Как найти энергия падающего излучения

Физика, 11 класс

Урок 22. Фотоэффект

Перечень вопросов, рассматриваемых на уроке:

  • предмет и задачи квантовой физики;
  • гипотеза М. Планка о квантах;
  • опыты А.Г. Столетова;
  • определение фотоэффекта, кванта, тока насыщения, задерживающего напряжения, работы выхода, красной границы фотоэффекта;
  • уравнение Эйнштейна для фотоэффекта;
  • законы фотоэффекта.

Глоссарий по теме:

Квантовая физика – раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения.

Фотоэффект – это вырывание электронов из вещества под действием света.

Квант – (от лат. quantum — «сколько») — неделимая порция какой-либо величины в физике.

Ток насыщения – некоторое предельное значение силы фототока.

Задерживающее напряжение – минимальное обратное напряжение между анодом и катодом, при котором фототок равен нулю.

Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл. которую нужно сообщить электрону, для того чтобы он мог преодолеть силы, удерживающие его внутри металла.

Красная граница фотоэффекта – это минимальная частота или максимальная длина волны света излучения, при которой еще возможен внешний фотоэффект.

Основная и дополнительная литература по теме урока:

1. Мякишев Г. Я., Буховцев Б. Б., Чаругин В. М. Физика. 11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 259 – 267.

2. Рымкевич А. П. Сборник задач по физике. 10-11 класс.- М.:Дрофа,2009. – С. 153 – 158.

3. Элементарный учебник физики. Учебное пособие в 3 т./под редакцией академика Ландсберга Г. С.: Т.3. Колебания и волны. Оптика. Атомная и ядерная физика. – 12-е изд. – М.: ФИЗМАТЛИТ, 2001. С. 422 – 429.

4. Тульчинский М. Е. Качественные задачи по физике в средней школе. Пособие для учителей. Изд. 4-е, переработ. и доп. М. «Просвещение», 1972. С. 157.

Теоретический материал для самостоятельного изучения

В начале 20-го века в физике произошла величайшая революция. Попытки объяснить наблюдаемые на опытах закономерности распределения энергии в спектрах теплового излучения оказались несостоятельными. Законы электромагнетизма Максвелла неожиданно «забастовали». Противоречия между опытом и практикой были разрешены немецким физиком Максом Планком.

Гипотеза Макса Планка: атомы испускают электромагнитную энергию не непрерывно, а отдельными порциями – квантами. Энергия Е каждой порции прямо пропорциональна частоте ν излучения света: E = hν.

Коэффициент пропорциональности получил название постоянной Планка, и она равна:

h = 6,63 ∙ 10-34 Дж∙с.

После открытия Планка начала развиваться самая современная и глубокая физическая теория – квантовая физика.

Квантовая физика – раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения.

Поведение всех микрочастиц подчиняется квантовым законам. Но впервые квантовые свойства материи были обнаружены именно при исследовании излучения и поглощения света.

В 1886 году немецкий физик Густав Людвиг Герц обнаружил явление электризации металлов при их освещении.

Явление вырывания электронов из вещества под действием света называется внешним фотоэлектрическим эффектом.

Законы фотоэффекта были установлены в 1888 году профессором московского университета Александром Григорьевичем Столетовым.

Схема установки для изучения законов фотоэффекта

Первый закон фотоэффекта: фототок насыщения – максимальное число фотоэлектронов, вырываемых из вещества за единицу времени, – прямо пропорционален интенсивности падающего излучения.

Зависимость силы тока от приложенного напряжения

Увеличение интенсивности света означает увеличение числа падающих фотонов, которые выбивают с поверхности металла больше электронов.

Второй закон фотоэффекта: максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего излучения и линейно возрастает с увеличением частоты падающего излучения.

Третий закон фотоэффекта: для каждого вещества существует граничная частота такая, что излучение меньшей частоты не вызывает фотоэффекта, какой бы ни была интенсивность падающего излучения. Эта минимальная частота излучения называется красной границей фотоэффекта.

min = Aв

где Ав – работа выхода электронов;

h – постоянная Планка;

νmin – частота излучения, соответствующая красной границе фотоэффекта;

с – скорость света;

λкр – длина волны, соответствующая красной границе.

