Как найти емкость конденсатора онлайн

Электроемкость конденсатора. Калькулятор онлайн

Онлайн калькулятор вычисления емкости конденсатора, позволит найти электроемкость C плоского, цилиндрического и сферического конденсаторов и даст подробное решение.
Единицы измерения, могут включать любые приставки Си.
Калькулятор автоматически переведет одни единицы в другие.

Калькулятор вычислит:
Емкость плоского конденсатора.
Емкость цилиндрического конденсатора.
Емкость сферического конденсатора

Емкость плоского конденсатора

Емкость плоского конденсатораПлоский конденсатор представляет собой две параллельные проводящие пластины, разделенные диэлектриком, расположенные на малом расстоянии друг от друга.
Электроемкость C плоского конденсатора равна произведению электрической постоянной ε0, диэлектрической проницаемости диэлектрика e и площади S пластины конденсатора, деленного на расстояние d между пластинами где, ε0 = 8.85418781762039 × 10-12
Единицей измерения электроемкости является – Фарад (Ф, F).
Электроемкость в 1 Фарад является очень большой емкостью, к примеру емкостью в 1 Фарад обладает сфера в 13 раз, превышающая радиус Солнца, поэтому в основном используют дольные единицы Фарада.

Диэлектрическая проницаемость ε =
Площадь пластины S =
Расстояние между пластинами d =
Единица измерения электроемкости C

Емкость цилиндрического конденсатора

Емкость цилиндрического конденсатораЦилиндрический конденсатор представляет собой конденсатор, обкладками, которого являются два цилиндра, внутренний с радиусом R1 и внешний с радиусом R2. Между обкладками находится диэлектрик с диэлектрической проницаемостью ε.
Электроемкость цилиндрического конденсатора определяется формулой, где
π – число Пи (3.14)
ε0 – электрическая постоянная, ε0 = 8.85418781762039 × 10-12
ε – диэлектрическая проницаемость диэлектрика
l – длина цилиндра
ln – натуральный логарифм
R1 – радиус внутренней обкладки
R2 – радиус внешней обкладки
Единицей измерения электроемкости является – Фарад (Ф, F).
Электроемкость в 1 Фарад является очень большой емкостью, к примеру емкостью в 1 Фарад обладает сфера в 13 раз, превышающая радиус Солнца, поэтому в основном используют дольные единицы Фарада.

Диэлектрическая проницаемость ε =
Радиус R1 =
Радиус R2 =
Длина l =
Единица измерения электроемкости C

Емкость сферического конденсатора

Емкость сферического конденсатораСферический конденсатор представляет собой конденсатор, обкладками которого являются две концентрические сферы, радиусами R1 и R2, между которыми расположен диэлектрик, с диэлектрической проницаемостью ε.
Электроемкость сферического конденсатора определяется формулой, где
π – число Пи (3.14)
ε0 – электрическая постоянная, ε0 = 8.85418781762039 × 10-12
ε – диэлектрическая проницаемость диэлектрика
R1 – радиус внутренней обкладки
R2 – радиус внешней обкладки
Единицей измерения электроемкости является – Фарад (Ф, F).
Электроемкость в 1 Фарад является очень большой емкостью, к примеру емкостью в 1 Фарад обладает сфера в 13 раз, превышающая радиус Солнца, поэтому в основном используют дольные единицы Фарада.

Диэлектрическая проницаемость ε =
Радиус R1 =
Радиус R2 =
Единица измерения электроемкости C

Вам могут также быть полезны следующие сервисы
Калькуляторы (физика)

Механика

Калькулятор вычисления скорости, времени и расстояния
Калькулятор вычисления ускорения, скорости и перемещения
Калькулятор вычисления времени движения
Калькулятор времени
Второй закон Ньютона. Калькулятор вычисления силы, массы и ускорения.
Закон всемирного тяготения. Калькулятор вычисления силы притяжения, массы и расстояния.
Импульс тела. Калькулятор вычисления импульса, массы и скорости
Импульс силы. Калькулятор вычисления импульса, силы и времени действия силы.
Вес тела. Калькулятор вычисления веса тела, массы и ускорения свободного падения

Оптика

Калькулятор отражения и преломления света

Электричество и магнетизм

Калькулятор Закона Ома
Калькулятор Закона Кулона
Калькулятор напряженности E электрического поля
Калькулятор нахождения точечного электрического заряда Q
Калькулятор нахождения силы F действующей на заряд q
Калькулятор вычисления расстояния r от заряда q
Калькулятор вычисления потенциальной энергии W заряда q
Калькулятор вычисления потенциала φ электростатического поля
Калькулятор вычисления электроемкости C проводника и сферы

