емкости сферического конденсатора

Последнее что осталось разобрать – формулу определения емкости конденсатора, состоящего из двух сфер. Причем одна сфера находится внутри другой. Формула имеет следующий вид:

Формула расчета емкости сферического конденсатора
Формула расчета емкости сферического конденсатора

Из приведенных переменных здесь все знакомо. Стоит обратить внимание лишь на сам конденсатор.

Кроме своей необычной формы у него есть свои особенности: внутри малой сферы никакого заряда нет, он образуется на внешней части малой сферы и внутренней части большого шара. Также заряд отсутствует и на внешней стороне внешней сферы.

Так же как и все другие конденсаторы, сферы разделены диэлектриком. Толщина и качество диэлектрика оказывают такое же влияние на емкость, как в случае с другими конденсаторами.

После того как были рассмотрены формулы, стоит испробовать их на практике. Рассмотрим, как найти емкость конденсатора каждого вида.

Примеры решения задач

Начнем с плоского конденсатора. Формула для этого вида:

формула емкости плоского конденсатора
формула емкости плоского конденсатора

Допустим, у нас есть следующие значения:

  • в качестве диэлектрика возьмем слюду толщиной 0,02 мм, ε = 6;
  • конденсатор квадратный со сторонами в 7 мм.

Определяем площадь пластин: 7×7 = 49 мм2.

Приводим к единой системе: 4,9×10-5 = 0,000049 м2. Толщина диэлектрика 0,02×10-5 = 0,00002 м. Электрическая постоянная 8,854187817×10-12.

Подставляем в формулу и высчитываем числитель: 6×8,854187817×10-12 ×4,9×10-5, сокращаем и решаем 6×49×8,854187817×10-17 = 2,603131218198×10-14.

Делим на толщину диэлектрика: 2,603131218198×10 / 2×10 = 1301,565609099×10 = 1,301565609099×10. Шесть нулей – это тысячи или приставка «микро», получается округлено 1,3 мкФ.

Возможно, при вычислении была допущена ошибка, но это не экзамен по математике. Важно понять сам метод вычисления.

Формула для цилиндрического конденсатора:

Электроемкость цилиндрического конденсатора
Электроемкость цилиндрического конденсатора

Выбираем значения:

  • l = 1 см;
  • R1 = 0,25 мм;
  • R2 = 0,26 мм;
  • ε = 2.

Подгоняем под единую систему: l – 1 см = 1×10-2 = 0,01 м; R1 – 0,25 мм = 0,0025 м; R2 – 0,26 мм = 0,0026 м.

Подставляем значения в числитель: 2×3,142857142857143×8,854187817×10-12×2×0,01 1,11×10-12. Находим знаменатель: 0,26:0,25 = 1,04.

Находим натуральный логарифм, он равен примерно 0,39. Числитель делим на знаменатель: 1,11×10-12/0,39 = 2,85×10-12.

Число с 12 нулями это приставка «пико», получаем 2,85 пФ.

Формула для сферического конденсатора:

Электроемкость цилиндрического конденсатора
Электроемкость цилиндрического конденсатора

Выбираем значения:

  • ε= 4;
  • r1= 5 см;
  • r2= 5,01 см.

Снова все подгоняем: 5 см = 0,05 м; 5,01 см = 0,0501 м. Заполняем числитель. 4×3,142857142857143×4×8,854187817×10-12×0,05×0,0501 1,11×10-12 Вычисляем знаменатель: 0,0501 – 0,05 = 0,01. Производим деление: 1,11×10-12×0,01 = 1,11×10-10. Снова получили пикофарады, а именно 1,11 пФ.

Интересные статьи на канале:

Статья заинтересовала? Лайк, подписка, комментарий!

Друзья ПОДПИСЫВАЙТЕСЬ Дзен на канал, а также заходите на блог https://electricvdome.ru 👍!

#конденсатор #емкость #формула

Определение 1

Конденсатор – это совокупность двух любых проводников, заряды которых одинаковы по значению и противоположны по знаку.

Его конфигурация говорит о том, что поле, созданное зарядами, локализовано между обкладками. Тогда можно записать формулу электроемкости конденсатора:

C=qφ1-φ2=qU.

Значением φ1-φ2=U обозначают разность потенциалов, называемую напряжением, то есть U. По определению емкость положительна. Она зависит только от размерностей обкладок конденсатора их взаиморасположения и диэлектрика. Ее форма и место должны минимизировать воздействие внешнего поля на внутреннее. Силовые линии конденсатора начинаются на проводнике с положительным зарядом, а заканчиваются с отрицательным. Конденсатор может являться проводником, помещенным в полость, окруженным замкнутой оболочкой.

Выделяют три большие группы: плоские, сферические, цилиндрические. Чтобы найти емкость, необходимо обратиться к определению напряжения конденсатора с известными значениями зарядов на обкладках.

Плоский конденсатор

Определение 2

Плоский конденсатор – это две противоположно заряженные пластины, которые разделены тонким слоем диэлектрика, как показано на рисунке 1.

Формула для расчета электроемкости записывается как

C=εε0Sd, где S является площадью обкладки, d – расстоянием между ними, ε – диэлектрической проницаемостью вещества. Меньшее значение d способствует большему совпадению расчетной емкости конденсатора с реальной.

Плоский конденсатор

Рисунок 1

При известной электроемкости конденсатора, заполненного N слоями диэлектрика, толщина слоя с номером i равняется di, вычисление диэлектрической проницаемости этого слоя εi выполняется, исходя из формулы:

C=ε0Sd1ε1+d2ε2+…+dNεN.

Сферический конденсатор

Определение 3

Когда проводник имеет форму шара или сферы, тогда внешняя замкнутая оболочка является концентрической сферой, это означает, что конденсатор сферический.

Он состоит из двух концентрических проводящих сферических поверхностей с пространством между обкладками, заполненным диэлектриком, как показано на рисунке 2. Емкость рассчитывается по формуле:

C=4πεε0R1R2R2-R1, где R1 и R2 являются радиусами обкладок.

Сферический конденсатор

Рисунок 2

Цилиндрический конденсатор

Емкость цилиндрического конденсатора равняется:

C=2πεε0llnR2R1, где l – высота цилиндров, R1 и R2 – радиусы обкладок. Данный вид конденсатора имеет две соосные поверхности проводящих цилиндрических поверхности, как показано на рисунке 3.