Фотоэффект практически безынерционен: фототок возникает одновременно с освещением катода с точностью до одной миллиардной доли секунды.

Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл.

Для большинства веществ фотоэффект возникает только под действием ультрафиолетового облучения. Однако некоторые металлы, например, литий, натрий и калий, испускают электроны и при облучении видимым светом.

Известно, что фототоком можно управлять, подавая на металлические пластины различные напряжения. Если на систему подать небольшое напряжение обратной полярности, “затрудняющее” вылет электронов, то ток уменьшится, так как фотоэлектронам, кроме работы выхода, придется совершать дополнительную работу против сил электрического поля.

Задерживающее напряжение – минимальное обратное напряжение между анодом и катодом, при котором фототок равен нулю.

Задерживающее напряжение

Максимальная кинетическая энергия электронов выражается через задерживающее напряжение:

где – максимальная кинетическая энергия электронов;

Е – заряд электрона;

– задерживающее напряжение.

Теорию фотоэффекта разработал Альберт Эйнштейн. На основе квантовых представлений Эйнштейн объяснил фотоэффект. Электрон внутри металла после поглощения одного фотона получает порцию энергии и стремится вылететь за пределы кристаллической решетки, т.е. покинуть поверхность твердого тела. При этом часть полученной энергии он израсходует на совершение работы по преодолению сил, удерживающих его внутри вещества. Остаток энергии будет равен кинетической энергии:

В 1921 году Альберт Эйнштейн стал обладателем Нобелевской премии, которая, согласно официальной формулировке, была вручена «за заслуги перед теоретической физикой и особенно за открытие закона фотоэлектрического эффекта».

Если фотоэффект сопровождается вылетом электронов с поверхности вещества, то его называют внешним фотоэффектом или фотоэлектронной эмиссией, а вылетающие электроны – фотоэлектронами. Если фотоэффект не сопровождается вылетом электронов с поверхности вещества, то его называют внутренним.

Примеры и разбор решения заданий

1. Монохроматический свет с длиной волны λ падает на поверхность металла, вызывая фотоэффект. Фотоэлектроны тормозятся электрическим полем. Как изменятся работа выхода электронов с поверхности металла и запирающее напряжение, если уменьшить длину волны падающего света?

Для каждой величины определите соответствующий характер изменения:

1) увеличится

2) уменьшится

3) не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Работа выхода

Запирающее напряжение

Решение:

Работа выхода – это характеристика металла, следовательно, работа выхода не изменится при изменении длины волны падающего света.

Запирающее напряжение – это такое минимальное напряжение, при котором фотоэлектроны перестают вылетать из металла. Оно определяется из уравнения:

Следовательно, при уменьшении длины волны падающего света, запирающее напряжение увеличивается.

Ответ:

Работа выхода

Запирающее напряжение

не изменится

увеличится

2. Красная граница фотоэффекта для вещества фотокатода λ0 = 290 нм. При облучении катода светом с длиной волны λ фототок прекращается при напряжении между анодом и катодом U = 1,5 В. Определите длину волны λ.

Решение.

Запишем уравнение для фотоэффекта через длину волны:

Условие связи красной границы фотоэффекта и работы выхода:

Запишем выражение для запирающего напряжения – условие равенства максимальной кинетической энергии электрона и изменения его потенциальной энергии при перемещении в электростатическом поле:

Решая систему уравнений (1), (2), (3), получаем формулу для вычисления длины волны λ:

Подставляя численные значения, получаем: λ ≈ 215 нм.

Ответ: λ ≈ 215 нм.