Конденсаторы

Калькулятор вычисления электроемкости C плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления напряженности E электрического поля плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления напряжения U (разности потенциалов) плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления расстояния d между пластинами в плоском конденсаторе
Калькулятор вычисления площади пластины (обкладки) S в плоском конденсаторе
Калькулятор вычисления энергии W заряженного конденсатора
Калькулятор вычисления энергии W заряженного конденсатора. Для плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления объемной плотности энергии w электрического поля для плоского, цилиндрического и сферического конденсаторов
Калькуляторы по астрономии
Вес тела на других планетах
Ускорение свободного падения на планетах Солнечной системы и их спутниках
Конвертеры величин
Конвертер единиц длины
Конвертер единиц скорости
Конвертер единиц ускорения
Цифры в текст
Калькуляторы (Теория чисел)
Калькулятор выражений
Калькулятор упрощения выражений
Калькулятор со скобками
Калькулятор уравнений
Калькулятор суммы
Калькулятор пределов функций
Калькулятор разложения числа на простые множители
Калькулятор НОД и НОК
Калькулятор НОД и НОК по алгоритму Евклида
Калькулятор НОД и НОК для любого количества чисел
Калькулятор делителей числа
Представление многозначных чисел в виде суммы разрядных слагаемых
Калькулятор деления числа в данном отношении
Калькулятор процентов
Калькулятор перевода числа с Е в десятичное
Калькулятор экспоненциальной записи чисел
Калькулятор нахождения факториала числа
Калькулятор нахождения логарифма числа
Калькулятор квадратных уравнений
Калькулятор остатка от деления
Калькулятор корней с решением
Калькулятор нахождения периода десятичной дроби
Калькулятор больших чисел
Калькулятор округления числа
Калькулятор свойств корней и степеней
Калькулятор комплексных чисел
Калькулятор среднего арифметического
Калькулятор арифметической прогрессии
Калькулятор геометрической прогрессии
Калькулятор модуля числа
Калькулятор абсолютной погрешности приближения
Калькулятор абсолютной погрешности
Калькулятор относительной погрешности
Дроби
Калькулятор интервальных повторений
Учим дроби наглядно
Калькулятор сокращения дробей
Калькулятор преобразования неправильной дроби в смешанную
Калькулятор преобразования смешанной дроби в неправильную
Калькулятор сложения, вычитания, умножения и деления дробей
Калькулятор возведения дроби в степень
Калькулятор перевода десятичной дроби в обыкновенную
Калькулятор перевода обыкновенной дроби в десятичную
Калькулятор сравнения дробей
Калькулятор приведения дробей к общему знаменателю
Калькуляторы (тригонометрия)
Калькулятор синуса угла
Калькулятор косинуса угла
Калькулятор тангенса угла
Калькулятор котангенса угла
Калькулятор секанса угла
Калькулятор косеканса угла
Калькулятор арксинуса угла
Калькулятор арккосинуса угла
Калькулятор арктангенса угла
Калькулятор арккотангенса угла
Калькулятор арксеканса угла
Калькулятор арккосеканса угла
Калькулятор нахождения наименьшего угла
Калькулятор определения вида угла
Калькулятор смежных углов
Калькуляторы систем счисления
Калькулятор перевода чисел из арабских в римские и из римских в арабские
Калькулятор перевода чисел в различные системы счисления
Калькулятор сложения, вычитания, умножения и деления двоичных чисел
Системы счисления теория
N2 | Двоичная система счисления
N3 | Троичная система счисления
N4 | Четырехичная система счисления
N5 | Пятеричная система счисления
N6 | Шестеричная система счисления
N7 | Семеричная система счисления
N8 | Восьмеричная система счисления
N9 | Девятеричная система счисления
N11 | Одиннадцатиричная система счисления
N12 | Двенадцатеричная система счисления
N13 | Тринадцатеричная система счисления
N14 | Четырнадцатеричная система счисления
N15 | Пятнадцатеричная система счисления
N16 | Шестнадцатеричная система счисления
N17 | Семнадцатеричная система счисления
N18 | Восемнадцатеричная система счисления
N19 | Девятнадцатеричная система счисления
N20 | Двадцатеричная система счисления
N21 | Двадцатиодноричная система счисления
N22 | Двадцатидвухричная система счисления
N23 | Двадцатитрехричная система счисления
N24 | Двадцатичетырехричная система счисления
N25 | Двадцатипятеричная система счисления
N26 | Двадцатишестеричная система счисления
N27 | Двадцатисемеричная система счисления
N28 | Двадцативосьмеричная система счисления
N29 | Двадцатидевятиричная система счисления
N30 | Тридцатиричная система счисления
N31 | Тридцатиодноричная система счисления
N32 | Тридцатидвухричная система счисления
N33 | Тридцатитрехричная система счисления
N34 | Тридцатичетырехричная система счисления
N35 | Тридцатипятиричная система счисления
N36 | Тридцатишестиричная система счисления
Калькуляторы площади геометрических фигур
Площадь квадрата
Площадь прямоугольника
КАЛЬКУЛЯТОРЫ ЗАДАЧ ПО ГЕОМЕТРИИ
Калькуляторы (Комбинаторика)
Калькулятор нахождения числа перестановок из n элементов
Калькулятор нахождения числа сочетаний из n элементов
Калькулятор нахождения числа размещений из n элементов
Калькуляторы линейная алгебра и аналитическая геометрия
Калькулятор сложения и вычитания матриц
Калькулятор умножения матриц
Калькулятор транспонирование матрицы
Калькулятор нахождения определителя (детерминанта) матрицы
Калькулятор нахождения обратной матрицы
Длина отрезка. Онлайн калькулятор расстояния между точками
Онлайн калькулятор нахождения координат вектора по двум точкам
Калькулятор нахождения модуля (длины) вектора
Калькулятор сложения и вычитания векторов
Калькулятор скалярного произведения векторов через длину и косинус угла между векторами
Калькулятор скалярного произведения векторов через координаты
Калькулятор векторного произведения векторов через координаты
Калькулятор смешанного произведения векторов
Калькулятор умножения вектора на число
Калькулятор нахождения угла между векторами
Калькулятор проверки коллинеарности векторов
Калькулятор проверки компланарности векторов
Генератор Pdf с примерами
Тренажёры решения примеров
Тренажер по математике
Тренажёр таблицы умножения
Тренажер счета для дошкольников
Тренажер счета на внимательность для дошкольников
Тренажер решения примеров на сложение, вычитание, умножение, деление. Найди правильный ответ.
Тренажер решения примеров с разными действиями
Тренажёры решения столбиком
Тренажёр сложения столбиком
Тренажёр вычитания столбиком
Тренажёр умножения столбиком
Тренажёр деления столбиком с остатком
Калькуляторы решения столбиком
Калькулятор сложения, вычитания, умножения и деления столбиком
Калькулятор деления столбиком с остатком
Генераторы
Генератор примеров по математике
Генератор случайных чисел
Генератор паролей