Цилиндрический конденсатор

Рисунок 3

Определение 4

Важной характеристикой конденсаторов считается пробивное напряжение – напряжение, при котором происходит электрический разряд через слой диэлектрика.

Umax находится от зависимости от толщины слоя и свойств диэлектрика, конфигурации конденсатора.

Электроемкость плоского конденсатора. Формулы

Кроме отдельных конденсаторов используются их соединения. Наличие параллельного соединения конденсаторов применяют для увеличения его емкости. Тогда поиск результирующей емкости соединения сводится к записи суммы Ci, где Ci- это емкость конденсатора с номером i:

C=∑i=1NCi.

При последовательном соединении конденсаторов суммарная емкость соединения всегда будет по значению меньше, чем минимальная любого конденсатора, входящего в систему. Для расчета результирующей емкости следует сложить величины, обратные к емкостям отдельных конденсаторов:

Пример 1

Произвести вычисление емкости плоского конденсатора при известной площади обкладок
1 см2 с расстоянием между ними 1 мм. Пространство между обкладками находится в вакууме.

Решение

Чтобы рассчитать электроемкость конденсатора, применяется формула:

C=εε0Sd.

Значения:

ε=1, ε0=8,85·10-12 Фм;S=1 см2=10-4 м2;d=1 мм=10-3 м.

Подставим числовые выражения и вычислим:

C=8,85·10-12·10-410-3=8,85·10-13 (Ф).

Ответ: C≈0,9 пФ.

Пример 2

Найти напряженность электростатического поля у сферического конденсатора на расстоянии x=1 см=10-2 м от поверхности внутренней обкладки при внутреннем радиусе обкладки, равном R1=1 см=10-2 м, внешнем – R2=3 см=3·10-2 м. Значение напряжения – 103 В.

Решение

Производящая заряженная сфера создает напряженность поля. Его значение вычисляется по формуле:

E=14πεε0qr2, где q обозначают заряд внутренней сферы, r=R1+x – расстояние от центра сферы.

Нахождение заряда предполагает применение определения емкости конденсатора С:

q=CU.

Для сферического конденсатора предусмотрена формула вида

C=4πεε0R1R2R2-R1 с радиусами обкладок R1 и R2.

Производим подстановку выражений для получения искомой напряженности:

E=14πεε0U(x+R1)24πεε0R1R2R2-R1=U(x+R1)2R1R2R2-R1.

Данные представлены в системе СИ, поэтому достаточно заменить буквы числовыми выражениями:

E=103(1+1)2·10-4·10-2·3·10-23·10-2-10-2=3·10-18·10-6=3,45·104 Вм.

Ответ: E=3,45·104 Вм.

Содержание:

Электроемкость:

Сообщая телу определенный заряд, мы изменяем его потенциал. Это изменение непосредственно связано со значением заряда, сообщаемого телу.

Для исследования зависимости потенциала тела от его заряда проведем опыт с электрометром, корпус которого соединен с поверхностью Земли. ‘Гикая система может измерять потенциал тела относительно Земли. Укрепим на стержне этого электрометра пустотелый металлический шар и будем сообщать ему заряд с помощью маленького металлического шарика на изоляционной ручке. Если коснуться заряженным шариком внутренней поверхности металлического шара, то весь его заряд перейдет на шар, а стрелка электрометра покажет увеличение потенциала шара. Последовательно повторяя опыт с переносом заряда на большой шар, заметим, что каждый раз его потенциал увеличивается (рис. 1.28).

Электроемкость - основные понятия, формулы и определение с примерами

Применяя более точные способы измерения заряда и потенциала, можно установить, что потенциал возрастает пропорционально возрастанию заряда. Потенциал пропорционален заряду шара. Результаты одного из таких опытов отражены на графике (рис 1.29).

Электроемкость - основные понятия, формулы и определение с примерами

Если ни стержне электрометра укрепим шар большего (меньшего) диаметра и продолжим опыты (рис. 1.31), то увидим, что скорость зарядки изменилась, соответственно уменьшилась (увеличилась).
Процесс электризации шара большего диаметра отображен графиком на рисунке 1.32.

Сопоставив графики, которые иллюстрируют процессы зарядки шаров различных диаметров (рис. 1.30 и 1.32), увидим, что графики имеют различный наклон относительно горизонтальной оси. Это свидетельствует о том, что при одинаковых значениях заряда шары разных диаметров будут иметь разные потенциалы. Оказывается, что на князь между зарядом и потенциалом шара существенно влияют геометрические размеры шаров.

Электроемкость - основные понятия, формулы и определение с примерами
Рис. 130. Электризация шара большего диаметра

Потенциал металлического шара пропорционален его заряду; коэффициент пропорциональности для различных шаров разный.

Анализируя результаты опытов и соответствующие графики, можно сделать выводы:

  1. потенциал каждого шара пропорционален его заряду: Электроемкость - основные понятия, формулы и определение с примерами
  2. для тел различных размеров коэффициент пропорциональности разный.

Установлено, что этот коэффициент для каждого тела имеет вполне определенное значение, что отражает способность тела накапливать электрический заряд. Физическая величина, равная отношению электрического заряда, сообщенного телу, к его потенциалу, называется электроемкостью тела.
Электроемкость - основные понятия, формулы и определение с примерами
где C – электроемкость проводника; Q – заряд; φ – потенциал.

Для измерения электроемкости в физике применяют единицу, которую называют фарад (Ф).

Тело имеет электроемкость в 1 фарад, если при изменении его заряда на 1 кулон потенциал изменяется па 1 вольт:
Электроемкость - основные понятия, формулы и определение с примерами

Электроемкость 1 фарад имеют тела, у которых при изменении заряда на 1 кулон потенциал изменяется на 1 вольт.

  • 1Ф – довольно большое значение электроемкости. Например, электроемкость Земли, имеющей радиус 6400 км, составляет всего 7 ∙ 104 Ф. Поэтому на практике используют единицу электроемкости, кратную фараду:
  • 1 микрофарад = 1 мкФ = 10-5 Ф.
  • 1 пикофарад = 1 пФ = 10-12 Ф.