Энергия – падающее излучение

Cтраница 1

Энергия падающего излучения при этом может быть определена лишь путем измерения при помощи специальных приборов – радиометров или актинометров.
 [1]

Энергию падающего излучения измеряют через 30 сек после подачи импульса. Это время определяется длительностью конвекционных процессов до установления однородного распределения температуры.
 [3]

Как распределяется энергия падающего излучения.
 [4]

В зависимости от энергии падающего излучения процессы, происходящие в веществе при поглощении этой энергии, различны. В таблице 1 приведен электромагнитный спектр и показано, какие изменения вызывает излучение различных длин волн.
 [5]

На длине волны желтого света энергия падающего излучения точно равна работе выхода для натрия и электроны имеют достаточную энергию, чтобы преодолеть поверхностный потенциальный барьер. Однако они остаются на поверхности, создавая избыточный поверхностный заряд.
 [6]

Рассмотрим сначала теалофиэические основы измерения энергии падающего излучения и количества облучения при помощи радиометров – измерительных приборов, снабженных приемниками излучения, трансформирующими всю энергию поглощенного излучения в теплоту. Основные виды приемников излучения радиометров – пластинчатые и полостные, имитирующие абсолютно черное тело.
 [7]

В сочетании с абсолютными измерениями энергии падающего излучения или количества облучения тепловым методом, когда обеспечивается неизбирательнрсть поглощения излучения в широком спектральном интервале, недостатки фотоэлектрического метода при относительных измерениях облученности существенно ослабляются, а его достоинства используются в полной мере.
 [8]

Когда в случае полупроводника или диэлектрика энергия падающего излучения hv достаточна только для перевода электрона в зону проводимости, может иметь место лишь внутренний фотоэффект. На этом явлении ( известном как внешний фотоэффект) основано действие вакуумных и газонаполненных фотоэлементов, катоды которых, как правило, представляют собой полупроводниковые материалы.
 [9]

Сечения взаимодействия излучения с веществом существенно зависят от энергии падающего излучения, причем эта зависимость часто носит резонансный характер, поэтому вопросы усреднения сечений играют важную роль.
 [10]

Агрегатное состояние облучаемого вещества влияет на механизм потери энергии падающего излучения высокой энергии, на передачу и локализацию энергии в веществе.
 [11]

Его опыты показали, что сила давления света пропорциональна энергии падающего излучения. Значение давления света, измеренное П. Н. Лебедевым, с точностью до 20 % совпало с величиной давления, предсказанной Максвеллом.
 [12]

Обычно со стороны других тел на рассматриваемое тело поступает энергия падающего излучения Ez.
 [14]

Для нахождения сечения нужно разделить это выражение на поток энергии падающего излучения.
 [15]

Страницы:  

   1

   2

   3

   4

В сегодняшней статье нашей традиционной рубрики «физика» разбираем задачи на фотоэффект.

Подпишитесь на наш телеграм и не пропускайте важные новости. А на втором канале ищите скидки и приятные бонусы для клиентов.

Нужна помощь?

Доверь свою работу кандидату наук!

Задачи на фотоэффект с решениями

Прежде чем приступать к решению задач, напоминаем про памятку и формулы. Эти материалы пригодятся при решении задач по любой теме.

Задача на фотоны и фотоэффект №1

Условие

Найти энергию фотона ε (в Дж) для  электромагнитного излучения с частотой ϑ=100·1014Гц.

Решение

Это типичная задача на энергию фотона. Применим формулу:

ε=hcλ=hϑ

Здесь h – постоянная Планка. Произведем расчет:

ε=6,63·10-34·10·1014=6,63·10-18Дж

Ответ: ε=6,63·10-18 Дж.

Задача на фотоны и фотоэффект №2

Условие

При фиксированной частоте падающего света в опытах №1 и №2 получены вольтамперные характеристики фотоэффекта (см. рис.). Величины фототоков насыщения равны I1 и I2, соответственно. Найти отношение числа фотоэлектронов N1 к N2 в этих двух опытах.

Задача на фотоны и фотоэффект №2

I1=13,5 мкАI2=10,6 мкА

Решение

Вольтамперная характеристика фотоэффекта показывает зависимость тока от напряжения между электродами. При выходе тока на насыщение все фотоэлектроны, выбитые из фотокатода, попадают на анод. Таким образом, величина тока насыщения пропорциональна числу фотоэлектронов. Тогда:

N1N2=I1I2=13,510,6=1,27

Ответ: 1,27.

