Как найти емкость батареи конденсаторов формула

Конденсатор – радиоэлектронный прибор, способный накапливать и отдавать заряд. Как правило, на его корпусе дается информация о его емкости, но иногда требуется самому рассчитать этот номинал.

Конденсаторами могут выступать и проводники, они также обладают определенной емкостью. Для расчета существует несколько формул емкости конденсатора, их и рассмотрим.

В чем измеряется емкость конденсатора

Что такое заряд еще проходят в школе, когда эбонитовую палочку натирают о шерстяную ткань и подносят к маленьким кусочкам бумаги.

Под действием электромагнитных сил бумага прилипает к палочке. Подобный заряд накапливается в конденсаторе. Но для начала познакомимся с самим конденсатором.

Простейшим конденсатором являются две металлические пластины, разделенные диэлектриком. От качества диэлектрика зависит, как долго энергия заряженного конденсатора может сохраняться.

На этих пластинах, они еще называются обкладками, накапливается разноименный заряд. Как это происходит?

как найти емкость конденсатора
как найти емкость конденсатора

Электрический заряд, а в случае с металлами это электроны, способен перемещаться под действием электродвижущей силы (э. д. с.).

Подключая металлические пластинки к источнику тока, мы получаем замкнутую цепь, но разделенную диэлектриком. Электростатическое поле проходит этот диэлектрик, замыкая цепь, а электроны, дойдя до препятствия, останавливаются и скапливаются.

Полная статья на блоге “Электрик в доме”:

Получается, на одной обкладке наблюдается избыток электронов, и эта пластина имеет отрицательный знак, а на другой пластине электронов недостает настолько же, знак на этой обкладке, конечно же, будет положительным.

Вот теперь нужна для определения емкости конденсатора формула, определяющая, какой заряд способен разместится на конкретном конденсаторе.

В качестве единицы измерения в международной системе (СИ) емкость определяется в Фарадах.

Много это или мало – емкость в 1Ф? Чтобы конденсатор обладал емкостью в 1Ф, он должен содержать в себе заряд в 1К (кулон) и при этом напряжение между обкладками должно равняться 1 вольту.

Интересно. Что такое заряд в 1 кулон? Если два предмета, каждый из которых имеет заряд в один кулон разместить в вакууме на расстоянии один метр, то сила притяжения между ними будет равна силе притяжения землей тела массой в один миллион тонн.

Как и любая буквальная емкость один и тот же конденсатор может вмещать разное количество заряда.

устройство конденсатора
устройство конденсатора

Рассмотрим пример.

  • В трехлитровую банку входит три литра воздуха. Его хватит для дыхания, допустим, на 3 минуты. Но если воздух закачать под каким-то давлением, то емкость так и останется три литра, однако дышать можно будет дольше. Так устроен акваланг для ныряльщиков. Получается, количество воздуха в банке зависит от давления, которое в ней создается. Точно так же есть некая зависимость между различными силами, влияющими на емкость.

Формула емкости плоского конденсатора

Прежде чем узнать, по какой формуле вычисляется емкость плоского конденсатора, рассмотрим формулу для одиночного проводника. Она имеет вид:

формула емкости плоского конденсатора
формула емкости плоского конденсатора
  • где Q – заряд,
  • φ – потенциал.

Как видно емкость конденсатора, формула которого здесь приведена, будет тем больше, чем больший заряд способен накапливаться на нем при незначительном потенциале. Чтобы легче это было понять, рассмотрим получившие широкое распространение плоские конденсаторы разных размеров.

Для получения качественного конденсатора важны любые мелочи:

  1. ровная поверхность каждой обкладки;
  2. обе пластинки по всей площади должны располагаться на одинаковом расстоянии;
  3. размеры обкладок должны быть строго идентичными;
  4. от качества диэлектрика, расположенного между пластинками, будет зависеть ток утечки;
  5. емкость напрямую зависит от расстояния между обкладками, чем оно меньше, тем больше емкость.