Пример:

Два шара, электроемкости которых 50 мкф и 80 мкФ, а потенциалы 120 В и 50 В соответственно, соединяют проводом. Найти потенциал шаров после соединения.

Дано: 
C1 = 50 мкФ,
C2 = 80 мкФ,
φl = 120 В,
φ2 = 50 В.

Решение
Заряд каждого шара соответственно равен:
Q1 = C1φ1.
Q2=c2φ2

φ-?

После соединения шаров произойдет перераспределение зарядов между ними так, что их потенциалы станут одинаковыми. Согласно закону сохранения электрических зарядов

Электроемкость - основные понятия, формулы и определение с примерами

Отсюда
Электроемкость - основные понятия, формулы и определение с примерами

или
Электроемкость - основные понятия, формулы и определение с примерами

Подставив значения физических величин и произведя расчеты, получим:
Электроемкость - основные понятия, формулы и определение с примерами

Ответ: после соединения шары будут иметь потенциал 77 В.

Конденсатор

Чтобы экспериментально определить электроемкость проводника, как и его потенциал, нужно создать условия, исключающие влияние всех окружающих тел, которые, влияя па тело, изменяют его потенциал и электроемкость.

Это утверждение можно проверить опытом.
Укрепим на стержне электрометра металлический шар и сообщим ему определенный заряд. Стрелка прибора отклонится от положения равновесия и покажет определенное значение потенциала относительно земли.

Поднесем к шару металлическую пластину, соединенную проводником с землей (рис. 1.32).

Электроемкость - основные понятия, формулы и определение с примерами
Pиc. 132. Заземленная металлическая пластина влияет на электроемкость шара

Показания стрелки электрометра уменьшатся. Поскольку заряд шара в опыте не изменялся, то уменьшение потенциала свидетельствует об увеличении электроемкости шара. Изменение потенциала и соответственно электроемкости шара будет наблюдаться и в случае изменения расстояния между шаром и пластиной.

Таким образом, определяя электроемкость тела, необходимо учитывать также наличие окружающих тел. Поскольку на практике это сделать трудно, то применяют систему из двух или более проводников произвольной формы, разделенных диэлектриком. В этом случае электрические свойства такой системы проводников и диэлектрика не зависят от окружающих тел. Такую систему называют конденсатором. Простейшим для изучения и расчетов является конденсатор из двух металлических пластин, разделенных диэлектриком.

Электроемкость конденсатора, в отличие от обособленного тела, определяется по разности потенциалов между пластинами:

Электроемкость - основные понятия, формулы и определение с примерами

где Q – заряд одной пластины; (φl– φ2) и ∆φ – разность потенциалов между пластинами.

Слово конденсатор обозначает накопитель. В электричестве понимают как «накопитель электрических зарядов».

Пример:

Какую электроемкость имеет конденсатор, если на его обкладках накапливается заряд 50 нКл при разности потенциалов 2,5 кВ?

Дано:
Q = 50 нКл,
Аφ = 2,5 кВ.

Решение
Используем формулу емкости конденсатора:
Электроемкость - основные понятия, формулы и определение с примерами

С-?

Подставим значения физических величин:

Электроемкость - основные понятия, формулы и определение с примерами

Ответ: электроемкость данного конденсатора 20 пФ.

Первый конденсатор был создан в 1745 г. голландским ученым Питером ван Мушенбруком, профессором Лейденского университета. Проводя опыты по электризации различных тел, он опустил проводник от кондуктора электрической машины в стеклянный графин с водой (рис. 1.33).

Электроемкость - основные понятия, формулы и определение с примерами Питер ван Мушенбрук (1692-1781) – голландский физик; работы посвящены электричеству, теплоте, оптике; изобрел первый конденсатор – лейденскую банку и провел опыты с ней.

Электроемкость - основные понятия, формулы и определение с примерами
Pиc. 133. Из истории открытия простейшего конденсатора лейденской банки

Случайно коснувшись пальцем этого проводника, ученый ощутил сильный электрический удар. В дальнейшем жидкость заменили металлическими проводниками, укрепленными на внутренней и внешней поверхностях банки. Такой конденсатор назвали лейденской банкой. В таком первозданном виде она использовалась в лабораториях более 200 лет.

Более совершенные конденсаторы применяются в современной электротехнике и радиоэлектронике. Их можно найти в преобразователях напряжения (адаптерах), питающих постоянным электрическим током электронные приборы, в радиоприемниках и радиопередатчиках как поставные части колебательных контуров. Они применяются практически во всех функциональных узлах электронной аппаратуры. В фотовспышках конденсаторы накапливают большие заряды, необходимые для действия вспышки.

В электротехнике конденсаторы обеспечивают необходимый режим работы электродвигателей, автоматических и релейных приборов, линий электропередач и т. п.

Во многих широкодиапазонных радиоприемниках конденсаторы переменной емкости (рис. 1.34) позволяют плавно изменять собственную частоту колебательного контура н процессе поиска передачи определенной радиостанции.

Электроемкость - основные понятия, формулы и определение с примерами
Рис. 134. Конденсатор переменной емкости с воздушным диэлектриком

Весьма распространены конденсаторы варикапы, электроемкость которых можно изменять электрическим способом. Конструктивно они весьма схожи с полупроводниковыми диодами.

Конденсаторы могут быть плоскими, трубчатыми, дисковыми. В качестве диэлектрика в них используют парафинированную бумагу, слюду, воздух, пластмассы, керамику (рис. 1.35).

Электроемкость - основные понятия, формулы и определение с примерами
Рис. 1.35. Различные типы конденсаторов

Искусственно созданные диэлектрические материалы позволяют создавать конденсаторы больших емкостей при небольших размерах.

Электроемкость плоского конденсатора

Плоским конденсатором обычно называют систему плоских проводящих пластин – обкладок, разделенных диэлектриком. Благодаря простоте конструкции такого конденсатора легко рассчитывать его емкость и получать значения, подтверждаемые опытами. Для этого достаточно знать его геометрические параметры и электрические свойства диэлектрика между его пластинами. Зависимость электроемкости плоского конденсатора от указанных параметров можно исследовать в школьной лаборатории.

