Как найти емкасть с

Конденсатор – радиоэлектронный прибор, способный накапливать и отдавать заряд. Как правило, на его корпусе дается информация о его емкости, но иногда требуется самому рассчитать этот номинал.

Конденсаторами могут выступать и проводники, они также обладают определенной емкостью. Для расчета существует несколько формул емкости конденсатора, их и рассмотрим.

В чем измеряется емкость конденсатора

Что такое заряд еще проходят в школе, когда эбонитовую палочку натирают о шерстяную ткань и подносят к маленьким кусочкам бумаги.

Под действием электромагнитных сил бумага прилипает к палочке. Подобный заряд накапливается в конденсаторе. Но для начала познакомимся с самим конденсатором.

Простейшим конденсатором являются две металлические пластины, разделенные диэлектриком. От качества диэлектрика зависит, как долго энергия заряженного конденсатора может сохраняться.

На этих пластинах, они еще называются обкладками, накапливается разноименный заряд. Как это происходит?

как найти емкость конденсатора
как найти емкость конденсатора

Электрический заряд, а в случае с металлами это электроны, способен перемещаться под действием электродвижущей силы (э. д. с.).

Подключая металлические пластинки к источнику тока, мы получаем замкнутую цепь, но разделенную диэлектриком. Электростатическое поле проходит этот диэлектрик, замыкая цепь, а электроны, дойдя до препятствия, останавливаются и скапливаются.

Полная статья на блоге “Электрик в доме”:

Получается, на одной обкладке наблюдается избыток электронов, и эта пластина имеет отрицательный знак, а на другой пластине электронов недостает настолько же, знак на этой обкладке, конечно же, будет положительным.

Вот теперь нужна для определения емкости конденсатора формула, определяющая, какой заряд способен разместится на конкретном конденсаторе.

В качестве единицы измерения в международной системе (СИ) емкость определяется в Фарадах.

Много это или мало – емкость в 1Ф? Чтобы конденсатор обладал емкостью в 1Ф, он должен содержать в себе заряд в 1К (кулон) и при этом напряжение между обкладками должно равняться 1 вольту.

Интересно. Что такое заряд в 1 кулон? Если два предмета, каждый из которых имеет заряд в один кулон разместить в вакууме на расстоянии один метр, то сила притяжения между ними будет равна силе притяжения землей тела массой в один миллион тонн.

Как и любая буквальная емкость один и тот же конденсатор может вмещать разное количество заряда.

устройство конденсатора
устройство конденсатора

Рассмотрим пример.

  • В трехлитровую банку входит три литра воздуха. Его хватит для дыхания, допустим, на 3 минуты. Но если воздух закачать под каким-то давлением, то емкость так и останется три литра, однако дышать можно будет дольше. Так устроен акваланг для ныряльщиков. Получается, количество воздуха в банке зависит от давления, которое в ней создается. Точно так же есть некая зависимость между различными силами, влияющими на емкость.

Формула емкости плоского конденсатора

Прежде чем узнать, по какой формуле вычисляется емкость плоского конденсатора, рассмотрим формулу для одиночного проводника. Она имеет вид:

формула емкости плоского конденсатора
формула емкости плоского конденсатора
  • где Q – заряд,
  • φ – потенциал.

Как видно емкость конденсатора, формула которого здесь приведена, будет тем больше, чем больший заряд способен накапливаться на нем при незначительном потенциале. Чтобы легче это было понять, рассмотрим получившие широкое распространение плоские конденсаторы разных размеров.

Для получения качественного конденсатора важны любые мелочи:

  1. ровная поверхность каждой обкладки;
  2. обе пластинки по всей площади должны располагаться на одинаковом расстоянии;
  3. размеры обкладок должны быть строго идентичными;
  4. от качества диэлектрика, расположенного между пластинками, будет зависеть ток утечки;
  5. емкость напрямую зависит от расстояния между обкладками, чем оно меньше, тем больше емкость.

Теперь обратимся к плоскому конденсатору. Формула определения емкости конденсатора несколько отличается от приведенной выше:

емкость конденсатора формула
емкость конденсатора формула
  • где S – площадь одной обкладки,
  • εr – диэлектрическая проницаемость диэлектрика,
  • ε0 – электрическая постоянная,
  • d – расстояние между обкладками.

Электрическая постоянная выражается числом 8,854187817×10-12.

емкость конденсатора
емкость конденсатора

Внимание! Эта формула справедлива только тогда, когда расстояние между пластинами намного меньше их площади.

Попробуем разобраться с каждой переменной подробнее. Площадь измеряется в м2, точнее, приводится к этой величине. А вот проницаемость диэлектрика может обозначаться по-разному.

В России это εr (также означает относительная проницаемость), в англоязычной литературе встречается εa (также означает абсолютная проницаемость), а то может и вовсе использоваться без индекса, просто ε. О том, что здесь используется диэлектрическая проницаемость диэлектрика можно понять из контекста.

Дальше идет ε0. Это уже вычисленное значение, измеряемое в Ф/м. Последняя переменная – d. Измеренное расстояние также приводится к метру. Емкость конденсатора, формула которого сейчас рассматривается, показывает сильную зависимость от расстояния обкладок. Поэтому стараются это расстояние по возможности сокращать. Почему этот показатель так важен?

Идеальными условиями для получения наибольшей емкости – это отсутствие промежутка между обкладками, чего, конечно, добиться невозможно. Чем ближе находятся разноименные заряды, тем сильнее сила притяжения, но здесь возникает компромисс.

При уменьшении толщины диэлектрика, а именно он разделяет разноименные заряды, возникает вероятность его пробоя из-за разности потенциалов на обкладках. С другой стороны, как уже говорилось, при увеличении напряжения увеличивается количество зарядов. Вот и приходится выбирать между емкостью и рабочим напряжением конденсатора.

Есть другая формула для плоского переменного конденсатора:

Формула для расчета емкости плоского конденсатора
Формула для расчета емкости плоского конденсатора

Здесь диэлектрическая проницаемость обозначена буквой ε, π = 22/7 ≈ 3,142857142857143, d – толщина диэлектрика. Формула предназначена для конденсатора, состоящего из нескольких пластин.

Допустимая толщина диэлектрика d также зависит от εr, чем выше коэффициент, тем тоньше можно использовать диэлектрик, тем большую емкость будет иметь конденсатор. Это был самый сложный материал, дальше будет легче.

Формула емкости цилиндрического конденсатора

Теперь поговорим о том, как найти емкость конденсатора цилиндрической формы. К ним относятся конденсаторы, состоящие из двух металлических цилиндров, вставленных один в другой.

Для разделения между ними расположен диэлектрик. Формула емкости конденсатора выглядит следующим образом:

Формула электрической емкости цилиндрического конденсатора
Формула электрической емкости цилиндрического конденсатора

Здесь видим несколько новых переменных:

  • l – высота цилиндра;
  • R1 и R2 – радиус первого и второго (внешнего) цилиндров;
  • ln – это не переменная, а математический символ натурального логарифма. На некоторых калькуляторах он имеется.

Всегда нужно помнить, что все величины должны приводиться к единой системе, в приведенной ниже таблице указаны международные системы единиц (СИ).

международные системы единиц (СИ)
международные системы единиц (СИ)

Из нее видно, что все расстояния нужно приводить к метру.

Формулы для расчета емкости конденсаторов
Формулы для расчета емкости конденсаторов

Еще стоит обращать внимание на качество диэлектрика. Если толщина диэлектрика влияет только на емкость конденсатора, то его качество затрагивает сохранность энергии. Другими словами, конденсатор с качественным диэлектриком будет иметь меньший саморазряд.

Определить качество можно по числу, стоящему возле вещества, чем оно больше, тем лучше качество. Сравнение производится по вакууму, значение которого равно единице.

Формула емкости сферического конденсатора

Последнее что осталось разобрать – формулу определения емкости конденсатора, состоящего из двух сфер. Причем одна сфера находится внутри другой. Формула имеет следующий вид:

Формула расчета емкости сферического конденсатора
Формула расчета емкости сферического конденсатора

Из приведенных переменных здесь все знакомо. Стоит обратить внимание лишь на сам конденсатор.

Кроме своей необычной формы у него есть свои особенности: внутри малой сферы никакого заряда нет, он образуется на внешней части малой сферы и внутренней части большого шара. Также заряд отсутствует и на внешней стороне внешней сферы.