Теперь обратимся к плоскому конденсатору. Формула определения емкости конденсатора несколько отличается от приведенной выше:

емкость конденсатора формула
емкость конденсатора формула
  • где S – площадь одной обкладки,
  • εr – диэлектрическая проницаемость диэлектрика,
  • ε0 – электрическая постоянная,
  • d – расстояние между обкладками.

Электрическая постоянная выражается числом 8,854187817×10-12.

емкость конденсатора
емкость конденсатора

Внимание! Эта формула справедлива только тогда, когда расстояние между пластинами намного меньше их площади.

Попробуем разобраться с каждой переменной подробнее. Площадь измеряется в м2, точнее, приводится к этой величине. А вот проницаемость диэлектрика может обозначаться по-разному.

В России это εr (также означает относительная проницаемость), в англоязычной литературе встречается εa (также означает абсолютная проницаемость), а то может и вовсе использоваться без индекса, просто ε. О том, что здесь используется диэлектрическая проницаемость диэлектрика можно понять из контекста.

Дальше идет ε0. Это уже вычисленное значение, измеряемое в Ф/м. Последняя переменная – d. Измеренное расстояние также приводится к метру. Емкость конденсатора, формула которого сейчас рассматривается, показывает сильную зависимость от расстояния обкладок. Поэтому стараются это расстояние по возможности сокращать. Почему этот показатель так важен?

Идеальными условиями для получения наибольшей емкости – это отсутствие промежутка между обкладками, чего, конечно, добиться невозможно. Чем ближе находятся разноименные заряды, тем сильнее сила притяжения, но здесь возникает компромисс.

При уменьшении толщины диэлектрика, а именно он разделяет разноименные заряды, возникает вероятность его пробоя из-за разности потенциалов на обкладках. С другой стороны, как уже говорилось, при увеличении напряжения увеличивается количество зарядов. Вот и приходится выбирать между емкостью и рабочим напряжением конденсатора.

Есть другая формула для плоского переменного конденсатора:

Формула для расчета емкости плоского конденсатора
Формула для расчета емкости плоского конденсатора

Здесь диэлектрическая проницаемость обозначена буквой ε, π = 22/7 ≈ 3,142857142857143, d – толщина диэлектрика. Формула предназначена для конденсатора, состоящего из нескольких пластин.

Допустимая толщина диэлектрика d также зависит от εr, чем выше коэффициент, тем тоньше можно использовать диэлектрик, тем большую емкость будет иметь конденсатор. Это был самый сложный материал, дальше будет легче.

Формула емкости цилиндрического конденсатора

Теперь поговорим о том, как найти емкость конденсатора цилиндрической формы. К ним относятся конденсаторы, состоящие из двух металлических цилиндров, вставленных один в другой.

Для разделения между ними расположен диэлектрик. Формула емкости конденсатора выглядит следующим образом:

Формула электрической емкости цилиндрического конденсатора
Формула электрической емкости цилиндрического конденсатора

Здесь видим несколько новых переменных:

  • l – высота цилиндра;
  • R1 и R2 – радиус первого и второго (внешнего) цилиндров;
  • ln – это не переменная, а математический символ натурального логарифма. На некоторых калькуляторах он имеется.

Всегда нужно помнить, что все величины должны приводиться к единой системе, в приведенной ниже таблице указаны международные системы единиц (СИ).

международные системы единиц (СИ)
международные системы единиц (СИ)

Из нее видно, что все расстояния нужно приводить к метру.

Формулы для расчета емкости конденсаторов
Формулы для расчета емкости конденсаторов

Еще стоит обращать внимание на качество диэлектрика. Если толщина диэлектрика влияет только на емкость конденсатора, то его качество затрагивает сохранность энергии. Другими словами, конденсатор с качественным диэлектриком будет иметь меньший саморазряд.

Определить качество можно по числу, стоящему возле вещества, чем оно больше, тем лучше качество. Сравнение производится по вакууму, значение которого равно единице.

Формула емкости сферического конденсатора

Последнее что осталось разобрать – формулу определения емкости конденсатора, состоящего из двух сфер. Причем одна сфера находится внутри другой. Формула имеет следующий вид:

Формула расчета емкости сферического конденсатора
Формула расчета емкости сферического конденсатора

Из приведенных переменных здесь все знакомо. Стоит обратить внимание лишь на сам конденсатор.