Создадим плоский конденсатор из двух плоских пластин. Для этого одну пластину укрепим на стержне электрометра, я другую — па изоляционной подставке, присоединив ее проводником к корпусу электрометра (рис. 1.36.). В такой системе электрометр будет измерять разность потенциалов между пластинами, образующими плоский конденсатор.

Электроемкость - основные понятия, формулы и определение с примерами
Pиc. 136. Плоский конденсатор, присоединенный к электрометру

Проводя исследования, нужно помнить, что при постоянном значении заряда на пластинах уменьшение разности потенциалов свидетельствует об увеличении электроемкости конденсатора, и наоборот.

При постоянном значении заряда на пластинах уменьшение разности потенциалов свидетельствует об увеличении электроемкости конденсатора, и наоборот.

Сообщим пластинам некоторый заряд и отметим показания стрелки прибора. Когда начнем сближать пластины, уменьшая расстояние между ними, показания стрелки начнут уменьшаться. Это будет свидетельством того, что при уменьшении расстояния между пластинами электроемкость конденсатора будет увеличиваться. При увеличении расстояния между пластинами показания стрелки будут увеличиваться, что свидетельствует об уменьшении электроемкости.

Электроемкость плоского конденсатора обратно пропорциональна расстоянию между его обкладками.

Электроемкость - основные понятия, формулы и определение с примерами

где d – расстояние между обкладками.

Эту, зависимость можно изобразить на графике как обратно пропорциональную зависимость (рис. 1.37).

Электроемкость плоского конденсатора обратно пропорциональна расстоянию между его обкладками.

Электроемкость - основные понятия, формулы и определение с примерами
Pиc. 137. График зависимости электроемкости и плоского конденсатора от расстояния между пластинами

Будем смещать одну пластину относительно другой в параллельных плоскостях, не изменяя расстояния между ними. При атом площадь перекрытия между пластинами будет изменяться (рис. 1.38). Изменение разности потенциалов, отмеченное электрометром, засвидетельствует изменение электроемкости.

Электроемкость - основные понятия, формулы и определение с примерами
Pиc. 138. При расчетах электроемкости плоского конденсатора учитывают площадь перекрытия пластин

Увеличение площади перекрытия приведет к увеличению электроемкости, при уменьшении – наоборот.

Электроемкость плоского конденсатора пропорциональна площади пластин, которые перекрываются.
Электроемкость - основные понятия, формулы и определение с примерами
где S – площадь пластин, которые перекрываются.

Электроемкость плоского конденсатора пропорциональна площади пластин, которые перекрываются.

Эту зависимость можно изобразить графиком прямой пропорциональной зависимости (рис. 1.39).

Электроемкость - основные понятия, формулы и определение с примерами
Pиc. 139. График зависимости электроемкости плоского конденсатора от площади его пластин

Возвратив пластины в первоначальное положение, внесем в пространство между обкладками пластину из диэлектрика. Электрометр отметит уменьшение разности потенциалов между пластинами, что свидетельствует об увеличении электроемкости. Если внести пластину из другого диэлектрика (другая диэлектрическая проницаемость), то изменение электроемкости будет другим.

Электроемкость плоского конденсатора зависит от диэлектрической проницаемости диэлектрика между обкладками.
Электроемкость - основные понятия, формулы и определение с примерами
где ε – диэлектрическая проницаемость диэлектрика.

Эта зависимость изображена графиком на рисунке 1.40.

Электроемкость - основные понятия, формулы и определение с примерами
Рис. 1.40. График зависимости электроемкости плоского конденсатора от диэлектрической проницаемости диэлектрика

Результаты описанных выше исследований можно обобщить формулой электроемкости плоского конденсатора
Электроемкость - основные понятия, формулы и определение с примерами
где ε – относительная диэлектрическая проницаемость диэлектрика; ε0– электрическая постоянная; d – расстояние между пластинами; S – площадь пластины.

Электроемкость плоского конденсатора зависит от диэлектрической проницаемости диэлектрика.

Соединение конденсаторов в батареи

Для получения необходимых значений электроемкости конденсаторы соединяют в батареи. На практике встречается параллельное, последовательное и смешанное соединение конденсаторов.

При параллельном соединении конденсаторов все обкладки соединяются в две группы, в каждую из которых входит по одной обкладке каждого конденсатора. На рисунке 1.41 приведена схема такого соединения. При таком соединении каждая группа обкладок имеет одинаковый потенциал.

Электроемкость - основные понятия, формулы и определение с примерами
Pиc 1.41. Схема параллельного соединения конденсаторов

Если батарею параллельно соединенных конденсаторов зарядить, то между обкладками каждого конденсатора будет одинаковая разность потенциалов. Общий заряд батареи будет равен сумме зарядов каждого из конденсаторов, входящих в батарею:

Электроемкость - основные понятия, формулы и определение с примерами

Если учесть, что Электроемкость - основные понятия, формулы и определение с примерами то

Электроемкость - основные понятия, формулы и определение с примерами
или
Электроемкость - основные понятия, формулы и определение с примерами

Электроемкость батареи параллельно соединенных конденсаторов равна сумме электроемкостей всех конденсаторов.

При последовательном соединении конденсаторов соединяются между собой только две пластины разных конденсаторов. Если в каждом конденсаторе пластины обозначить буквами А и В, то при последовательном соединении пластина B1 будет соединена с пластиной A2, пластина B2 -с пластиной А3 и т. д. (рис. 1.43).

Если цепочку последовательно соединенных конденсаторов присоединить к источнику тока, то об-
кладка A1 и обкладка B1 будут иметь одинаковые по значению заряды +Q и -Q. Благодаря этому все обкладки внутри цепочки будут иметь такие же, но попарно противоположные по знаку заряды:
Электроемкость - основные понятия, формулы и определение с примерами

Электроемкость - основные понятия, формулы и определение с примерами
Pиc. 1.42. Последовательное соединение конденсаторов

Вместе с тем общая разность потенциалов на концах цепочки будет равна сумме разностей потенциалов на каждом конденсаторе:
Электроемкость - основные понятия, формулы и определение с примерами

Учитывая, что Электроемкость - основные понятия, формулы и определение с примерами будем иметь

Электроемкость - основные понятия, формулы и определение с примерами

Разделим левую и правую части равенства на Q:

Электроемкость - основные понятия, формулы и определение с примерами

При последовательном соединении конденсаторов обратное значение электроемкости цепочки равно сумме обратных значений электроемкостей каждого из конденсаторов.