Так же как и все другие конденсаторы, сферы разделены диэлектриком. Толщина и качество диэлектрика оказывают такое же влияние на емкость, как в случае с другими конденсаторами.

После того как были рассмотрены формулы, стоит испробовать их на практике. Рассмотрим, как найти емкость конденсатора каждого вида.

Примеры решения задач

Начнем с плоского конденсатора. Формула для этого вида:

формула емкости плоского конденсатора
формула емкости плоского конденсатора

Допустим, у нас есть следующие значения:

  • в качестве диэлектрика возьмем слюду толщиной 0,02 мм, ε = 6;
  • конденсатор квадратный со сторонами в 7 мм.

Определяем площадь пластин: 7×7 = 49 мм2.

Приводим к единой системе: 4,9×10-5 = 0,000049 м2. Толщина диэлектрика 0,02×10-5 = 0,00002 м. Электрическая постоянная 8,854187817×10-12.

Подставляем в формулу и высчитываем числитель: 6×8,854187817×10-12 ×4,9×10-5, сокращаем и решаем 6×49×8,854187817×10-17 = 2,603131218198×10-14.

Делим на толщину диэлектрика: 2,603131218198×10 / 2×10 = 1301,565609099×10 = 1,301565609099×10. Шесть нулей – это тысячи или приставка «микро», получается округлено 1,3 мкФ.

Возможно, при вычислении была допущена ошибка, но это не экзамен по математике. Важно понять сам метод вычисления.

Формула для цилиндрического конденсатора:

Электроемкость цилиндрического конденсатора
Электроемкость цилиндрического конденсатора

Выбираем значения:

  • l = 1 см;
  • R1 = 0,25 мм;
  • R2 = 0,26 мм;
  • ε = 2.

Подгоняем под единую систему: l – 1 см = 1×10-2 = 0,01 м; R1 – 0,25 мм = 0,0025 м; R2 – 0,26 мм = 0,0026 м.

Подставляем значения в числитель: 2×3,142857142857143×8,854187817×10-12×2×0,01 1,11×10-12. Находим знаменатель: 0,26:0,25 = 1,04.

Находим натуральный логарифм, он равен примерно 0,39. Числитель делим на знаменатель: 1,11×10-12/0,39 = 2,85×10-12.

Число с 12 нулями это приставка «пико», получаем 2,85 пФ.

Формула для сферического конденсатора:

Электроемкость цилиндрического конденсатора
Электроемкость цилиндрического конденсатора

Выбираем значения:

  • ε= 4;
  • r1= 5 см;
  • r2= 5,01 см.

Снова все подгоняем: 5 см = 0,05 м; 5,01 см = 0,0501 м. Заполняем числитель. 4×3,142857142857143×4×8,854187817×10-12×0,05×0,0501 1,11×10-12 Вычисляем знаменатель: 0,0501 – 0,05 = 0,01. Производим деление: 1,11×10-12×0,01 = 1,11×10-10. Снова получили пикофарады, а именно 1,11 пФ.

Интересные статьи на канале:

Статья заинтересовала? Лайк, подписка, комментарий!

Друзья ПОДПИСЫВАЙТЕСЬ Дзен на канал, а также заходите на блог https://electricvdome.ru 👍!

#конденсатор #емкость #формула

Конденсаторы часто встречающийся элемент в электрических схемах.
Они нужны для накопления заряда, сглаживания пульсаций электрического тока, фильтрация отдельных видов частот,
создание фазовых сдвигов обеспечивающих работу электрических двигателей и для других технических решений.

Содержание

  1. Что такое конденсатор
  2. От чего зависит емкость и заряд конденсатора
  3. Как устроен конденсатор
  4. Виды конденсаторов
  5. Плоский
  6. Сферический
  7. Цилиндрический
  8. Полярные
  9. Танталовые
  10. Ионисторы
  11. Электролитические
  12. Неполярные
  13. Керамические
  14. Пленочные
  15. Smd
  16. Переменные
  17. Максимальное рабочее напряжение на конденсаторе
  18. Величина и значение потери у конденсатора
  19. Конденсатор в цепи электрического тока
  20. Постоянного
  21. Переменного
  22. Сопротивления конденсатора в зависимости от
  23. Частоты и сдвига фаз
  24. Номинала конденсатора
  25. Последовательное и параллельное соединение конденсаторов
  26. Формулы для вычисления
  27. Посредством математических выражений
  28. Как зависит емкость от среды диэлектрика
  29. Как измерить емкость
  30. Мультиметром
  31. Осциллографом
  32. Тестером не имеющим прямой функции
  33. Мостовыми измерителями
  34. Единицы расчета
  35. Математическое выражение фарада
  36. Диэлектрическая проницаемость
  37. Маркировка конденсаторов
  38. Способы обозначения конденсатора
  39. Код конденсаторов импортных
  40. Кодовая для конденсаторов поверхностного монтажа

Что такое конденсатор

Конденсаторы — это компоненты в электронике, которые могут накапливать электрические заряды.

Эти детали используются в любом электронном устройстве.

Свойство конденсатора – это накопление заряда и последующая его отдача.

От чего зависит емкость и заряд конденсатора

Емкость конденсатора это физическая величина по которой производится оценка его возможностей выполнять свои функциональные задачи.

Практическое значение емкости выражается в способности электрического устройства к накоплению заряда.

Величина напряжения на пластинах в прямой пропорции влияет на количественные характеристики заряда на обкладках.
Формула определения емкости выглядит как

C = q/U,

где С — емкость конденсатора,

q — означает количество заряда на одной из пластин,

U — разница потенциалов на обкладках.
Приведенная формула расчета имеет в большей степени теоретический характер.

Существует иное определение емкости, которое полезнее в практическом смысле.

В формуле C = єS/d обозначена ее связь с площадью S обкладок, расстоянием между пластинами d и свойствами диэлектрика є.

Из формулы следует, что чем больше площадь обкладок, тем больший заряд может на них разместиться и чем больше расстояние между пластинами,
тем слабее заряженные частицы будут притягиваться друг к другу, увеличивая их шансы покинуть обкладку.

Максимальная диэлектрическая проницаемость материала, расположенного между пластинами, увеличивает емкость конденсатора без изменения габаритных характеристик.

Как устроен конденсатор

Конденсатор состоит из двух или нескольких металлических пластин, между которыми располагается диэлектрический материал.
Электроны начинают двигаться, но не в состоянии преодолеть диэлектрик, из-за этого между пластинами накапливается электрический заряд.

Хорошими диэлектрическими свойствами обладают бумага покрытая оксидом алюминия, слюда, электролит, керамика и подобные материалы.

Заряды на разных обкладках одинаковые по величине, но противоположные по знаку.

Виды конденсаторов

Конденсаторы различаются по целому ряду параметров: по конфигурации, по типу диэлектрика,
по материалу обкладок, по виду изменения емкости (постоянные, переменные, подстрочные),
по рабочему напряжению.
Ниже на рисунке рассмотрим основные виды электрических устройств различной конфигурации.

Плоский

Емкость плоского

Плоский вид устройства, – это две пластины, которые располагаются параллельно друг против друга.
Они отличаются компактностью, сохраняя при этом большую емкость.

Емкость плоского конденсатора возрастает по мере увеличения площади пластин и при уменьшении расстояния между ними.

Для расчета емкости плоского конденсатора следует пользоваться формулой C = εεS / d

Сферический

Сферического

Сферический конденсатор это две концентрично расположенные сферы с находящимся между ними тонким диэлектриком.
Наружную поверхность внешней обкладки заземляют для создания электрического поля непосредственно между обкладками.
С учетом геометрии обкладок расчет емкости сферического конденсатора производится по формуле

C = 4πεε0 Rr/ R — r, где R — радиус наружной обкладки, r — радиус внутренней.

Цилиндрический

целендрического

Цилиндрический конденсатор выполнен из двух полых цилиндров с разными радиусами образующих их окружностей с общей осью.
Между наружной поверхностью малого цилиндра и внутренней поверхностью большого находится диэлектрик.
Для расчета емкости цилиндрического конденсатора можно воспользоваться формулой
C = 2πєє0L/ ln (R2/R1),

где L — длина цилиндрических обкладок,

R2 — радиус наружного цилиндра,

R1 — радиус внутреннего цилиндра,

ln — обозначение логарифмического действия.