Кроме своей необычной формы у него есть свои особенности: внутри малой сферы никакого заряда нет, он образуется на внешней части малой сферы и внутренней части большого шара. Также заряд отсутствует и на внешней стороне внешней сферы.

Так же как и все другие конденсаторы, сферы разделены диэлектриком. Толщина и качество диэлектрика оказывают такое же влияние на емкость, как в случае с другими конденсаторами.

После того как были рассмотрены формулы, стоит испробовать их на практике. Рассмотрим, как найти емкость конденсатора каждого вида.

Примеры решения задач

Начнем с плоского конденсатора. Формула для этого вида:

формула емкости плоского конденсатора
формула емкости плоского конденсатора

Допустим, у нас есть следующие значения:

  • в качестве диэлектрика возьмем слюду толщиной 0,02 мм, ε = 6;
  • конденсатор квадратный со сторонами в 7 мм.

Определяем площадь пластин: 7×7 = 49 мм2.

Приводим к единой системе: 4,9×10-5 = 0,000049 м2. Толщина диэлектрика 0,02×10-5 = 0,00002 м. Электрическая постоянная 8,854187817×10-12.

Подставляем в формулу и высчитываем числитель: 6×8,854187817×10-12 ×4,9×10-5, сокращаем и решаем 6×49×8,854187817×10-17 = 2,603131218198×10-14.

Делим на толщину диэлектрика: 2,603131218198×10 / 2×10 = 1301,565609099×10 = 1,301565609099×10. Шесть нулей – это тысячи или приставка «микро», получается округлено 1,3 мкФ.

Возможно, при вычислении была допущена ошибка, но это не экзамен по математике. Важно понять сам метод вычисления.

Формула для цилиндрического конденсатора:

Электроемкость цилиндрического конденсатора
Электроемкость цилиндрического конденсатора

Выбираем значения:

  • l = 1 см;
  • R1 = 0,25 мм;
  • R2 = 0,26 мм;
  • ε = 2.

Подгоняем под единую систему: l – 1 см = 1×10-2 = 0,01 м; R1 – 0,25 мм = 0,0025 м; R2 – 0,26 мм = 0,0026 м.

Подставляем значения в числитель: 2×3,142857142857143×8,854187817×10-12×2×0,01 1,11×10-12. Находим знаменатель: 0,26:0,25 = 1,04.

Находим натуральный логарифм, он равен примерно 0,39. Числитель делим на знаменатель: 1,11×10-12/0,39 = 2,85×10-12.

Число с 12 нулями это приставка «пико», получаем 2,85 пФ.

Формула для сферического конденсатора:

Электроемкость цилиндрического конденсатора
Электроемкость цилиндрического конденсатора

Выбираем значения:

  • ε= 4;
  • r1= 5 см;
  • r2= 5,01 см.

Снова все подгоняем: 5 см = 0,05 м; 5,01 см = 0,0501 м. Заполняем числитель. 4×3,142857142857143×4×8,854187817×10-12×0,05×0,0501 1,11×10-12 Вычисляем знаменатель: 0,0501 – 0,05 = 0,01. Производим деление: 1,11×10-12×0,01 = 1,11×10-10. Снова получили пикофарады, а именно 1,11 пФ.

Интересные статьи на канале:

Статья заинтересовала? Лайк, подписка, комментарий!

Друзья ПОДПИСЫВАЙТЕСЬ Дзен на канал, а также заходите на блог https://electricvdome.ru 👍!

#конденсатор #емкость #формула

Определение 1

Конденсатор – это совокупность двух любых проводников, заряды которых одинаковы по значению и противоположны по знаку.

Его конфигурация говорит о том, что поле, созданное зарядами, локализовано между обкладками. Тогда можно записать формулу электроемкости конденсатора:

C=qφ1-φ2=qU.