При последовательном соединении конденсаторов обратное значение электроемкости цепочки равно с

При последовательном соединении конденсаторов обратное значение электроемкости цепочки равно сумме обратных значений электроемкостей каждого из конденсаторов.
Электроемкость - основные понятия, формулы и определение с примерами

При последовательном соединении конденсаторов разной электроемкости C1, C2, C3, … Сn общая электроемкость С будет меньше электроемкости самого меньшего конденсатора.
Если C1 < C7 < C< … < Cn, то C < C1.

Электроемкость

То, что деньги хранят в банках, знает даже первоклассник. А вот где хранят заряды? И зачем вообще хранить заряды?

Что такое электроемкость

Электроемкость характеризует способность проводника или системы проводников накапливать электрический заряд. Различают электроемкость уединенного проводника и электроемкость системы проводников (например, конденсатора). Уединенным называют проводник, расположенный вдали от других тел так, что они не оказывают на этот проводник никакого влияния.

Электроемкость уединенного проводника (C) — физическая величина, характеризующая способность проводника накапливать заряд и равная отношению электрического заряда q проводника к его потенциалу М:

Электроемкость - основные понятия, формулы и определение с примерами

Единица электроемкости в Си — фарад: [C] = 1 Ф (названа в честь М. Фарадея).

1 Ф — это электроемкость такого проводника, потенциал которого равен 1 В при сообщении ему заряда 1 Кл; Электроемкость - основные понятия, формулы и определение с примерами

1 Ф — очень большая единица емкости, поэтому используют дольные единицы: Электроемкость - основные понятия, формулы и определение с примерами

Что такое конденсатор

Конденсатор — устройство, представляющее собой систему из двух проводящих обкладок, разделенных тонким слоем диэлектрика (рис. 44.1).

Электроемкость - основные понятия, формулы и определение с примерамиЭлектроемкость - основные понятия, формулы и определение с примерами

Рис. 44.1. Школьный воздушный конденсатор: а — вид; б — устройство; в — обозначение на схемах

Обкладкам конденсатора передают одинаковые по модулю, но противоположные по знаку заряды, что способствует накоплению зарядов: разноименные заряды притягиваются, а значит, располагаются на внутренних поверхностях обкладок.

Обычно для зарядки конденсатора обе его обкладки соединяют с полюсами батареи аккумуляторов: на обкладках появляются равные по модулю, но противоположные по знаку заряды. Результат не изменится, если соединить с полюсом батареи только одну обкладку, заземлив вторую: вследствие электростатической индукции на заземленной обкладке тоже появится заряд, равный по модулю заряду на другой обкладке, но имеющий противоположный знак.

Зарядом конденсатора называют модуль заряда одной из обкладок. Отношение заряда q данного конденсатора к разности потенциалов (Электроемкость - основные понятия, формулы и определение с примерами) между его обкладками не зависит ни от значения q, ни от разности потенциалов (Электроемкость - основные понятия, формулы и определение с примерами), а значит, может служить характеристикой конденсатора. Такую характеристику называют электроемкостью (емкостью) конденсатора:

Электроемкость - основные понятия, формулы и определение с примерами

где U — напряжение между обкладками: Электроемкость - основные понятия, формулы и определение с примерами.

Как показывают исследования, емкость конденсатора увеличится, если увеличить площадь поверхности обкладок или приблизить обкладки друг к другу. На емкость конденсатора влияет также диэлектрик: чем больше его диэлектрическая проницаемость, тем большую емкость имеет конденсатор.

Конденсатор, состоящий из двух параллельных металлических пластин (обкладок), разделенных слоем диэлектрика, называют плоским (см. рис. 44.1). Электроемкость плоского конденсатора вычисляют по формуле:

Электроемкость - основные понятия, формулы и определение с примерами

где Электроемкость - основные понятия, формулы и определение с примерами Ф/м — электрическая постоянная; ε — диэлектрическая проницаемость диэлектрика; S — площадь пластины конденсатора; d — расстояние между пластинами.

Поле между пластинами плоского конденсатора однородно, поэтому напряженность Е поля связана с напряжением U на конденсаторе формулой U=Ed.

Как рассчитывают электроемкость батареи конденсаторов

Конденсаторы характеризуются емкостью и максимальным рабочим напряжением Umax. Если напряжение, поданное на конденсатор, значительно превысит Umax, произойдет пробой — между обкладками возникнет искра, которая разрушит изоляцию.

Чтобы получить необходимую электроемкость при определенном рабочем напряжении, конденсаторы соединяют в батареи, применяя параллельное, последовательное и смешанное соединения. Рассмотрим батарею из трех конденсаторов электроемкостями Электроемкость - основные понятия, формулы и определение с примерами

Электроемкость - основные понятия, формулы и определение с примерами

При параллельном соединении конденсаторов положительно заряженные обкладки всех конденсаторов соединяют в один узел, а отрицательно заряженные — в другой узел (рис. 44.2). В таком случае общий заряд q батареи конденсаторов равен алгебраической сумме зарядов отдельных конденсаторов:

Электроемкость - основные понятия, формулы и определение с примерами

Соединенные в один узел обкладки представляют собой один проводник, поэтому потенциалы обкладок, а следовательно, и разность потенциалов (напряжение) между обкладками всех конденсаторов одинаковы:

Электроемкость - основные понятия, формулы и определение с примерами

Таким образом, при параллельном соединении конденсаторов допустимое рабочее напряжение батареи определяется рабочим напряжением одного конденсатора.