Полярные

Полярные конденсаторы – это приборы, имеющие полярность, а именно плюс и минус.
Важно чтобы плюсовой контакт был соединен с «плюсом» источника питания, а минусовой с его «минусом».
Нарушение полярности может привести даже к взрыву конденсатора.
К полярным принадлежат танталовые, ионисторы, конденсаторы с электролитическим диэлектриком.

Танталовые

танталовые

В танталовых конденсаторах, относящихся к электролитическому типу, в качестве диэлектрика используется спеченный танталовый порошок оксид тантала, отсюда происходит их название.
Такой диэлектрик сводит практически к нулю ток утечки.

Недостаток заключается в невозможности работать в электрических цепях с высоким напряжением.

Танталовый конденсатор включает в себя 4 элемента – анод, диэлектрик, электролит и катод.

В отличие от электролитических танталовые имеют меньшую собственную индуктивность, благодаря чему их можно применять на высоких частотах.

Компактность танталовых устройств позволяет их использовать в качестве составляющих монтажных схем.

Ионисторы

ионисторы

Ионисторы принадлежат к разряду электрохимических конденсаторов.
Особенность конструкции заключается в сочетании свойств обычного конденсатора и аккумуляторной батареи.
Пространство между электродами заполняется твердым электролитом на основе рубидия и аналогичных материалов.
Такая конструкция исключает самопроизвольный разряд ионистора.

Быстрая разрядка и зарядка делают возможным его использование в некоторых видах электрических схем вместо аккумулятора.

Аккумулятор, в отличие от ионистора, потребует значительное время для своей зарядки.
Емкость ионистора отличается повышенным значением среди всех электролитических устройств.

Работает ионистор только с источником постоянного напряжения.

электролитические

Электролитические

Большое распространение получили электролитические конденсаторы, у которых одна из обкладок выполнена в виде алюминиевой фольги.
Другой обкладкой служит твердый или жидкий электролит обеспечивающий движение заряженных частиц для сохранения оксидной пленки.

Емкость электролитического конденсатора на сегодняшний день является наибольшей при соотношении емкости и объема элемента.

Электролитические элементы устанавливаются в фильтрах, но важно соблюдение полярности.

По сравнению с танталовыми конденсаторами в электролитических  идут значительный ток утечки.

Процессы переноса заряженных частиц происходят медленно, что увеличивает количество выделяемого тепла.
Отсюда перегрев и низкий срок службы.

Неполярные

Неполярные конденсаторы корректно работают при любых вариантах подключения их в электрическую схему.

Это связано с похожей структурой материалов образующих границу между обкладкой и диэлектриком.
Стороны одинаковы. Все это приводит к тому, что во время установки конденсатора нет необходимости соблюдать полярность.
В качестве неполярных электрических устройств в основном используются сухие, реже электролитические, изготовленные по измененной технологии.

Керамические

керамические

Керамические конденсаторы имеют высокие электрические показатели, маленькие габариты и приемлемую стоимость.

Устанавливаются элементы в контурах радиоаппаратуры.
Керамические конденсаторы подразделяются на

  • с постоянной емкостью
  • подстроечные.

Элементы с постоянной емкостью – устанавливают в контурах генераторов и гетеродинов.
Подстроечные – используются для подгонки параметров колебательных контуров.
Широкое распространение получили благодаря разнообразию емкостей, широкому диапазону рабочих напряжений,
стандартными типоразмерами аналогичными керамическим устройствам разных производителей.

Пленочные

Особенностью таких устройств будет диэлектрик в виде пленки.
Пленка изготавливается из фторопласта, металлизированной бумаги, полипропилена, поликарбоната и подобных материалов.
Металлическая пленка или фольга напыляются или напрессовываются на диэлектрик.

Благодаря большому количества слоев – получается увеличение площади, соответственно, существенно увеличивается емкость.

Из достоинств пленочного конденсатора следует отметить сравнительно высокую надежность, стабильность теплового состояния при действии нагрузок вызванных переменным током.

К недостаткам можно отнести невысокое значение диэлектрической проходимости.

Пленочные конденсаторы используются в цепях постоянного тока, всевозможных фильтрах и резонансных схемах.

Smd

В цепях управления некоторых видов плат используются небольшие по размерам Smd конденсаторы, имеющие форму маленьких кирпичиков.
На плату радиоэлемент устанавливается посредством правила поверхностного монтажа.
Smd устройства бывают следующих видов:

  • электролитические
  • керамические;
  • танталовые.

Керамические SMD конденсаторы, имеющие диэлектрик с высокой проницаемостью, маркируются тремя буквами.
Первыми двумя буквами обозначается нижняя и верхняя предельно допустимая граница рабочего диапазона температур,
третья буква используется при обозначении отклонений изменения емкости для измеряемых диапазонов.

Маленькие размеры Smd конденсаторов не всегда позволяют нанести маркировку на корпус или она будет очень мелкая.

В таких случаях без специального измерительного прибора, например, мультиметра не обойтись.

Переменные

Конденсаторы переменной емкости (КПЕ) состоят из части секций металлических пластин.
Одна из них двигается плавно по отношению ко второй.
Во время передвижения получается, что подвижные пластины (ротора), попадают в зазоры неподвижной пластины (статора).
Благодаря процессу площадь перекрытия одних пластин другими изменяется, в результате чего изменяется у конденсатора емкость.
Слоем диэлектрика в этом случае является воздух.

В конденсаторах, установленных в небольших устройствах, используется твердый диэлектрик, например, фторопласт или полиэтилен.

В старых радиоприемниках устройство применялось для настройки на определенную частоту колебательного контура работающей радиостанции.

Максимальное рабочее напряжение на конденсаторе

Напряжение, подаваемое на конденсатор, не должно превышать максимальное, так как может произойти пробой диэлектрика и выход элемента из строя.

Для анализа работы конденсатора в цепи переменного тока, критерием для сравнения следует брать максимальную амплитудную величину напряжения.

Это значит, что если на нем обозначено какое то максимальное напряжение DC WV , то в действительности при включении в сеть оно должно быть на 1,4 меньше.

Величина и значение потери у конденсатора

Ток утечки конденсатора – критический фактор для использования, особенно если его применяют для силовой электроники.
Потеря напрямую завязана со свойствами диэлектрика.

Никакой диэлектрик не способен гарантировать на 100% изоляцию металлических обкладок.

Через изолятор всегда будет проходить ток, меньший или больший в зависимости от свойств диэлектрика и теряться энергия.
Кроме изолирующих способностей диэлектрика на ток утечки влияют факторы:

  • температура окружающего пространства;
  • срок годности конденсатора без напряжения, температура;
  • величина тока утечки прямо пропорциональна приложенному к обкладкам напряжению.

Восстановить работоспособность конденсатора после длительного хранения можно, приложив к нему рабочее напряжение с выдержкой в течение нескольких минут.

При этом этапе окислительный слой заново накапливается и восстанавливает работоспособность конденсатора.

Конденсатор в цепи электрического тока

Принцип работы конденсатора простой – подается напряжение и накапливается заряд.
Накопитель по-разному ведет себя в двух вариантах электрической цепи.

Постоянного

Если в цепь с присоединенным к ней конденсатором подать ток, то стрелка на амперметре придет в движение и быстро вернется в предыдущее положение.
Это связано с тем, что прибор быстро заряжается и ток исчез.
Через обкладки разделенные диэлектриком постоянный ток проходить не может.
Практическое применение конденсатора в такой цепи вызывает много вопросов.
В условиях постоянного тока конденсатор функционирует, но непродолжительное время.
Переходные процессы в виде зарядки и разрядки снимают все сомнения.
В электронных схемах на постоянном токе конденсаторы один из самых распространенных компонентов.

Переменного

При подключении переменного напряжения полюса конденсатора меняют плюс на минус с частотой подачи напряжения.
В данном случае электроны передвигаются сначала в одну, а потом в другую.
На обкладках при такой смене остаются излишки заряда, которые собственно и создают ток во внешней цепи.

Конденсатор в цепи переменного тога выступает в качестве резистора.

Сопротивления конденсатора в зависимости от

Сопротивление конденсатора зависит от частоты подаваемого на него напряжения и показателя емкости.

Частоты и сдвига фаз

Устройство накопления зарядов одинаковой емкости на разных частотах оказывает различный уровень сопротивления.
Оно растет или уменьшается.

При повышении частоты входного напряжения сопротивление, называемое емкостным уменьшается.