Значением φ1-φ2=U обозначают разность потенциалов, называемую напряжением, то есть U. По определению емкость положительна. Она зависит только от размерностей обкладок конденсатора их взаиморасположения и диэлектрика. Ее форма и место должны минимизировать воздействие внешнего поля на внутреннее. Силовые линии конденсатора начинаются на проводнике с положительным зарядом, а заканчиваются с отрицательным. Конденсатор может являться проводником, помещенным в полость, окруженным замкнутой оболочкой.

Выделяют три большие группы: плоские, сферические, цилиндрические. Чтобы найти емкость, необходимо обратиться к определению напряжения конденсатора с известными значениями зарядов на обкладках.

Плоский конденсатор

Определение 2

Плоский конденсатор – это две противоположно заряженные пластины, которые разделены тонким слоем диэлектрика, как показано на рисунке 1.

Формула для расчета электроемкости записывается как

C=εε0Sd, где S является площадью обкладки, d – расстоянием между ними, ε – диэлектрической проницаемостью вещества. Меньшее значение d способствует большему совпадению расчетной емкости конденсатора с реальной.

Плоский конденсатор

Рисунок 1

При известной электроемкости конденсатора, заполненного N слоями диэлектрика, толщина слоя с номером i равняется di, вычисление диэлектрической проницаемости этого слоя εi выполняется, исходя из формулы:

C=ε0Sd1ε1+d2ε2+…+dNεN.

Сферический конденсатор

Определение 3

Когда проводник имеет форму шара или сферы, тогда внешняя замкнутая оболочка является концентрической сферой, это означает, что конденсатор сферический.

Он состоит из двух концентрических проводящих сферических поверхностей с пространством между обкладками, заполненным диэлектриком, как показано на рисунке 2. Емкость рассчитывается по формуле:

C=4πεε0R1R2R2-R1, где R1 и R2 являются радиусами обкладок.

Сферический конденсатор

Рисунок 2

Цилиндрический конденсатор

Емкость цилиндрического конденсатора равняется:

C=2πεε0llnR2R1, где l – высота цилиндров, R1 и R2 – радиусы обкладок. Данный вид конденсатора имеет две соосные поверхности проводящих цилиндрических поверхности, как показано на рисунке 3.

Цилиндрический конденсатор

Рисунок 3

Определение 4

Важной характеристикой конденсаторов считается пробивное напряжение – напряжение, при котором происходит электрический разряд через слой диэлектрика.

Umax находится от зависимости от толщины слоя и свойств диэлектрика, конфигурации конденсатора.

Электроемкость плоского конденсатора. Формулы

Кроме отдельных конденсаторов используются их соединения. Наличие параллельного соединения конденсаторов применяют для увеличения его емкости. Тогда поиск результирующей емкости соединения сводится к записи суммы Ci, где Ci- это емкость конденсатора с номером i:

C=∑i=1NCi.

При последовательном соединении конденсаторов суммарная емкость соединения всегда будет по значению меньше, чем минимальная любого конденсатора, входящего в систему. Для расчета результирующей емкости следует сложить величины, обратные к емкостям отдельных конденсаторов:

Пример 1

Произвести вычисление емкости плоского конденсатора при известной площади обкладок
1 см2 с расстоянием между ними 1 мм. Пространство между обкладками находится в вакууме.

Решение

Чтобы рассчитать электроемкость конденсатора, применяется формула:

C=εε0Sd.

Значения:

ε=1, ε0=8,85·10-12 Фм;S=1 см2=10-4 м2;d=1 мм=10-3 м.

Подставим числовые выражения и вычислим:

C=8,85·10-12·10-410-3=8,85·10-13 (Ф).

Ответ: C≈0,9 пФ.

Пример 2

Найти напряженность электростатического поля у сферического конденсатора на расстоянии x=1 см=10-2 м от поверхности внутренней обкладки при внутреннем радиусе обкладки, равном R1=1 см=10-2 м, внешнем – R2=3 см=3·10-2 м. Значение напряжения – 103 В.