Поскольку Электроемкость - основные понятия, формулы и определение с примерами то Электроемкость - основные понятия, формулы и определение с примерами следовательно, электроемкость батареи из трех параллельно соединенных конденсаторов равна:

Электроемкость - основные понятия, формулы и определение с примерами

При последовательном соединении конденсаторы соединяют друг с другом разноименно заряженными обкладками (рис. 44.3). В этом случае заряды всех конденсаторов будут одинаковы и равны заряду батареи:

Электроемкость - основные понятия, формулы и определение с примерами

Электроемкость - основные понятия, формулы и определение с примерами

Напряжение на батарее последовательно соединенных конденсаторов равно сумме напряжений на отдельных конденсаторах:

Электроемкость - основные понятия, формулы и определение с примерами

Таким образом, допустимое рабочее напряжение батареи последовательно соединенных конденсаторов больше допустимого рабочего напряжения отдельного конденсатора. Электроемкость батареи последовательно соединенных конденсаторов вычисляют по формуле:

Электроемкость - основные понятия, формулы и определение с примерами

При последовательном соединении конденсаторов емкость батареи меньше, чем емкость конденсатора с минимальной емкостью.

Приведенные соотношения можно обобщить для любого количества конденсаторов.

Обратите внимание!

  • Если батарея содержит n параллельно соединенных конденсаторов электроемкостью C′ каждый, то: C=nC′
  • Если батарея содержит n последовательно соединенных конденсаторов электроемкостью C′ каждый, то: Электроемкость - основные понятия, формулы и определение с примерами

Энергия заряженного конденсатора

Заряженный конденсатор, как и любая другая система заряженных тел, обладает энергией.

Убедимся в этом с помощью простого эксперимента. Присоединим к обкладкам заряженного конденсатора лампочку. Замкнем ключ — лампочка загорится. Теперь измерим напряжение на обкладках конденсатора — оно равно нулю, то есть конденсатор разрядился, а это означает, что заряженный конденсатор обладал энергией, которая частично превратилась в энергию света.

Вычислим энергию заряженного до напряжения Электроемкость - основные понятия, формулы и определение с примерами конденсатора емкостью С, на котором накоплен заряд Электроемкость - основные понятия, формулы и определение с примерами. Эту энергию точнее было бы назвать энергией электростатического поля, которое существует между обкладками заряженного конденсатора, поскольку энергия любых заряженных тел сосредоточена в электрическом поле, создаваемом этими телами.

При разрядке конденсатора напряжение U на его обкладках изменяется прямо пропорционально заряду q конденсатора: Электроемкость - основные понятия, формулы и определение с примерами поэтому график зависимости U(q) имеет вид, представленный на рис. 44.4.

Электроемкость - основные понятия, формулы и определение с примерами

Рис. 44.4. К определению работы, которую совершает электрическое поле заряженного конденсатора при его разрядке

Мысленно разделим весь заряд конденсатора на маленькие «порции» Dq и будем считать, что при потере каждой такой «порции» напряжение на конденсаторе не изменяется. Таким образом получим ряд полос. Площадь S′ каждой полосы равна произведению двух ее сторон: Электроемкость - основные понятия, формулы и определение с примерами, где U′ — напряжение, при котором конденсатор терял данную «порцию» заряда Электроемкость - основные понятия, формулы и определение с примерами; A′ — работа, которую совершило поле при потере конденсатором заряда Электроемкость - основные понятия, формулы и определение с примерами. Полная работа, которую совершило поле при уменьшении заряда конденсатора от Электроемкость - основные понятия, формулы и определение с примерами до 0, определяется площадью выделенного на рис. 44.4 треугольника.

Следовательно,Электроемкость - основные понятия, формулы и определение с примерами. Учитывая, чтоЭлектроемкость - основные понятия, формулы и определение с примерамиполучим: Электроемкость - основные понятия, формулы и определение с примерами С другой стороны, данная работа равна уменьшению энергии электрического поля конденсатора от Электроемкость - основные понятия, формулы и определение с примерамидо нуля: A=Электроемкость - основные понятия, формулы и определение с примерами − 0 = W. Таким образом, энергия Электроемкость - основные понятия, формулы и определение с примерами заряженного до напряжения U конденсатора, имеющего электроемкость С и заряд q, равна:

Электроемкость - основные понятия, формулы и определение с примерами

Для чего нужны конденсаторы

В современной технике сложно найти отрасль, где не применялись бы конденсаторы. Без них не обходятся радио­ и телеаппаратура (настройка колебательных контуров), радиолокационная и лазерная техника (получение мощных импульсов), телефония и телеграфия (разделение цепей переменного и постоянного токов, тушение искр в контактах), электроизмерительная техника (создание образцов емкости). И это далеко не полный перечень.

В современной электроэнергетике конденсаторы тоже имеют широкое применение: они присутствуют в конструкциях люминесцентных светильников, электросварочных аппаратов, устройств защиты от перенапряжений. Конденсаторы применяют и в других, не электротехнических, областях техники и промышленности (в медицине, фототехнике и т. д.).

Разнообразие областей применения обусловливает большое разнообразие конденсаторов. Наряду с миниатюрными конденсаторами, имеющими массу меньше грамма, а размеры порядка нескольких миллиметров, существуют конденсаторы массой несколько тонн и высотой больше человеческого роста. Емкость современных конденсаторов может составлять от долей, а рабочее напряжение может быть в пределах от нескольких вольт до нескольких сотен киловольт. Конденсаторы можно классифицировать по следующим признакам и свойствам:

  • по назначению — постоянной и переменной емкости;
  • по форме обкладок — плоские, сферические, цилиндрические и др.;
  • по типу диэлектрика — воздушные, бумажные, слюдяные, керамические, электролитические и др.

Выводы:

Электроемкость - основные понятия, формулы и определение с примерами

  • Энергию заряженного конденсатора можно вычислить по формулам: Электроемкость - основные понятия, формулы и определение с примерами
  • Конденсаторы классифицируют по назначению (постоянной и переменной емкости); по форме обкладок (плоские, сферические, цилиндрические и др.); по типу диэлектрика (воздушные, бумажные, слюдяные, керамические, электролитические и др.).
  • Полупроводники
  • Потенциал электрического поля
  • Постоянный электрический ток
  • Законы постоянного тока 
  • Принцип суперпозиции электрических полей
  • Проводники в электрическом поле
  • Диэлектрики в электрическом поле
  • Закон Кулона

Конденсаторы – это приборы, обладающие
большой электроемкостью, которые
способны накапливать большие заряды.
Простейший конденсатор состоит из двух
проводников (обкладок), расположенных
на малом расстоянии друг от друга.
Практически очень важно, чтобы
электрическое поле было сосредоточено
внутри конденсатора. Для этого заряды
на обкладках должны быть одинаковы по
модулю и противоположны по знаку (и).