На низких частотах имеется сдвиг по фазе входного напряжения и напряжения на нагрузке.

С увеличением частоты сдвиг по фазе уменьшается.

При достижении частоты определенного уровня фазовый сдвиг стремиться к нулю.

Хс = 1/ωС,

где ω — круговая частота, равная произведению 2πf,

С—емкость цепи в фарадах.

Номинала конденсатора

Емкость конденсатора влияет на процесс зарядки и разрядки при прохождении через него переменного тока.

Устройство с меньшей емкостью будет быстрее отдавать заряд и вновь заряжаться.

Сопротивление переменному току будет выше, чем при медленной зарядке и разрядке.

Отсюда вывод: емкостное сопротивление находится в обратной зависимости от номинала конденсатора.

Последовательное и параллельное соединение конденсаторов

соединение конденсаторов

Наиболее популярным типом соединения конденсаторов является параллельное.
При этом подключении электроемкость повышается, а напряжение остается исходным.

К одной точке может подключаться несколько конденсаторов.

Так как электрическая емкость конденсаторов равна площади обкладок, общая емкость при таком виде соединения пропорциональна сумме емкостей всех конденсаторов в цепи.

Собщ.= C1+C2.

При последовательном соединении конденсаторов общая емкость снижается, а напряжение работы конденсатора возрастает.

Конденсаторы подключены так, что только первый и последний имеют доступ к источнику ЭДС/тока одной из своих пластин.
Заряд одинаковый на всех пластинах, но наружные получают заряд от источника, а внутренние образуются благодаря разделению зарядов ранее нейтрализовавших друг друга.
Емкость последовательного соединения двух конденсаторов мы можем вычислить по формуле

Собщ.= С1*С2/ C1+C2.

Формулы для вычисления

Измерения емкости осуществляется по специально выведенной формуле.
Электрическая емкость (С) — это отношение сообщенного заряда (Q) к образующему в результате этого потенциалу (U).
Формулу, которую используют, чтобы измерить емкость, выглядит следующим образом:
C=Q/V .
Единицей измерения служит фарада, которая обозначается буквой Ф.
Емкость величиной 1 фарада будет хранить заряд q = 1 кулон при напряжении на обкладках U =1 Вольт.
Так как конденсаторы имеют разные виды, формулы также используются разные.

Посредством математических выражений

Математическое выражение для определения емкости конденсатора С = q*U в единицах измерения в системе СИ каждой из входящих в формулу
физических величин определяет значение 1 фарады.

емкость конденсатора

Как зависит емкость от среды диэлектрика

Влияние изолятора на емкость конденсатора зависит от проводящих свойств вещества внутри этой прокладки.
Способность межпластинного проводника на изоляцию называют диэлектрической проницаемостью.
С учетом характеристик диэлектрика формула емкости плоского устройства станет:
С = є0є S/d,
где под буквой є стоит значение диэлектрической проницаемости изолятора,
а є0 — постоянная величина равная диэлектрической проницаемости вакуума (воздуха).

На практике применяется коэффициент, обозначающий во сколько раз применяемый диэлектрик уменьшает электрическое поле по сравнению с воздухом.

Таблица:

диэлектрическая проницаемость среды

Как измерить емкость

Существует некоторое количество способов измерения емкости конденсатора с помощью приборов и различных методик.
В статье описывается использование мультиметра, осциллографа, тестера и мостовых измерителей.

Мультиметром

мультиметр

В начале, прежде чем начать измерение емкости конденсатора, его необходимо разрядить до полного исчезновения тока.

Как пример: сделать это с путем замыкания выводов отверткой.

Если пренебречь этим нюансом, то мультиметр может поломаться.

Измерить емкость с помощью мультиметра можно следующим образом:
активируйте режим «Сх» и установите предел замера 2000 пФ, если он есть.
На стандартном устройстве он равный 20 мкФ;
Установите конденсатор в соответствующие гнезда в мультиметре или используйте щупы для подключения конденсатора.
На экране прибора будет отображено значение емкости.

Осциллографом

Для измерения понадобиться кроме осциллографа собрать схему из тестируемого конденсатора, резистора и генератора синусоидальных колебаний.

Точки подключения осциллографа к схеме находятся до резистора и после конденсатора.

Частота колебаний генератора изменяется до получения на экране осциллографа одинаковых по амплитуде синусоидальных кривых.
Это делается для точности измерений.
Представьте как рассчитать емкость конденсатора с помощью амплитудных значений напряжений?
Для этого  требуется воспользоваться формулой UR/UC*2πfR подставив в нее измеренные значения.
С его помощью также рассчитывается ток утечки конденсатора косвенным способом – через снижение напряжения на предварительно известном сопротивлении.
Осциллограф способен вычислить емкость конденсаторов от 20 pF до 200 mkF.

Тестером не имеющим прямой функции

тестер

Для нахождения варианта определения емкости с помощью тестера, но без функции замера емкости,
обратите внимание на формулу мгновенного значения тока во время его зарядки или разрядки i = С dU/dt.

Здесь дело в том, что кроме тестера, секундомера следует собрать схему с источником питания,

конденсатором и резистором с большим сопротивлением для увеличения времени процесса зарядки или разрядки.
После снятия всех показаний с тестера и секундомера можно, достаточно приближенно вычислить и узнать емкость.
Зная, как определить емкость конденсатора современными приборами, будет несложно разобраться и с устройством со времен СССР.
На экране происходит вывод не цифр, а отклонения стрелки, за которой важно внимательно следить.
Измерение емкости осуществляется только на разряженном конденсаторе.
Щупы выведите к контактам конденсатора, если он рабочий, то стрелка изначально отклонится и по мере заряда займет исходную позицию.
Скорость передвижения стрелки зависит от объема емкости.
Если стрелка тестера не сдвинулась с места, либо эта величина минимальная или отклонилась и зависла в одном положении – это показатель неисправности конденсатора.

Мостовыми измерителями

мостовой измеритель емкости

Емкость конденсатора измеряется методом сравнения с эталонной емкостью.
Для чего выполняется мостовая схема, где одно плечо работает с образцовым электрическим устройством, другое с тестируемым.
Показания моста могут быть реализованы на цифровых носителях.

Единицы расчета

Математическое выражение фарада

C=Q/V, где С – электрическая емкость, Q – сообщенный заряд, V – приложенное напряжение.

Диэлектрическая проницаемость

D = εF, где D – электрическая индукция в среде, ε — диэлектрическая проницаемость среды, F — сила взаимодействия между зарядами в вакууме.

Маркировка конденсаторов

На корпусе каждого конденсатора имеется специальная маркировка – буква и цифра.
По сравнению с резисторами, маркировка конденсатора, обозначающая емкость и код отклонения емкости, довольно-таки сложная и разнообразная.
Иногда обозначения наносятся прописными буквами – MF (микрофарады), fd – фарады.
Также на корпусе указаны положительные и отрицательные символы, помогающие определить полярность конденсатора.

Способы обозначения конденсатора

Единицей измерения емкости конденсатора является фарад, поэтому на корпусе элемента обязательно присутствует буква Ф или F:

  • 1 миллифарад = 10-3 фарад = 1мФ;
  • 1 микрофарад = 10-6 фарад = 1 мкФ;
  • 1 нанофарад = 10-9 фарад = 1 нФ;
  • 1 пикофарад = 10-12 фарад = 1 пФ.

Если на элементе не обозначен номинал, то целое значение свидетельствует о том, что емкость указана в пикофарадах.
На корпусе емкость указывается с отклонением, если указана буква J – то диапазон отклонения менее 5%, буква М – 20%.

Код конденсаторов импортных

Устройства зарубежного производства, так же как и российские, имеют маркировку согласно международных стандартов.
Данный нормативный документ предполагает нанесение кода из трех цифр. Первые две цифры обозначают емкость в пикофарадах.
Третья цифра говорит о количестве нулей, например, если емкость будет меньше 1 пикофарады, цифра будет выглядеть как «0».

Кодовая для конденсаторов поверхностного монтажа

Маркировка электролитических SMD конденсаторов состоит из емкости и рабочего напряжения.
Например,108V, где закодирована электроемкость 10 пф и рабочее напряжение 8 Вольт.
Знак плюс находится рядом с полоской.
Есть три основных способа кодировки:
код из двух или трех знаков (буквы или цифры), которые указывают на рабочее напряжение и номинальную емкость.
Показатели указываются буквой, а цифра является множителем;
четыре знака, обозначающие напряжение и номинальную емкость.
Первая буква – это рабочее напряжение, следующие символы – емкость в пикофарадах, последняя цифра – количество нулей;

маркировка конденсаторов

если площадь корпуса большая, кода располагают на две строки.
Верхняя строка – номинал емкости, нижняя – рабочее напряжение.