Решение

Производящая заряженная сфера создает напряженность поля. Его значение вычисляется по формуле:

E=14πεε0qr2, где q обозначают заряд внутренней сферы, r=R1+x – расстояние от центра сферы.

Нахождение заряда предполагает применение определения емкости конденсатора С:

q=CU.

Для сферического конденсатора предусмотрена формула вида

C=4πεε0R1R2R2-R1 с радиусами обкладок R1 и R2.

Производим подстановку выражений для получения искомой напряженности:

E=14πεε0U(x+R1)24πεε0R1R2R2-R1=U(x+R1)2R1R2R2-R1.

Данные представлены в системе СИ, поэтому достаточно заменить буквы числовыми выражениями:

E=103(1+1)2·10-4·10-2·3·10-23·10-2-10-2=3·10-18·10-6=3,45·104 Вм.

Ответ: E=3,45·104 Вм.

Содержание:

  1. Последовательное соединение конденсаторов
  2. Параллельное соединение конденсаторов
  3. Смешанное соединение конденсаторов
  4. Пример расчета

В данной статье приведены различные схемы соединения конденсаторов, а так же формулы их расчета с примером.

  1. Последовательное соединение конденсаторов

Если условно разделить выводы каждого из конденсаторов на первый и второй выводы последовательное соединение конденсаторов будет выполняется следующим образом: второй вывод первого конденсатора соединяется с первым выводом второго конденсатора, второй вывод второго конденсатора, соединяется с первым выводом третьего и так далее. Таким образом мы получим группу (блок) последовательно соединенных конденсаторов с двумя свободными выводами — первым выводом первого конденсатора в блоке и вторым выводом последнего конденсатора, через которые данный конденсаторный блок и подключается в электрическую цепь.

Схема последовательного соединения конденсаторов будет иметь следующий вид:

схема последовательного соединения конденсаторов

Фактически последовательное соединение конденсаторов имеет следующий вид:

последовательное соединение конденсаторов

При данной схеме соединения заряды на конденсаторах будут одинаковы:

Qобщ=Q1=Q2=Q3

где: Q1, Q2, Q3 — соответственно заряд на первом, втором, третьем и т.д. конденсаторах

Напряжение на каждом конденсаторе при такой схеме зависит от его емкости:

U1=Q/C1; U2=Q/C2; U3=Q/C3, где:

  • U1, U2, U3 — соответственно напряжение на первом, втором, третьем конденсаторах
  • C1, C2, C3 — соответственно емкости первого, второго, третьего конденсаторов

При этом общее напряжение составит:

Uобщ=U1+U2+U3+…+Un

Рассчитать общую емкость конденсаторов при последовательном соединении можно по следующим формулам:

  • При последовательном соединении двух конденсаторов:

Собщ=(C1*C2)/(C1+C2)

  • При последовательном соединении трех и более конденсаторов:

1/Собщ=1/C1+1/C2+1/C3+…+1/Cn

  1. Параллельное соединение конденсаторов

Если условно разделить выводы каждого из конденсаторов на первый и второй выводы параллельное соединение конденсаторов будет выполняется следующим образом: первые выводы всех конденсаторов соединяются в одну общую точку (условно — точка №1) вторые выводы всех конденсаторов соединяются в другую общую точку (условно — точка №2). В результате получается группа (блок) параллельно соединенных конденсаторов подключение которой к электрической цепи производится через условные точки №1 и №2.

Схема параллельного соединения конденсаторов будет иметь следующий вид:

схема параллельного соединения конденсаторов

Таким образом параллельное соединение конденсаторов будет иметь следующий вид:

параллельное соединение конденсаторов

При данной схеме напряжение на всех конденсаторах будет одинаково:

U=U1=U2=U3

Заряд же на каждом из конденсаторов будет зависеть от его емкости:

Q1=U*C1; Q2=U*C2; Q3=U*C3

При этом общий заряд цепи будет равен сумме зарядов всех параллельно подключенных конденсаторов:

Qобщ=Q1+Q2+Q3…+…Qn.