Задача на фотоны и фотоэффект №3

Условие

На поверхность металла падают монохроматические лучи с длиной волны 0,1 мкм. Красная  граница фотоэффекта 0,3 мкм. Какая доля энергии фотона расходуется на сообщение электрону кинетической энергии? 

Решение

Энергия падающего фотона равна:

ε=hcλ

Далее для решения задачи примененим уравнение Эйнштейна для фотоэффекта, которое можно записать в виде:

hcλ=hcλ0+Eк

Отсюда найдем кинетическую энергию:

Eк=hcλ-hcλ0=hcλ0-λλλ0

Чтобы найти искомую долю, разделим кинетическую энергию на энергию фотона:

W=Eкε=hcλ0-λλhc·λλ0=λ0-λλ0=3·10-7-10-73·10-7=0,667

Ответ: W=0,667.

Задача на фотоны и фотоэффект №4

Условие

Максимальная энергия фотоэлектронов, вылетающих из металла при его освещении лучами с длиной волны 325 нм, равна Tтax=2,3·10-19Дж. Определите работу выхода и красную границу фотоэффекта. 

Решение

Формула Эйнштейна для фотоэффекта имеет вид:

hϑ=hcλ=A+Tmax

Отсюда работа выхода A равна:

A=hcλ-Tmax

Красная граница фотоэффекта определяется условием Tmax=0, поэтому получаем:

A=hcλ0λ0=hcA

Найдем:

A=6,63·10-34·3·1083,25·10-7-2,3·10-9=3,81·10-19 Дж

λ0=6,63·10-34·3·1083,81·10-19=520 нм

Ответ: A=3,81·10-19Дж; λ0=520 нм.

Задача на фотоны и фотоэффект №5

Условие

Наибольшая длина волны света λ0, при которой еще может наблюдаться фотоэффект на сурьме, равна 310 нм. Найдите скорость электронов, выбитых из калия светом с длиной волны 140 нм. 

Решение

Красная граница фотоэффекта определяется условием Tmax=0, поэтому для работы выхода получаем:

A=hcλ0

Формула Эйнштейна для фотоэффекта имеет вид:

hcλ=A+Tmax

Учитывая, что Tmax=mv2max2, определим максимальную скорость электронов при фотоэффекте:

vmax=2hcm1λ-1λ0

Произведем вычисления:

vmax=2·6,63·10-349,1·10-3111,4·10-7-13,1·10-7=1,3·106 мс

Ответ: 1,3·106 мс.

Вопросы с ответами на тему «Фотоны и фотоэффект»

Вопрос 1. В чем суть фотоэффекта?

Ответ. Фотоэффект — это явление «выбивания» электронов из вещества под действием света (электромагнитного излучения).

Вопрос 2. Что такое ток насыщения?

Ответ. Ток насыщения при фотоэффекте — максимальное значение фототока.

Вопрос 3. Что такое красная граница фотоэффекта?

Ответ. Это минимальная частота или максимальная длина волны света излучения, при которой еще возможен внешний фотоэффект.

Вопрос 4. Что такое работа выхода?

Ответ. Это минимальная энергия, которую надо сообщить электрону, чтобы выбить его из металла.

Вопрос 5. Что такое квант?

Ответ. Неделимая порция какой-либо величины в физике.

Посмотри примеры работ и убедись, что мы поможем на совесть!

Нужна помощь в решении задач и выполнении других типов заданий? Обращайтесь в профессиональный сервис для учащихся по любому вопросу.

Ниже размещены условия задач и отсканированные решения. Если вам нужно решить задачу на эту тему, вы можете найти здесь  похожее условие и решить свою по аналогии.   Загрузка страницы может занять некоторое время в связи с большим количеством рисунков.  Если Вам понадобится решение задач или онлайн помощь по физике- обращайтесь, будем рады помочь.