Расчёт ёмкости конденсатора

Содержание

  • 1 Конденсатор
  • 2 Емкость
  • 3 Зависимость
  • 4 Расчет
    • 4.1 Плоский конденсатор
    • 4.2 Электроемкость
    • 4.3 Сферический конденсатор
    • 4.4 Цилиндрический
  • 5 Проверка
  • 6 Заключение
  • 7 Видео по теме

Конденсаторы нашли в наше время очень широкое применение в электронике и электротехнике, ведь они являются основными элементами большинства электрических цепей и схем. Постараемся подробно в данной статье рассказать — что такое электроемкость конденсатора. Так же будут приведены применяемые формулы расчета, описаны различные виды таких устройств и рассказано об их маркировке. Кроме того будет затронуто влияние различных факторов на емкость конденсатора.

Конденсаторы

Конденсатор

Прежде чем разобраться с тем, что такое емкость простейшего конденсатора, необходимо определиться, что из себя представляет этот электроэлемент. Конденсатором является радиоэлектронная деталь, которая может накапливать и отдавать определенную порцию электрического заряда. Состоит устройство из следующих элементов:

  1. Корпуса. Зачастую выполняется из алюминия. По форме он может быть плоским, сферическим и цилиндрическим.
  2. Обкладок (2 и более). Их делают из металлических пластинок или фольги.
  3. Диэлектрической прокладки. Устанавливается между обкладками и служит в качестве изолятора.
  4. Двух или более выводных контактов для подключения устройства в электроцепь.

Устройство конденсатора

Работает такой накопитель электрического заряда следующим образом.

  1. В момент подключения элемента к источнику электрического тока, он выступает в роли проводника. В этот момент электроток имеет максимальное значение, а напряжение — минимальное.
  2. На обкладках элемента начинают скапливаться положительные и отрицательные заряды (электроны и ионы). Таким образом происходит зарядка самого устройства. На момент заряда сила электротока постепенно уменьшается, а напряжение наоборот — увеличивается.
  3. После того как количество заряда в конденсаторе станет больше допустимого предела, он разряжается и процесс опять начинает повторяться циклически.

Основой работоспособности данного устройства является его емкость. Именно от этого параметра зависит время накопления заряда и общая «вместимость» устройства. О том, как на схемах обозначается простейший конденсатор, поможет понять следующий рисунок ниже.

Обозначение конденсатора на схеме

Электрическая емкость, как и сами конденсаторы, нашли широкую область применения. Их используют в качестве:

  1. Частотных фильтров.
  2. Источника импульсов для различной фотоаппаратуры.
  3. Сглаживателей пульсирующих токов в выпрямителях.
  4. Фазосдвигающих элементов для электрических двигателей.

Применение конденсаторов в различных сферах основано именно на способности устройства накапливать электрический заряд. В более сложной электроаппаратуре эти устройства используются для бесперебойного поддержания определенного напряжения в разных накопителях данных.

Емкость

Емкостью конденсатора является физическая величина, которая определяет отношение между накопленным зарядом на обкладках и разностью потенциалов между ними.

В системе «СИ» емкость конденсатора и ее единица измерения — Фарад. В формулах для ее обозначения используется буква Ф (F). Однако емкость конденсатора редко измеряется в Фарадах, потому что это довольно большая величина. Чаще всего применяют ее кратные и дольные значения.

Кратные и дольные величины емкости

Значение электроемкости конденсатора всегда можно найти в маркировке устройства, которая нанесена на его корпус.

Маркировка конденсаторов

На схеме элемент обозначается буквой «С». Обозначение емкости является обязательным условием, ведь это позволит упростить процесс подбора необходимой электродетали для схемы.

Зависимость

Благодаря приведенному ранее описанию, мы узнали — что такое емкость. Далее попытаемся разобраться, от чего зависит эта характеристика. Емкость конденсатора зависит от расстояния между обкладками, их площади, а так же от самого материала диэлектрика. Благодаря этому можно сказать, от чего зависит емкость устройства: она прямопропорциональна площади пластины конденсатора и обратно пропорциональна расстоянию между пластинами.

Рассмотрим, как найти данную величину. Для плоского конденсатора формула расчета емкости выглядит следующим образом:

Формула плоского конденсатора

Зависимость способности устройства накапливать заряд от площади его обкладок и толщины диэлектрической прослойки так же указывает на то, что на данную величину оказывают влияние и общие размеры элемента.

Расчет

Расчет емкости конденсатора делается по довольно простой формуле:

Расчет емкости через заряд и разность потенциалов

В этой формуле:

  1. q — величина заряда, накопленного конденсатором.
  2. φ1−φ2 — разница потенциалов между его обкладками.

Данное выражение помогает довольно легко рассчитать емкость любого плоского конденсатора. Как и говорилось ранее в статье, этот величина электроёмкости конденсаторов всегда зависит от его геометрических размеров.

Плоский конденсатор

Отличительная особенность плоского конденсатора — наличие двух параллельно расположенных обкладок. Такие устройства могут иметь квадратную, круглую или прямоугольную форму.

Плоские конденсаторы

Рассмотрим далее, как определить емкость данного вида конденсаторов. Найти емкость такого типа конденсаторов всегда поможет следующая формула:

Формула емкости плоского конденсатора

Электроемкость

Зачастую применение конденсаторов подразумевает подключение в цепь сразу нескольких таких элементов. Благодаря этому можно увеличить общую емкость. Формула для определения электроемкости плоского конденсатора при параллельном подключении выглядит следующим образом:

Параллельное соединение конденсаторов

Определение общей емкости для такой электроцепи делается следующим образом: C=C1+C2

Величина заряда и напряжение для такой схемы соединения определяется следующим образом:

qобщ=q1+q2

Uобщ=U1=U2

Определить емкость конденсатора для последовательного соединения элементов позволит формула:

Последовательное соединение конденсаторов

То есть в этом случае общую электроемкость плоского конденсатора находят с помощью выражения:

1/Cобщ=1/C1+1/C1

Благодаря данным выражениям найдем общее напряжение и определим величину заряда для последовательного соединения элементов:

qобщ=q1=q2

Uобщ=U1+U2

Емкость конденсатора и применяемые формулы расчетов для различных вариантов соединения плоских устройств приведены на рисунке ниже. Можно сказать, что она очень наглядная и удобная для использования:

Особенности соединения конденсаторов

Сферический конденсатор

Сферическое устройство имеет две обкладки в форме концентрических сфер, между которыми расположен диэлектрик. Емкость сферического конденсатора можно определить следующим образом:

Емкость сферического конденсатора

В данном выражении значение «4π» определяет коэффициент рассеивания зарядов на поверхности сферических плоскостей.

Расчет емкости сферического конденсатора можно сделать по формуле для плоского устройства в том случае, если зазор по сравнению с радиусом сферы имеет довольно маленькое значение.

Цилиндрический

Цилиндрическое устройство немного схоже с ранее описанным сферическим. В них применяются схожие по форме обкладки. Они имеют так же круглую форму, а значит на расчет емкости цилиндрического устройства так же будет влиять такой параметр, как радиус обкладок. Отличием заключается только в самой вытянутой форме пластин цилиндрического конденсатора. Емкость цилиндрического конденсатора определяется по формуле:

Емкость цилиндрического конденсатора

Сферические и цилиндрические типы элементов сильно зависимы от толщины слоя диэлектрика. Чем он толще, тем меньше будет объем заряда, а значит у него повысится устойчивость к воздействию пробивного напряжения.

Проверка

Как отмечалось ранее, емкость устройства проставляется на его корпусе. Проверить паспортную величину и имеющуюся емкость устройства можно при помощи тестера с режимом «СХ». Например, для этого подойдут популярные модели M890D, AM-1083, DT9205A, UT139C, другие. Далее надо будет:

  1. Выпаять и разрядить устройство. Разрядка проводится строго изолированным металлическим предметом.
  2. Вставить ножки конденсатора в пазы «СХ», соблюдая полярность.
  3. Прибор отобразит на табло результат измерений. Его нужно будет сравнить с тем, который прописан в маркировке на его корпусе. Если значения между собой сильно отличаются, то это говорит о том, что элемент неисправный и требует замены.