Рассчитать общую емкость конденсаторов при параллельном соединении можно по следующей формуле:

Собщ=C1+C2+C3+…+Cn

  1. Смешанное соединение конденсаторов

Схема в которой присутствует две и более группы (блока) конденсаторов с различными схемами соединения называется схемой смешанного соединения конденсаторов.

Приведем пример такой схемы:

схема смешанного соединения конденсаторов

Для расчетов такие схемы условно разделяются на группы одинаково соединенных конденсаторов, после чего расчеты ведутся для каждой группы по формулам приведенным выше.

Для наглядности приведем пример расчета общей емкости данной схемы.

  1. Пример расчета

Условно разделив схему на группы получим следующее:

1 этап расчета емкости при смешанном соединении конденсаторов

Как видно из схемы на первом этапе мы выделили 3 группы (блока) конденсаторов, при этом конденсаторы в первой и второй группе соединены последовательно, а конденсаторы в третьей группе — параллельно.

Произведем расчет каждой группы:

  • Группа 1 — последовательное соединение трех конденсаторов:

1/C1,2,3 = 1/C1+1/C2+1/C3 = 1/5+1/15+1/10=0,2+0,067+0,1 = 0,367 → C1,2,3 = 1/0,367 = 2,72 мкФ

  • Группа 2 — последовательное соединение двух конденсаторов:

С4,5 = (C4*C5)/(C4+C5)= (20*30)/(20+30) = 600/50 = 12 мкФ

  • Группа 3 — параллельное соединение трех конденсаторов:

С6,7,8 = C6+C7+C8 = 5+25+30 = 60 мкФ

В результате расчета схема упрощается:

2 этап расчета емкости при смешанном соединении конденсаторов

Как видно в упрощенной схеме осталась еще одна группа из двух параллельно соединенных конденсаторов, произведем расчет ее емкости:

  • Группа 4 — параллельное соединение двух групп конденсаторов:

С1,2,3,4,5 = C1,2,3+C4,5 = 2,72+12 = 14,72 мкФ

В конечном итоге получаем простую схему из двух последовательно соединенных групп конденсаторов:

3 этап расчета емкости при смешанном соединении конденсаторов

Теперь можно определить общую емкость схемы:

Собщ = (C1,2,3,4,5*C6,7,8)/(C1,2,3,4,5+C6,7,8) = 14,72*60/14,72+60 = 883,2/74,72 = 11,8 мкФ



Была ли Вам полезна данная статья? Или может быть у Вас остались вопросыПишите в комментариях!

Не нашли на сайте ответа на интересующий Вас вопросЗадайте его на форуме! Наши специалисты обязательно Вам ответят.

↑ Наверх

Элементы цепи могут быть подключены двумя способами:

  1. последовательно
  2. параллельно

Проиллюстрируем данные подключения на примере двух конденсаторов (рис. 1).

  • последовательное соединение конденсаторов

Последовательное соединение конденсаторов

Рис. 1. Последовательное соединение конденсаторов

Логическая зарядка конденсаторов происходит как показано на рис.1. Приходя из цепи, электрон останавливается на левой обкладке (пластине) конденсатора. При этом, благодаря своему электрическому полю (электризация через влияние), он выбивает другой электрон с правой обкладки, уходящий дальше в цепь (рис. 1.1). Этот образовавшийся электрон приходит на левую обкладку следующего конденсатора, соединённого последовательно. И всё повторяется снова. Таким образом, в результате «прохождения» через последовательную цепь конденсаторов «одного» электрона, мы получаем заряженную систему с одинаковыми по значению зарядами на каждом из конденсаторов (рис. 1.2).

Кроме того, напряжение на последовательно соединённой батареи конденсаторов есть сумма напряжений на каждом из элементов (аналог последовательного сопротивления проводников).

Последовательное соединение конденсаторов

Рис. 2. Последовательное соединение конденсаторов

Часть задач школьной физики касается поиска общей электроёмкости участка цепи, логика такого поиска: найти такую электроёмкость, которым можно заменить цепь, чтобы параметры напряжения и заряда остались неизменными (рис. 2). Пусть заряд на обоих конденсаторах — displaystyle {{C}_{1}} (помним, что они одинаковы), электроёмкости — displaystyle {{C}_{2}}displaystyle {{U}_{1}} и соответствующие напряжения — displaystyle {{U}_{2}} и displaystyle {{U}_{2}}.