Явление фотоэффекта заключается в испускании веществом электронов под действием падающего света. Теория фотоэффекта разработана Эйнштейном и заключается в том, что поток света представляет собой поток отдельных квантов(фотонов) с энергией каждого фотона hn. При попадании фотонов на поверхность вещества часть из них передает свою энергию электронов. Если этой энергия больше работы выхода из вещества, электрон покидает металл. Уравнение эйнштейна для фотоэффекта:  h nu = A + W_{k} ,  где W_{k} — максимальная кинетическая энергия фотоэлектрона. 

Длина волны красной границы фотоэффекта для некоторого металла составляет 307 нм. Максимальная кинетическая энергия фотоэлектронов – 1 эВ. Найти отношение работы выхода электрона к энергии падающего фотона. 

Пример  решения задачи на тему фотоэффект

Частота света красной границы фотоэффекта для некоторого металла составляет 6*1014 Гц, задерживающая разность потенциалов для фотоэлектронов – 2В. Определить частоту падающего света и работу выхода электронов. 

Пример  решения задачи на тему фотоэффект

Работа выхода электрона из металла составляет 4,28эВ. Найти граничную длину волны фотоэффекта.

Пример  решения задачи на тему фотоэффект

На медный шарик радает монохроматический свет с длиной волны 0,165 мкм. До какого потенциала зарядится шарик, если работа выхода электрона для меди 4,5 эВ?

Пример  решения задачи на тему фотоэффект

Работа выхода электрона из калия составляет 2,2эВ, для серебра 4,7эВ. Найти граничные длину волны фотоэффекта.

Пример  решения задачи на тему фотоэффект

Длина волны радающего света 0,165 мкм, задерживающая разность потенциалов для фотоэлектронов 3В. Какова работа выхода электронов?Пример  решения задачи на тему фотоэффект

Красная граница фотоэффекта для цинка 310 нм. Определить максимальную кинетическую энергию фотоэлектронов, если на цинк падает свет с длиной волны 200нм.

Пример  решения задачи на тему фотоэффект

На металл с работой выхода 2,4эВ падает свет с длиной волны 200нм. Определить задерживающую разность потенциалов. 

Пример  решения задачи на тему фотоэффект

На металл  падает свет с длиной волны 0,25 мкм, задерживающая разность потенциалов при этом 0,96В. Определить работу выхода электронов из металла. 

Пример  решения задачи на тему фотоэффект

При изменении длины волны падающего света  максимальные скорости фотоэлектронов изменились в 3/4 раза. Первоначальная длина волны 600нм, красная граница фотоэффекта 700нм. Определить длину волны после изменения. 

Пример  решения задачи на тему фотоэффект

Пример  решения задачи на тему фотоэффект

Работы выхода электронов для двух металлов отличаются в 2 раза, задерживающие разности потенциалов – на 3В. Определить работы выхода. 

Пример  решения задачи на тему фотоэффект

Максимальная скорость фотоэлектронов равно 2,8*108 м/с. Определить энергию фотона. 

Пример  решения задачи на тему фотоэффект

Энергии падающих на металл фотонов равны 1,27 МэВ. Найти максимальную скорость фотоэлектронов. 

Пример  решения задачи на тему фотоэффект

Максимальная скорость фотоэлектронов равно 0,98с, где с – скорость света в вакууме. Найти длину волны падающего света. 

Пример  решения задачи на тему фотоэффект

Энергия фотона в пучке света, падающего на поверхность металла, равно 1,53 МэВ. Определить максимальную скорость фотоэлектронов. 

Пример  решения задачи на тему фотоэффект

На шарик из металла падает свет с длиной волны 0,4 мкм, при этом шапик заряжается до потенциала 2В. До какого потенциала зарядится шарик, если длина волны станет равной 0,3 мкм?

Пример  решения задачи на тему фотоэффект

После изменения длины волны падающего света в 1,5 раза задерживающая разность потенциалов изменилась с 1,6В до 3В. Какова работа выхода?

Пример  решения задачи на тему фотоэффект

Красная граница фотоэффекта 560нм, частота падающего света 7,3*1014 Гц. Найти максимальную скорость фотоэлектронов. 

Пример  решения задачи на тему фотоэффект

Красная граница фотоэффекта 2800 ангстрем, длина волны падающего света 1600 ангстрем. Найти работу выхода и максимальную кинетическую энергию фотоэлектрона.