Проверка кондесатора мультиметром

Если мультиметр показал наличие бесконечной емкости, то это говорит о коротком замыкании внутри корпуса устройства и оно так же признается неисправным, требующим замены. Кроме того неисправность всегда можно определить визуально по трещинам или вздутию корпуса.

Заключение

В статье было описано — что такое конденсатор, как определить его емкость, от чего зависит этот параметр и основные формулы для расчета емкости различных типов таких устройств. Устройства всегда имеют на корпусе специальную маркировку, поэтому довольно просто выбрать наиболее подходящий по значению накопитель электрозаряда. Кроме того был приведен способ проверки устройства, который позволяет определить возможные его неисправности.

Видео по теме

Конденсатор. Энергия электрического поля

  • Темы кодификатора ЕГЭ: электрическая ёмкость, конденсатор, энергия электрического поля конденсатора.

  • Ёмкость уединённого проводника

  • Ёмкость плоского конденсатора

  • Энергия заряженного конденсатора

  • Энергия электрического поля

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: электрическая ёмкость, конденсатор, энергия электрического поля конденсатора.

Предыдущие две статьи были посвящены отдельному рассмотрению того, каким образом ведут себя в электрическом поле проводники и каким образом — диэлектрики. Сейчас нам понадобится объединить эти знания. Дело в том, что большое практическое значение имеет совместное использование проводников и диэлектриков в специальных устройствах — конденсаторах.

Но прежде введём понятие электрической ёмкости.

к оглавлению ▴

Ёмкость уединённого проводника

Предположим, что заряженный проводник расположен настолько далеко от всех остальных тел, что взаимодействие зарядов проводника с окружающими телами можно не принимать во внимание. В таком случае проводник называется уединённым.

Потенциал всех точек нашего проводника, как мы знаем, имеет одно и то же значение varphi , которое называется потенциалом проводника. Оказывается, что потенциал уединённого проводника прямо пропорционален его заряду. Коэффициент пропорциональности принято обозначать 1/C, так что

varphi = frac{displaystyle q}{displaystyle C vphantom{1^a}}.

Величина C называется электрической ёмкостью проводника и равна отношению заряда проводника к его потенциалу:

C = frac{displaystyle q}{displaystyle varphi }. (1)

Например, потенциал уединённого шара в вакууме равен:

varphi = frac{displaystyle kq}{displaystyle R vphantom{1^a}}=frac{displaystyle q}{displaystyle 4 pi varepsilon_0R vphantom{1^a}},

где q — заряд шара, R — его радиус. Отсюда ёмкость шара:

C=4 pi varepsilon_0R. (2)

Если шар окружён средой-диэлектриком с диэлектрической проницаемостью varepsilon, то его потенциал уменьшается в varepsilon раз:

varphi = frac{displaystyle q}{displaystyle 4 pi varepsilon_0 varepsilon R vphantom{1^a}}.

Соответственно, ёмкость шара в varepsilon раз увеличивается:

C=4 pi varepsilon_0 varepsilon R. (3)

Увеличение ёмкости при наличии диэлектрика — важнейший факт. Мы ещё встретимся с ним при рассмотрении конденсаторов.

Из формул (2) и (3) мы видим, что ёмкость шара зависит только от его радиуса и диэлектрической проницаемости окружающей среды. То же самое будет и в общем случае: ёмкость уединённого проводника не зависит от его заряда; она определяется лишь размерами и формой проводника, а также диэлектрической проницаемостью среды, окружающей проводник. От вещества проводника ёмкость также не зависит.

В чём смысл понятия ёмкости? Ёмкость показывает, какой заряд нужно сообщить проводнику, чтобы увеличить его потенциал на 1 В. Чем больше ёмкость — тем, соответственно, больший заряд требуется поместить для этого на проводник.

Единицей измерения ёмкости служит фарад (Ф). Из определения ёмкости (1) видно, что Ф = Кл/В.

Давайте ради интереса вычислим ёмкость земного шара (он является проводником!). Радиус считаем приближённо равным 6400 км.

C = 4 pi varepsilon_0 R approx 4 cdot 3,14 cdot 8,85 cdot 10^{-12} cdot 6400 cdot 10^3 approx 712  мкФ.

Как видите, 1 Ф — это очень большая ёмкость.

Единица измерения ёмкости полезна ещё и тем, что позволяет сильно сэкономить на обозначении размерности диэлектрической постоянной varepsilon_0. В самом деле, выразим varepsilon_0 из формулы (2):

varepsilon_0 = frac{displaystyle C} {displaystyle 4 pi R vphantom{1^a}}.

Следовательно, диэлектрическая постоянная может измеряться в Ф/м:

varepsilon_0 = 8,85 cdot 10^{-12}   Ф.

Так легче запомнить, не правда ли?

к оглавлению ▴

Ёмкость плоского конденсатора

Ёмкость уединённого проводника на практике используется редко. В обычных ситуациях проводники не являются уединёнными. Заряженный проводник взаимодействует с окружающими телами и наводит на них заряды, а потенциал поля этих индуцированных зарядов (по принципу суперпозиции!) изменяет потенциал самого проводника. В таком случае уже нельзя утверждать, что потенциал проводника будет прямо пропорционален его заряду, и понятие ёмкости проводника самого по себе фактически утрачивает смысл.

Можно, однако, создать систему заряженных проводников, которая даже при накоплении на них значительного заряда почти не взаимодействует с окружающими телами. Тогда мы сможем снова говорить о ёмкости — но на сей раз о ёмкости этой системы проводников.

Наиболее простым и важным примером такой системы является плоский конденсатор. Он состоит из двух параллельных металлических пластин (называемых обкладками), разделённых слоем диэлектрика. При этом расстояние между пластинами много меньше их собственных размеров.

Для начала рассмотрим воздушный конденсатор, у которого между обкладками находится воздух left ( varepsilon =1 right ).

Пусть заряды обкладок равны +q и -q. Именно так и бывает в реальных электрических схемах: заряды обкладок равны по модулю и противоположны по знаку. Величина q — заряд положительной обкладки — называется зарядом конденсатора.

Пусть S — площадь каждой обкладки. Найдём поле, создаваемое обкладками в окружающем пространстве.

Поскольку размеры обкладок велики по сравнению с расстоянием между ними, поле каждой обкладки вдали от её краёв можно считать однородным полем бесконечной заряженной плоскости:

E_+ = E_-=frac{displaystyle sigma }{displaystyle 2 varepsilon_0 vphantom{1^a}}.

Здесь E_+ — напряжённость поля положительной обкладки, E_- — напряженность поля отрицательной обкладки, sigma — поверхностная плотность зарядов на обкладке:

sigma =frac{displaystyle q}{displaystyle S vphantom{1^a}}.

На рис. 1 (слева) изображены векторы напряжённости поля каждой обкладки в трёх областях: слева от конденсатора, внутри конденсатора и справа от конденсатора.

Рис. 1. Электрическое поле плоского конденсатора

Согласно принципу суперпозиции, для результирующего поля vec{E} имеем:

vec{E} = vec{E}_+ + vec{E}_-

Нетрудно видеть, что слева и справа от конденсатора поле обращается в нуль (поля обкладок погашают друг друга):

E = E_+ - E_-=0.

Внутри конденсатора поле удваивается:

E = E_+ + E_-= frac{displaystyle sigma }{displaystyle varepsilon_0},

или

E = frac{displaystyle q}{displaystyle varepsilon_0 S vphantom{1^a}}. (4)

Результирующее поле обкладок плоского конденсатора изображено на рис. 1 справа. Итак:

Внутри плоского конденсатора создаётся однородное электрическое поле, напряжённость которого находится по формуле (4). Снаружи конденсатора поле равно нулю, так что конденсатор не взаимодействует с окружающими телами.

Не будем забывать, однако, что данное утверждение выведено из предположения, будто обкладки являются бесконечными плоскостями. На самом деле их размеры конечны, и вблизи краёв обкладок возникают так называемые краевые эффекты: поле отличается от однородного и проникает в наружное пространство конденсатора. Но в большинстве ситуаций (и уж тем более в задачах ЕГЭ по физике) краевыми эффектами можно пренебречь и действовать так, словно утверждение, выделенное курсивом, является верным без всяких оговорок.