Электроемкостью конденсатора называют
величину
,
пропорциональную зарядуконденсатора, и обратно пропорциональную
разности потенциалов между обкладками:

(2.7)

Разность потенциалов
называют напряжением и обозначают.
Поэтому формулу (2.7) можно представить
в виде:

(2.8)

Размерность емкости конденсатора
= ФАРАД.

Емкость конденсатора зависит от размеров
и формы обкладок, от расстояния между
ними и от диэлектрика, заполняющего
конденсатор.

Примеры вычисления электроемкостей различных конденсаторов

1 Электроемкость плоского конденсатора(рис. 4)

Рис. 4

Пусть
– площадь обкладок,
расстояние между обкладками, зазор
между обкладками заполнен диэлектриком
с проницаемостью.
Еслилинейных размеров обкладок, можно
пренебречь краевыми эффектами и считать
электрическое полевнутри конденсатора практически
однородным, а зарядраспределенным по пластинам равномерно
с поверхностной плотностью.

Напряженность поля в конденсаторе:

Напряжение между обкладками:

.

Отсюда емкость плоского конденсатора
равна:

(2.9)

Ф/м

2 Электроемкость цилиндрического
конденсатора
(рис. 5)

Рис. 5

Пусть
,– радиусы внутренней и внешней
цилиндрических обкладок,– длина конденсатора,
зазор между обкладками.

Если
,
то рассеянием поля вблизи краев обкладок
можно пренебречь и вычислить поле в
зазоре по формуле

.

(см. 1.24 и 1.13).

Напряжение между обкладками

.

Следовательно, емкость цилиндрического
конденсатора равна

. (2.10)

Предположив, что
,
преобразуемпо формуле,
справедливой для:

Подставив в (2.10) и учтя, что

площадь обкладки, получим

,

Что совпадает с формулой (2.9) для емкости
плоского конденсатора.

3 Электроемкость сферического
конденсатора (рис. 6)

Рис. 6

Пусть
,– радиусы внутренней и внешней сферических
обкладок,
зазор между обкладками. Если заряд
конденсатора,
то напряженность поля между обкладками
()
определяется по теореме Гаусса:

Напряжение на конденсаторе

Отсюда следует, что емкость сферического
конденсатора

(2.11)

Если
,
то

,
совпадает с формулой (2.9)

Соединение конденсаторов

1 Параллельное соединение конденсаторов
(рис. 7)

Напряжение на конденсаторах одинаково

,

заряд различен
.

Общий заряд
всей батареи равен

Емкость батареи

(2.12)

Рис. 7

Таким образом, при параллельном соединении
конденсаторов емкости складываются.

2. Последовательное соединение(рис.
8)

Рис. 8

Напряжение на батарее

Заряд на конденсаторах одинаков

Поэтому напряжение на каждом из
конденсаторов:

;;….

Отсюда

,
или

(2.13)

При последовательном соединении
конденсаторов складываются величины,
обратные емкости.

Задачи

1. На два последовательно соединенных
конденсатора, имеющих емкости
=100
пФ и=200
пФ, подано постоянное напряжение=300
В. Определить напряженияина конденсаторах и зарядна
их обкладках.

Решение:

,

Отсюда следует равенство

Кроме того,

Отсюда получим, что

В

В

Кл

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Расчёт ёмкости конденсатора

Содержание

  • 1 Конденсатор
  • 2 Емкость
  • 3 Зависимость
  • 4 Расчет
    • 4.1 Плоский конденсатор
    • 4.2 Электроемкость
    • 4.3 Сферический конденсатор
    • 4.4 Цилиндрический
  • 5 Проверка
  • 6 Заключение
  • 7 Видео по теме

Конденсаторы нашли в наше время очень широкое применение в электронике и электротехнике, ведь они являются основными элементами большинства электрических цепей и схем. Постараемся подробно в данной статье рассказать — что такое электроемкость конденсатора. Так же будут приведены применяемые формулы расчета, описаны различные виды таких устройств и рассказано об их маркировке. Кроме того будет затронуто влияние различных факторов на емкость конденсатора.

Конденсаторы

Конденсатор

Прежде чем разобраться с тем, что такое емкость простейшего конденсатора, необходимо определиться, что из себя представляет этот электроэлемент. Конденсатором является радиоэлектронная деталь, которая может накапливать и отдавать определенную порцию электрического заряда. Состоит устройство из следующих элементов:

  1. Корпуса. Зачастую выполняется из алюминия. По форме он может быть плоским, сферическим и цилиндрическим.
  2. Обкладок (2 и более). Их делают из металлических пластинок или фольги.
  3. Диэлектрической прокладки. Устанавливается между обкладками и служит в качестве изолятора.
  4. Двух или более выводных контактов для подключения устройства в электроцепь.

Устройство конденсатора

Работает такой накопитель электрического заряда следующим образом.

  1. В момент подключения элемента к источнику электрического тока, он выступает в роли проводника. В этот момент электроток имеет максимальное значение, а напряжение — минимальное.
  2. На обкладках элемента начинают скапливаться положительные и отрицательные заряды (электроны и ионы). Таким образом происходит зарядка самого устройства. На момент заряда сила электротока постепенно уменьшается, а напряжение наоборот — увеличивается.
  3. После того как количество заряда в конденсаторе станет больше допустимого предела, он разряжается и процесс опять начинает повторяться циклически.

Основой работоспособности данного устройства является его емкость. Именно от этого параметра зависит время накопления заряда и общая «вместимость» устройства. О том, как на схемах обозначается простейший конденсатор, поможет понять следующий рисунок ниже.

Обозначение конденсатора на схеме

Электрическая емкость, как и сами конденсаторы, нашли широкую область применения. Их используют в качестве:

  1. Частотных фильтров.
  2. Источника импульсов для различной фотоаппаратуры.
  3. Сглаживателей пульсирующих токов в выпрямителях.
  4. Фазосдвигающих элементов для электрических двигателей.