Пример  решения задачи на тему фотоэффект

Задерживащая разность потенциалов 1,5В, работа выхода электронов 6,4*10-19 Дж. Найти длину волны падающего света и красную границу фотоэффекта.

Пример  решения задачи на тему фотоэффект

Работа выхода электронов из металла равна 3,3 эВ. Во сколько раз изменилась кинетическая энергия фотоэлектронов. если длина волны падающего света изменилась с 2,5*10-7м до 1,25*10-7м?

Пример  решения задачи на тему фотоэффект

Найти максимальную скорость фотоэлектронов для видимого света с энергией фотона 8 эВ и гамма излучения с энергией 0,51 МэВ. Работа выхода  электронов из металла 4,7 эВ.

Пример  решения задачи на тему фотоэффект

Фототок прекращается при задерживающей разности потенциалов 3,7 В. Работа выхода электронов равна 6,3 эВ. Какая работа выхода электронов у другого металла, если там фототок прекращается при разности потенциалов, большей на 2,3В.

Пример  решения задачи на тему фотоэффект

Работа выхода электронов из металла 4,5 эВ, энергия падающих фотонов 4,9 эВ. Чему равен максимальный импульс фотоэлектронов?

Пример  решения задачи на тему фотоэффект

Красная граница фотоэффекта 2900 ангстрем, максимальная скорость фотоэлектронов 108 м/с. Найти отношение работы выхода электронов к энергии палающих фотонов. 

Пример  решения задачи на тему фотоэффект

Длина волны падающего света 400нм, красная граница фотоэффекта равна 400нм. Чему равна максимальная скорость фотоэлектронов?

Пример  решения задачи на тему фотоэффект

Длина волны падающего света 300нм, работа выхода электронов 3,74 эВ. Напряженность задерживающего электростатического поля 10 В/см.Какой максимальный путь фотоэлектронов при движении в направлении задерживающего поля?

Пример  решения задачи на тему фотоэффект

Длина волны падающего света 100 нм, работа выхода электронов 5,30эВ. Найти максимальную скорость фотоэлектронов.

Пример  решения задачи на тему фотоэффект

При длине волны радающего света 491нм задерживающая разность потенциалов 0,71В. Какова работа выхода электронов? Какой стала длина волны света, если  задерживающая разность потенциалов стала равной 1,43В?

Пример  решения задачи на тему фотоэффект

Кинетическая энергия фотоэлектронов 2,0 эВ, красная граница фотоэффекта 3,0*1014 Гц. Определить энергию фотонов.

Пример  решения задачи на тему фотоэффект

Красная граница фотоэффекта 0,257 мкм, задерживающая разность потенциалов 1,5В. Найти длину волны падающего света.

Пример  решения задачи на тему фотоэффект

Красная граница фотоэффекта 2850 ангстрем. Минимальное значение энергии фотона, при котором возможен фотоэффект?

Пример  решения задачи на тему фотоэффект

Ниже вы можете посмотреть обучаюший видеоролик на тему фотоэффекта и его законов.

Начало теории электромагнитной природы света заложил Максвелл, который заметил сходство в скоростях распространения электромагнитных и световых волн. Но согласно электродинамической теории Максвелла любое тело, излучающее электромагнитные волны, должно в итоге остынуть до абсолютного нуля. В действительности этого не происходит. Противоречия между теорией и опытными наблюдениями были разрешены в начале XX века, вскоре после того, как был открыт фотоэффект.

Что такое фотоэффект

Фотоэффект — испускание электронов из вещества под действием падающего на него света.

Александр Столетов

Александр Столетов

Явление фотоэффекта было открыто в 1887 году Генрихом Герцем. Фотоэффект также был подробно изучен русским физиком Александром Столетовым в период с 1888 до 1890 годы. Этому явлению он посвятил 6 научных работ.