Пусть расстояние между обкладками конденсатора равно d. Поскольку поле внутри конденсатора является однородным, разность потенциалов U между обкладками равна произведению E на d (вспомните связь напряжения и напряжённости в однородном поле!):

U=Ed=frac{displaystyle qd}{displaystyle varepsilon_0 S vphantom{1^a}}. (5)

Разность потенциалов между обкладками конденсатора, как видим, прямо пропорциональна заряду конденсатора. Данное утверждение аналогично утверждению «потенциал уединённого проводника прямо пропорционален заряду проводника», с которого и начался весь разговор о ёмкости. Продолжая эту аналогию, определяем ёмкость конденсатора как отношение заряда конденсатора к разности потенциалов между его обкладками:

C=frac{displaystyle q}{displaystyle U vphantom{1^a}}. (6)

Ёмкость конденсатора показывает, какой заряд ему нужно сообщить, чтобы разность потенциалов между его обкладками увеличилась на 1 В. Формула (6), таким образом, является модификацией формулы (1) для случая системы двух проводников — конденсатора.

Из формул (6) и (5) легко находим ёмкость плоского воздушного конденсатора:

C=frac{displaystyle varepsilon_0 S}{displaystyle d vphantom{1^a}}. (7)

Она зависит только от геометрических характеристик конденсатора: площади обкладок и расстояния между ними.
Предположим теперь, что пространство между обкладками заполнено диэлектриком с диэлектрической проницаемостью varepsilon. Как изменится ёмкость конденсатора?

Напряжённость поля внутри конденсатора уменьшится в varepsilon раз, так что вместо формулы (4) теперь имеем:

E=frac{displaystyle q}{displaystyle varepsilon_0 varepsilon S vphantom{1^a}}. (8)

Соответственно, напряжение на конденсаторе:

U=Ed=frac{displaystyle qd}{displaystyle varepsilon_0 varepsilon S vphantom{1^a}}. (9)

Отсюда ёмкость плоского конденсатора с диэлектриком:

C=frac{displaystyle varepsilon_0 varepsilon S}{displaystyle d vphantom{1^a}}. (10)

Она зависит от геометрических характеристик конденсатора (площади обкладок и расстояния между ними) и от диэлектрической проницаемости диэлектрика, заполняющего конденсатор.

Важное следствие формулы (10): заполнение конденсатора диэлектриком увеличивает его ёмкость.

к оглавлению ▴

Энергия заряженного конденсатора

Заряженный конденсатор обладает энергией. В этом можно убедиться на опыте. Если зарядить конденсатор и замкнуть его на лампочку, то (при условии, что ёмкость конденсатора достаточно велика) лампочка ненадолго загорится.

Следовательно, в заряженном конденсаторе запасена энергия, которая и выделяется при его разрядке. Нетрудно понять, что этой энергией является потенциальная энергия взаимодействия обкладок конденсатора — ведь обкладки, будучи заряжены разноимённо, притягиваются друг к другу.

Мы сейчас вычислим эту энергию, а затем увидим, что существует и более глубокое понимание происхождения энергии заряженного конденсатора.

Начнём с плоского воздушного конденсатора. Ответим на такой вопрос: какова сила притяжения его обкладок друг к другу? Величины используем те же: заряд конденсатора q, площадь обкладок S.

Возьмём на второй обкладке настолько маленькую площадку, что заряд q_0 этой площадки можно считать точечным. Данный заряд притягивается к первой обкладке с силой

F_0 = q_0E_1,

где E_1 — напряжённость поля первой обкладки:

E_1=frac{displaystyle sigma }{displaystyle 2 varepsilon _0 vphantom{1^a}}=frac{displaystyle q}{displaystyle 2varepsilon_0 S vphantom{1^a}}.

Следовательно,

F_0=frac{displaystyle q_0q}{displaystyle 2 varepsilon_0 S vphantom{1^a}}.

Направлена эта сила параллельно линиям поля (т. е. перпендикулярно пластинам).

Результирующая сила F притяжения второй обкладки к первой складывается из всех этих сил F_0, с которыми притягиваются к первой обкладке всевозможные маленькие заряды q_0 второй обкладки. При этом суммировании постоянный множитель q/(2 varepsilon_0 S) вынесется за скобку, а в скобке просуммируются все q_0 и дадут q. В результате получим:

F=frac{displaystyle q^2}{displaystyle 2 varepsilon_0 S vphantom{1^a}}. (11)

Предположим теперь, что расстояние между обкладками изменилось от начальной величины d_1 до конечной величины d_2. Сила притяжения пластин совершает при этом работу:

A = F(d_1 - d_2).

Знак правильный: если пластины сближаются (d_2 < d_1), то сила совершает положительную работу, так как пластины притягиваются друг к другу. Наоборот, если удалять пластины (d_2 > d_1), то работа силы притяжения получается отрицательной, как и должно быть.

С учётом формул (11) и (7) имеем:

A=frac{displaystyle q^2}{displaystyle 2 varepsilon_0 S vphantom{1^a}}left ( d_1-d_2 right )=frac{displaystyle q^2d_1}{displaystyle 2varepsilon_0 S vphantom{1^a}}-frac{displaystyle q^2d_2}{displaystyle 2varepsilon_0 S vphantom{1^a}}=frac{displaystyle q^2}{displaystyle 2C_1 vphantom{1^a}}-frac{displaystyle q^2}{displaystyle 2C_2 vphantom{1^a}}=W_1-W_2,

где
W_1=frac{displaystyle q^2}{displaystyle 2C_1 vphantom{1^a}},
W_2=frac{displaystyle q^2}{displaystyle 2C_2 vphantom{1^a}}

Это можно переписать следующим образом:

A = -(W_2 - W_1) = - Delta W,

где

W=frac{displaystyle q^2}{displaystyle 2C vphantom{1^a}}. (12)

Работа потенциальной силы F притяжения обкладок оказалась равна изменению со знаком минус величины W. Это как раз и означает, что W — потенциальная энергия взаимодействия обкладок, или энергия заряженного конденсатора.

Используя соотношение q = CU, из формулы (12) можно получить ещё две формулы для энергии конденсатора (убедитесь в этом самостоятельно!):

W=frac{displaystyle qU}{displaystyle 2 vphantom{1^a}}, (13)

W=frac{displaystyle CU^2}{displaystyle 2 vphantom{1^a}}. (14)

Особенно полезными являются формулы (12) и (14).

Допустим теперь, что конденсатор заполнен диэлектриком с диэлектрической проницаемостью varepsilon. Сила притяжения обкладок уменьшится в varepsilon раз, и вместо (11) получим:

F=frac{displaystyle q^2}{displaystyle 2 varepsilon_0 varepsilon S vphantom{1^a}}.

При вычислении работы силы F, как нетрудно видеть, величина varepsilon войдёт в ёмкость C, и формулы (12)(14) останутся неизменными. Ёмкость конденсатора в них теперь будет выражаться по формуле (10).

Итак, формулы (12)(14) универсальны: они справедливы как для воздушного конденсатора, так и для конденсатора с диэлектриком.

к оглавлению ▴

Энергия электрического поля

Мы обещали, что после вычисления энергии конденсатора дадим более глубокое истолкование происхождения этой энергии. Что ж, приступим.

Рассмотрим воздушный конденсатор и преобразуем формулу (14) для его энергии:

W=frac{displaystyle CU^2}{displaystyle 2 vphantom{1^a}}=frac{displaystyle varepsilon_0 S}{displaystyle d vphantom{1^a}} cdot frac{displaystyle (Ed)^2}{displaystyle 2 vphantom{1^a}}=frac{displaystyle varepsilon_0 E^2}{displaystyle 2 vphantom{1^a}}Sd.

Но Sd = V — объём конденсатора. Получаем:

W=frac{displaystyle varepsilon_0 E^2}{displaystyle 2 vphantom{1^a}}V. (15)

Посмотрите внимательно на эту формулу. Она уже не содержит ничего, что являлось бы специфическим для конденсатора! Мы видим энергию электрического поля E, сосредоточенного в некотором объёме V.

Энергия конденсатора есть не что иное, как энергия заключённого внутри него электрического поля.

Итак, электрическое поле само по себе обладает энергией. Ничего удивительного для нас тут нет. Радиоволны, солнечный свет — это примеры распространения энергии, переносимой в пространстве электромагнитными волнами.