Калькулятор емкости при известном эквивалентном

Подбор необходимого значения при одном известном.

Соблюдайте полярность выводов для электролитических конденсаторов.

Схема полярности выводов для соединения конденсаторов.

Расчет эквивалентного значения ёмкости

Последовательное соединение
Параллельное соединение

Для расчета введите значение требуемой эквивалентной ёмкости и данные известного конденсатора

shema

Внимание! Значение C1 должно быть больше Ceq

Подбор конденсатора на сайте

Внимание! Производители объединяют конденсаторы в серии или ряды: E6, E12, E24…
Для подбора компонента будет использована серия E12.

Обнаружили ошибку или неточность в работе калькулятора? Сообщите нам об этом.
Соблюдайте технику безопасности во время работы с электронными компонентами!

1 мФ = 0,001 Ф. 1 мкФ = 0,000001 = 10⁻⁶ Ф. 1 нФ = 0,000000001 = 10⁻⁹ Ф. 1 пФ = 0,000000000001 = 10⁻¹² Ф.

В соответствии со вторым правилом Кирхгофа, падения напряжения V₁, V₂ and V₃ на каждом из конденсаторов в группе из трех соединенных последовательно конденсаторов в общем случае различные и общая разность потенциалов V равна их сумме:

Formula

По определению емкости и с учетом того, что заряд Q группы последовательно соединенных конденсаторов является общим для всех конденсаторов, эквивалентная емкость Ceq всех трех конденсаторов, соединенных последовательно, определяется как

Formula

или

Formula

Для группы из n соединенных последовательно конденсаторов эквивалентная емкость Ceq равна величине, обратной сумме величин, обратных емкостям отдельных конденсаторов:

Formula

или

Formula

Эта формула для Ceq и используется для расчетов в этом калькуляторе. Например, общая емкость соединенных последовательно трех конденсаторов емкостью 10, 15 and 20 мкФ будет равна 4,62 мкФ:

Formula

Если конденсаторов только два, то их общая емкость определяется по формуле

Formula

или

Formula

Если имеется n соединенных последовательно конденсаторов с емкостью C, их эквивалентная емкость равна

Formula

Отметим, что для расчета общей емкости нескольких соединенных последовательно конденсаторов используется та же формула, что и для расчета общего сопротивления параллельно соединенных резисторов.