Учитывая определение электроёмкости:

displaystyle C=frac{q}{U}  (1)

Тогда:

displaystyle {{U}_{1}}=frac{q}{{{C}_{1}}}  (2)

displaystyle {{U}_{2}}=frac{q}{{{C}_{2}}}  (3)

displaystyle {{U}_{0}}=frac{q}{{{C}_{0}}}  (4)

Памятуя о том, что конденсаторы соединены последовательно, получаем:

displaystyle {{U}_{0}}={{U}_{1}}+{{U}_{2}}  (5)

Тогда:

displaystyle Rightarrow frac{1}{{{C}_{0}}}=frac{1}{{{C}_{1}}}+frac{1}{{{C}_{2}}} displaystyle Rightarrow frac{1}{{{C}_{0}}}=frac{1}{{{C}_{1}}}+frac{1}{{{C}_{2}}} (6)

Или в общем виде:

displaystyle frac{1}{{{C}_{0}}}=sumlimits_{i}{frac{1}{{{C}_{i}}}} (7)

Для цепи из двух последовательных соединений:

displaystyle {{C}_{0}}=frac{{{C}_{1}}{{C}_{2}}}{{{C}_{1}}+{{C}_{2}}} (8)

  •  параллельное соединение конденсаторов

Параллельное соединение конденсаторов

Рис. 3. Параллельное соединение конденсаторов

Параллельное подключение конденсаторов представлено на рисунке 3. При внесении электрона в систему, у него есть выбор: пойти на верхний или нижний конденсатор. При большом количестве электронов заполнение обкладок конденсатора происходит прямо пропорционально электроёмкости конденсаторов.

Параллельное соединение конденсаторов - 2

Рис. 4. Параллельное соединение конденсаторов. Поиск полной электроёмкости

Опять попробуем решить задачу по поиску полной ёмкости конденсаторов (рис. 4). Помним, что при параллельном подключении напряжения на элементах одинаковы, тогда:

displaystyle {{q}_{1}}={{C}_{1}}U (9)

displaystyle {{q}_{2}}={{C}_{2}}U (10)

displaystyle {{q}_{0}}={{C}_{0}}U (11)

С учётом того, что displaystyle {{q}_{0}}={{q}_{1}}+{{q}_{2}}, получим:

displaystyle {{C}_{0}}U={{C}_{1}}U+{{C}_{2}}U (12)

Сокращаем:

displaystyle {{C}_{0}}={{C}_{1}}+{{C}_{2}} (13)

Или в общем виде:

displaystyle {{C}_{0}}=sumlimits_{i}{{{C}_{i}}} (14)

Вывод: в задачах, в которых присутствует цепь, необходимо рассмотреть, какое конкретно соединение рассматривается, а потом использовать соответствующую логику рассуждений:

Как найти емкость батареи конденсатора?

Лариса Александрова



Ученик

(2),
закрыт



12 лет назад

Если два соединены параллельно, а с третьим последовательно?

Лучший ответ

Марат Сунагатуллин

Мыслитель

(7614)


12 лет назад

2 паралельных кондёра складываешь
1с=1(с1+с2)+1с3
с-это общая суммарная ёмкость

Остальные ответы

Александр Агольцов

Гуру

(4391)


12 лет назад

пр паралельном соединение ёмкости складываются, т. е. С0=С1+С2+С3…
при последовательном соединение:
1/С0=(1/С1)+(1/С2)+(1/С3) …
само С=q/U, где q-заряд, u – напряжение.

Валентин Дульша

Гуру

(3556)


12 лет назад

Найди по формуле емкости емкость двух левых конденсаторов С=(Е0*Е*S)/d. Потом сплюсуйте их и все готово.



Ученик

(107)


1 месяц назад

емкость батареи конденсаторов находятся c из формулы

Похожие вопросы

Добавить комментарий