Величина omega = W/V — энергия единицы объёма поля — называется объёмной плотностью энергии. Из формулы (15) получим:

omega =frac{displaystyle varepsilon_0 E^2}{displaystyle 2 vphantom{1^a}}. (16)

В этой формуле не осталось вообще никаких геометрических величин. Она даёт максимально чистую связь энергии электрического поля и его напряжённости.

Если конденсатор заполнен диэлектриком, то его ёмкость увеличивается в varepsilon раз, и вместо формул (15) и (16) будем иметь:

W =frac{displaystyle varepsilon_0 varepsilon E^2}{displaystyle 2 vphantom{1^a}}V. (17)

omega =frac{displaystyle varepsilon_0 varepsilon E^2}{displaystyle 2 vphantom{1^a}}. (18)

Как видим, энергия электрического поля зависит ещё и от диэлектрической проницаемости среды, в которой поле находится.
Замечательно, что полученные формулы для энергии и плотности энергии выходят далеко за пределы электростатики: они справедливы не только для электростатического поля, но и для электрических полей, меняющихся во времени.

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Конденсатор. Энергия электрического поля» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Содержание:

  • Плоские конденсаторы
  • Конденсатор сферического типа
  • Конденсатор цилиндрического типа
  • Расчёт емкостных батарей, соединений конденсаторов

Определение 1

Конденсатором называют любые два проводника, разделённые диэлектрическим слоем. Такие проводники должны обладать зарядами одинаковыми по величине, но противоположными по знаку. 

Возникающее электрическое поле будет полностью расположено внутри, между проводниками. По этой причине на электрическую ёмкость конденсатора не влияет его внешнее окружение. А на разность потенциалов между пластинами не влияет величина заряда.

Выражение для электроёмкости выглядит так:

$ C=frac{q}{phi_1-phi_2} = frac{q}{U} $

Величины $ {phi_1-phi_2=U}$ определяют разность потенциалов, которая также носит название «напряжение» и обозначается «U». Как следует из определения, ёмкость — положительная величина.  Её размер определяется габаритами пластин конденсатора, их взаимным расположением, типом диэлектрика. Форма пластин, конструкция конденсатора создаются таким образом, чтобы максимально снизить влияние на внутреннее поле со стороны любых внешних сил или полей. Электрическое поле конденсатора начинается на обкладке с зарядом «+» и заканчивается на обкладке со знаком «-». Ёмкость конденсаторов измеряют так же, как и ёмкость проводников, в международной системе СИ для этого используют Фарады (Ф). Один Фарад — ёмкость конденсатора, где при заряде 1 Кельвин, разность потенциалов 1 Вольт.

Существуют три основных типа конденсаторов: плоские, сферические, цилиндрические. Вычислить ёмкость можно, если найти напряжение на обкладках и определить величину заряда.  

Плоские конденсаторы

Определение 2

Плоский конденсатор — элемент состоящий из двух или нескольких плоских пластин, расположенных друг напротив друга, имеющих одинаковый по величине, но разный по знаку заряд. Чтобы не возникало воздушного разряда, пластины разделяют слоем диэлектрика.

Для вычисления ёмкости плоского конденсатора используется выражение: 

$C=frac{epsilonepsilon_0 S}{d}$. 

Здесь S — площадь пластин, чем она больше, тем выше ёмкость. Величина зазора между пластинами — d. Чем меньше d, тем больше ёмкость. Диэлектрическая проницаемость — ε. Она также оказывает значительное влияние на величину ёмкости.

Пример 1

Возьмём конденсатор состоящий из двух пластин, между которыми воздух, и определим его ёмкость. Затем поместим между пластинами диэлектрик, параметр ε которого выше, чем у воздуха. Измерения показывают, что ёмкость конденсатора увеличивается существенно, прямо пропорционально повышению диэлектрической проницаемости.

Чаще всего, при создании плоских конденсаторов делают не две пластины, а «пакет» обкладок в несколько слоёв. Электрическая ёмкость такого элемента, имеющего n слоёв, вычисляется с учётом толщины каждого i-го слоя $d_i$, а также диэлектрической проницаемости каждого слоя $ε_i$.

Конденсатор сферического типа

Определение 3

Сферический конденсатор отличается формой обкладок, у него они представляют собой сферы. И внешняя, и внутренняя — обе оболочки выполнены в виде сфер.

В отличии от плоского конденсатора, в сферическом площадь поверхности разнозаряженных пластин отличается. И формула для вычисления ёмкости элемента изменится: 

$ C = 4piepsilonepsilon_0frac{R_1 R_2}{R_2-R_1} $, 

где $ R_1 $ и $ R_2 $ являются радиусами обкладок. 

Конденсатор цилиндрического типа

Отдельная формула используется для вычисления параметров конденсатора цилиндрической формы:

$ C = 2piepsilonepsilon_0 frac{l}{ln{frac{R_2}{R_1}}} $.

В уравнении использованы следующие параметры: l — высота, $R_1 и R_2$ – радиусы пластин. Конденсатор цилиндрического вида выполнен в виде вложенных друг в друга соосных цилиндрических пластин. Они выполнены из проводящего материала, а между ними находится диэлектрик.

Определение 4

Параметр, характеризующий конденсаторы — пробивное напряжение. Эта характеристика показывает минимальную величину напряжения, при которой произойдёт «пробой» диэлектрика. То есть сквозь толщу материала пройдёт сквозной электрический разряд, закорачивающий заряженные пластины.

Значение $U_max$ зависит как от характеристик диэлектрического вещества, его толщины, так и от формы конденсатора. 

Расчёт емкостных батарей, соединений конденсаторов

Конденсаторы могут применяться как сами по себе – отдельно по видам, так и в виде групп элементов, соединённых параллельно или последовательно. Комбинирование конденсаторов в электроцепи позволяет с помощью стандартизированных деталей получать любые необходимые значения ёмкостей. При параллельном соединении емкость увеличивается. Если у нас имеется несколько конденсаторов, где $C_i$ — емкость i-го конденсатора, то можно записать для всей системы: 

$ C=sum_{i=1}^NC_i $

Когда конденсаторы соединяют последовательно, то результирующая ёмкость будет меньше, чем ёмкость самого маленького конденсатора в системе. Итоговая ёмкость — сумма величин обратных емкости каждого из конденсаторов.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример 2

Покажем на простом примере, как рассчитать емкость плоского конденсатора, если известны площадь его пластин, величина промежутка между ними и тип вещества, заполняющего пространство. Площадь S=1 см2, зазор d=1 мм. Промежуток между пластинами заполнен вакуумом. При таких начальных условиях рассчёт ёмкости будет вестись по формуле:

$C=frac{epsilonepsilon_0 S}{d}$

Выпишем параметры, которые заданы в условии:

ε=1, $ ε_ 0=8,85⋅10^{-12} frac{Ф}{м}$; S=1см2=10 −4 м2; d=1 мм=10 − 3 м. 

Применяя их в формуле, получаем выражение следующего вида: 

$ С = frac{8,85cdot10^{-12}cdot10^{-4}}{10^{-13}} $

Результат:

$Сapprox 0,9 пФ$

Пример 3

Для конденсатора со сферическими пластинами произведём вычисление напряжённости поля. Величина промежутка между обкладками x = 1 см = 10-2 м. Радиусы обкладок заданы следующим образом: внутренний R1=1 см=10-2 м, внешний R2=3 см=3·10-2 м. Величина напряжения U=103 В. 

Заряженные обкладки создают электростатическое поле. Его напряжённость не трудно вычислить, воспользовавшись формулой: 

$ E = frac{1}{4piepsilonepsilon_0 r^2} cdotfrac{q}{r^{2}} $, 

Удалённость от центра r вычисляем как R1+x. 

Заряд внутренней сферической пластины, q, определяем через известные напряжение и ёмкость конденсатора: 

q=CU. 

Для емкости сферического конденсатора берём формулу:

$ С = 4piepsilonepsilon_0cdotfrac{R_1R_2}{R_2-R_1} $,

где $R_1$ и $R_2$ — радиусы пластин.

Подставим выражение емкости в формулу для напряженности: 

$E=frac{1}{4piepsilonepsilon_0 r^2}cdot4piepsilonepsilon_0frac{R_1R_2}{R_2-R_1}$

$=frac{U}{(x+R_1)^2}cdotfrac{R_1R_2}{R_2-R_1}$

Подставляя числовые значения, в результате получим $E=3,45cdot10^4 frac{В}{м}$

Добавить комментарий