Отметим также, что общая емкость группы из любого количества последовательно соединенных конденсаторов всегда будет меньше, чем емкость самого маленького конденсатора, а добавление конденсаторов в группу всегда приводит к уменьшению емкости.

Конденсаторы на печатной плате

Конденсаторы на печатной плате

Отдельного упоминания заслуживает падение напряжения на каждом конденсаторе в группе последовательно соединенных конденсаторов. Если все конденсаторы в группе имеют одинаковую номинальную емкость, падение напряжения на них скорее всего будет разным, так как конденсаторы в реальности будут иметь разную емкость и разный ток утечки. На конденсаторе с наименьшей емкостью будет наибольшее падение напряжения и, таким образом, он будет самым слабым звеном этой цепи.

Выравнивающие резисторы уменьшают разброс напряжений на отдельных конденсаторах

Выравнивающие резисторы уменьшают разброс напряжений на отдельных конденсаторах

Для получения более равномерного распределения напряжений параллельно конденсаторам включают выравнивающие резисторы. Эти резисторы работают как делители напряжения, уменьшающие разброс напряжений на отдельных конденсаторах. Но даже с этими резисторами все равно для последовательного включения следует выбирать конденсаторы с большим запасом по рабочему напряжению.

Если несколько конденсаторов соединены параллельно, разность потенциалов V на группе конденсаторов равна разности потенциалов соединительных проводов группы. Общий заряд Q разделяется между конденсаторами и если их емкости различны, то заряды на отдельных конденсаторах Q₁, Q₂ and Q₃ тоже будут различными. Общий заряд определяется как

Конденсаторы, соединенные параллельно

Конденсаторы, соединенные параллельно

Formula

По определению емкости, эквивалентная емкость группы конденсаторов равна

Formula

отсюда

Formula

или

Formula

Для группы n включенных параллельно конденсаторов

Formula

То есть, если несколько конденсаторов включены параллельно, их эквивалентная емкость определяется путем сложения емкостей всех конденсаторов в группе.

Возможно, вы заметили, что конденсаторы ведут себя противоположно резисторам: если резисторы соединены последовательно, их общее сопротивление всегда будет выше сопротивлений отдельных резисторов, а в случае конденсаторов всё происходит с точностью до наоборот.

Конденсаторы на печатной плате

Конденсаторы на печатной плате

Расчет параметров конденсатора онлайн

Не знаю как Вам, а мне никогда не нравилось работать и вычислять ёмкости конденсаторов. Больше всего раздражало  наличие в исходных  данных, ёмкостей в разных номиналах, в пикофарадах, в нанофарадах, микрофарадах.  Их приходилось переводить в Фарады,  что влекло за собой глупейшие ошибки в расчетах.

Конденсатор – в принципе это любая конструкция, которая может сохранять накопленный электрический потенциал.  Если же эта конструкция, не только хранит электроэнергию, но и генерирует её, то это уже источник электропитания и никак  не конденсатор.

Конструкция конденсаторов может быть любой, но чаще всего в практике используется плоский конденсатор, состоящий из двух проводящих пластин, между которыми находится какой либо диэлектрик.  Это связано с тем, что расчет ёмкости такого конденсатора ведется по известной формуле и простотой его создания. Свернув такой плоский конденсатор в рулон, мы получаем, что при фактическом скромном размере  “рулона”, там находится плоский конденсатор, длиной в десятки сантиметров и обладающий повышенной ёмкостью.

Емкости конденсаторов некоторых форм известны, и мы дальше их рассмотрим.

Но хотелось бы заметить, что на наш взгляд, потенциал  развития  конденсаторов до  конца не завершен. Ведь форма конструкции какого либо конденсатора может быть любая, материалы из которого сделаны обкладки или диэлектрический слой  тоже могут быть любыми в пределах таблицы Менделеева. Единственная сложность, это невозможность теоретически просчитать потенциальную ёмкость, новосозданного (другой конструкции) конденсатора. Это усложняет нахождение самой лучшей конструкции конденсатора.