Применение конденсаторов в различных сферах основано именно на способности устройства накапливать электрический заряд. В более сложной электроаппаратуре эти устройства используются для бесперебойного поддержания определенного напряжения в разных накопителях данных.

Емкость

Емкостью конденсатора является физическая величина, которая определяет отношение между накопленным зарядом на обкладках и разностью потенциалов между ними.

В системе «СИ» емкость конденсатора и ее единица измерения — Фарад. В формулах для ее обозначения используется буква Ф (F). Однако емкость конденсатора редко измеряется в Фарадах, потому что это довольно большая величина. Чаще всего применяют ее кратные и дольные значения.

Кратные и дольные величины емкости

Значение электроемкости конденсатора всегда можно найти в маркировке устройства, которая нанесена на его корпус.

Маркировка конденсаторов

На схеме элемент обозначается буквой «С». Обозначение емкости является обязательным условием, ведь это позволит упростить процесс подбора необходимой электродетали для схемы.

Зависимость

Благодаря приведенному ранее описанию, мы узнали — что такое емкость. Далее попытаемся разобраться, от чего зависит эта характеристика. Емкость конденсатора зависит от расстояния между обкладками, их площади, а так же от самого материала диэлектрика. Благодаря этому можно сказать, от чего зависит емкость устройства: она прямопропорциональна площади пластины конденсатора и обратно пропорциональна расстоянию между пластинами.

Рассмотрим, как найти данную величину. Для плоского конденсатора формула расчета емкости выглядит следующим образом:

Формула плоского конденсатора

Зависимость способности устройства накапливать заряд от площади его обкладок и толщины диэлектрической прослойки так же указывает на то, что на данную величину оказывают влияние и общие размеры элемента.

Расчет

Расчет емкости конденсатора делается по довольно простой формуле:

Расчет емкости через заряд и разность потенциалов

В этой формуле:

  1. q — величина заряда, накопленного конденсатором.
  2. φ1−φ2 — разница потенциалов между его обкладками.

Данное выражение помогает довольно легко рассчитать емкость любого плоского конденсатора. Как и говорилось ранее в статье, этот величина электроёмкости конденсаторов всегда зависит от его геометрических размеров.

Плоский конденсатор

Отличительная особенность плоского конденсатора — наличие двух параллельно расположенных обкладок. Такие устройства могут иметь квадратную, круглую или прямоугольную форму.

Плоские конденсаторы

Рассмотрим далее, как определить емкость данного вида конденсаторов. Найти емкость такого типа конденсаторов всегда поможет следующая формула:

Формула емкости плоского конденсатора

Электроемкость

Зачастую применение конденсаторов подразумевает подключение в цепь сразу нескольких таких элементов. Благодаря этому можно увеличить общую емкость. Формула для определения электроемкости плоского конденсатора при параллельном подключении выглядит следующим образом:

Параллельное соединение конденсаторов

Определение общей емкости для такой электроцепи делается следующим образом: C=C1+C2

Величина заряда и напряжение для такой схемы соединения определяется следующим образом:

qобщ=q1+q2

Uобщ=U1=U2

Определить емкость конденсатора для последовательного соединения элементов позволит формула:

Последовательное соединение конденсаторов

То есть в этом случае общую электроемкость плоского конденсатора находят с помощью выражения:

1/Cобщ=1/C1+1/C1

Благодаря данным выражениям найдем общее напряжение и определим величину заряда для последовательного соединения элементов:

qобщ=q1=q2

Uобщ=U1+U2

Емкость конденсатора и применяемые формулы расчетов для различных вариантов соединения плоских устройств приведены на рисунке ниже. Можно сказать, что она очень наглядная и удобная для использования:

Особенности соединения конденсаторов

Сферический конденсатор

Сферическое устройство имеет две обкладки в форме концентрических сфер, между которыми расположен диэлектрик. Емкость сферического конденсатора можно определить следующим образом:

Емкость сферического конденсатора

В данном выражении значение «4π» определяет коэффициент рассеивания зарядов на поверхности сферических плоскостей.

Расчет емкости сферического конденсатора можно сделать по формуле для плоского устройства в том случае, если зазор по сравнению с радиусом сферы имеет довольно маленькое значение.

Цилиндрический

Цилиндрическое устройство немного схоже с ранее описанным сферическим. В них применяются схожие по форме обкладки. Они имеют так же круглую форму, а значит на расчет емкости цилиндрического устройства так же будет влиять такой параметр, как радиус обкладок. Отличием заключается только в самой вытянутой форме пластин цилиндрического конденсатора. Емкость цилиндрического конденсатора определяется по формуле:

Емкость цилиндрического конденсатора

Сферические и цилиндрические типы элементов сильно зависимы от толщины слоя диэлектрика. Чем он толще, тем меньше будет объем заряда, а значит у него повысится устойчивость к воздействию пробивного напряжения.

Проверка

Как отмечалось ранее, емкость устройства проставляется на его корпусе. Проверить паспортную величину и имеющуюся емкость устройства можно при помощи тестера с режимом «СХ». Например, для этого подойдут популярные модели M890D, AM-1083, DT9205A, UT139C, другие. Далее надо будет:

  1. Выпаять и разрядить устройство. Разрядка проводится строго изолированным металлическим предметом.
  2. Вставить ножки конденсатора в пазы «СХ», соблюдая полярность.
  3. Прибор отобразит на табло результат измерений. Его нужно будет сравнить с тем, который прописан в маркировке на его корпусе. Если значения между собой сильно отличаются, то это говорит о том, что элемент неисправный и требует замены.

Проверка кондесатора мультиметром

Если мультиметр показал наличие бесконечной емкости, то это говорит о коротком замыкании внутри корпуса устройства и оно так же признается неисправным, требующим замены. Кроме того неисправность всегда можно определить визуально по трещинам или вздутию корпуса.

Заключение

В статье было описано — что такое конденсатор, как определить его емкость, от чего зависит этот параметр и основные формулы для расчета емкости различных типов таких устройств. Устройства всегда имеют на корпусе специальную маркировку, поэтому довольно просто выбрать наиболее подходящий по значению накопитель электрозаряда. Кроме того был приведен способ проверки устройства, который позволяет определить возможные его неисправности.

Видео по теме

Добавить комментарий