Есть хорошая книга по рассмотрению электрической ёмкости различных фигур. Для любопытных рекомендую поискать на просторах Интернета: Расчет электрической ёмкости в авторстве Ю.Я.Иоселль 1981 года

Данный бот рассчитывает параметры типовых форм конденсаторов. Отличие от других калькуляторов, присутствующих в интернете, это возможность задавать параметры, которые Вам известны, для того что бы рассчитать остальные.

И последнее нововведение, которое вы можете использовать. Вам не обязательно придется переводить заданные данные в  метры, фарады и т.д. Достаточно обозначить размерность данных. 

Например, если ёмкость известна и равно 100 пикофарад, то боту можно так и написать c=100пикофарад или с=100пФ, бот сам  переведет в Фарады.

Результат, тоже будет выдан оптимально визуальному восприятию пользователя. 

Это стало возможно с созданием бота Система единиц измерения онлайн

Плоский конденсатор. Параметры

Ёмкость плоского конденсатора
Относительная диэлектрическая проницаемость
Площадь одной из обкладок конденсатора
Расстояние между обкладками
Полученные характеристики плоского конденсатора

Самая простая и самая распространенная конструкция конденсатора это два плоских проводника разделенных тонким слоем диэлектрика ( то есть материала не проводящего электрический ток).

Ёмкость такого сооружения определяется следующей формулой.

Формула плоского конденсатора

где ε0 = 8,85.10-12 Ф/м – абсолютная диэлектрическая проницаемость

Если же конденсатор состоит не из пары пластин, а каого то n-ого количества плоских пластин то ёмкость такого “слоёного” конденсатора составит

C=epsilon_0* frac{epsilon*S}{d}(n-1)

Еще интереснее выглядит формуа такого “слоёного” конденсатора,  если в слоях находятся разные диэлектрики , разной толщины d

C=epsilon_0* frac{S}{frac{d_1}{epsilon_1}+frac{d_2}{epsilon_2}+...+frac{d_n}{epsilon_n}}

S- площадь одной из обкладок конденсатора ( предполагаем что другая обкладка имеет такую же площадь)

d- расстояние между обкладками

С- ёмкость конденсатора

Рассмотрим примеры

Задача: Ёмкость плоского конденсатора 350 нанофарад, расстояние между обкладками 1 миллиметр, и заполнено воздухом. Определить какова площадь обкладок?

Сообщаем боту что нам известно: C=350нФ, d=1мм. Так как у воздуха диэлектрическая проницаемость 1.00059 то e=1.00059. Поле площадь очистим, так именно его мы будем определять

Получаем  вот такой ответ

Полученные характеристики плоского конденсатора

d = 1 милиметр 
e = 1.00059 
C = 350 нанофарад 
S = 39.524703024086 м2 

Ответ, площадь обкладок конденсатора при таких значениях должна составлять почти 40 квадратных метров.

Цилиндрический  КОНДЕНСАТОР

Ёмкость цилиндрического  конденсатора

Относительная диэлектрическая проницаемость

Радиус внутренней обкладки

Радиус внешней обкладки

Длина цилиндрического конденсатора

 

 

 

Полученные характеристики цилиндрического конденсатора

Цилиндрический конденсатор представляет в простейшем случае две трубки разного диаметра вложенных друг в друга. разделенных диэлетриком

Иногда может получится так, что ёмкость цилиндрического конденсатора станет отрицательной величиной. Ничего страшного, это лишь говорит о том что Вы перепутали радиусы внешней и внутренней оболочки местами.

Емкость плоского конденсатора

Емкость плоского конденсатора зависит от площади пластин, расстояния между ними и материала (диэлектрика), заполняющего пространство между пластинами.

Если

C емкость плоского конденсатора, фарад
S площадь пластин конденсатора, метр2
d расстояние между пластинами, метр
ε0 электрическая постоянная, Фарад/метр
ε относительная диэлектрическая проницаемость,

тогда в соответствии с формулой емкости, а также формулами поверхностной плотности заряда и напряженности однородного электрического поля имеем

[ C = frac{Q}{U} = frac{σS}{Ed} = frac{ε_0 ε E S}{Ed} ]

Отсюда для плоского конденсатора

[ C = ε_0 ε frac{S}{d} ]

Вычислить найти емкость плоского конденсатора по формуле (2)

Емкость плоского конденсатора

стр. 633

Добавить комментарий