Для наблюдения фотоэффекта нужно провести опыт. Для этого понадобится электрометр и подсоединенная к нему пластинка из цинка (см. рисунок ниже). Если дать пластинке положительный заряд, то при ее освещении электрической дугой скорость разрядки электрометра не изменится. Но если цинковую пластинку зарядить отрицательно, то свет от дуги заставить электрометр разрядиться очень быстро.

Наблюдаемое во время этого эксперимента явление имеет простое объяснение. Свет вырывает электроны с поверхности цинковой пластинки. Если она имеет отрицательный заряд, электроны отталкиваются от нее, что приводит к полному разряжению электрометра. Причем при повышении интенсивности освещения скорость разрядки увеличивается, ровно, как и наоборот: при уменьшении интенсивности освещения электрометр разряжается медленно. Если же зарядить пластинку положительно, то электроны, которые вырываются светом, притягиваются к ней. Поэтому они оседают на ней, не изменяя заряд электрометра.

Если между световым пучком и отрицательно заряженной пластиной поставить лист стекла, пластинка перестанет терять электроны независимо от интенсивности излучения. Это связано с тем, что стекло задерживает ультрафиолетовое излучение. Отсюда можно сделать следующий вывод:

Явление фотоэффекта может вызвать только ультрафиолетовый участок спектра.

Волновая теория света не может объяснить, почему электроны могут вырываться только под действием ультрафиолета. Ведь даже при большой амплитуде и силе волн электроны остаются на месте, когда, казалось бы, они должны непременно быть вырванными.

Законы фотоэффекта

Чтобы получить более полное представление о фотоэффекте, выясним, от чего зависит количество электронов, вырванных светом с поверхности вещества, а также, от чего зависит их скорость, или кинетическая энергия. Выяснить все это нам помогут эксперименты.

Первый закон фотоэффекта

Возьмем стеклянный баллон и выкачаем из него воздух (смотрите рисунок выше). Затем поместим в него два электрода. На электроды подадим напряжение и будем регулировать его с помощью потенциометра и измерять при помощи вольтметра.

В верхней части нашего баллона есть небольшое кварцевое окошко, которое пропускает весь свет, в том числе ультрафиолетовый. Через него падает свет на один из электродов (в нашем случае на левый электрод, к которому присоединен отрицательный полюс батареи). Мы увидим, что под действием света этот электрод начнет испускать электроны, которые при движении в электрическом поле будут создавать электрический ток. Вырванные электроны будут направляться ко второму электроду. Но если напряжение небольшое, второго электрода достигнут не все электроны. Если интенсивность излучения сохранить, но увеличить между электродами разность потенциалов, то сила тока будет увеличиваться. Но как только она достигнет некоторого максимального значения, рост силы тока при дальнейшем увеличении напряжения прекратится. Максимальное значение силы тока будем называть током насыщения.

Ток насыщения — максимальное значение силы тока, также называемое предельным значением силы фототока.

Ток насыщения обозначается как Iн. Единица измерения — А (Кл/с). Численно величина равна отношению суммарному заряду вырванных электронов в единицу времени:

Iн=qt

Если же мы начнем изменять интенсивность излучения, то сможем заметить, что фототок насыщения также начинается меняться. Если интенсивность излучения ослабить, максимальное значение силы тока уменьшится. Если интенсивность светового потока увеличить, ток насыщения примет большее значение. Отсюда можно сделать вывод, который называют первым законом фотоэффекта.

Первый закон фотоэффекта:

Число электронов, вырываемых светом с поверхности металла за 1 с, прямо пропорционально поглощаемой за это время энергии световой волны. Иными словами, фототок насыщения прямо пропорционален падающему световому потоку Ф.

Второй закон фотоэффекта

Теперь произведем измерения кинетической энергии, то есть, скорости вырывания электронов. Взгляните на график, представленный ниже. Видно, что сила фототока выше нуля даже при нулевом напряжении. Это говорит о том, что даже при нулевой разности потенциалов часть электронов достигает второго электрода.

Если мы поменяем полярность батареи, то будем наблюдать уменьшение силы тока. Если подать на электроды некоторое значение напряжения, равное Uз, сила тока станет равно нулю. Это значит, что электрическое поле тормозит вырванные электроны, останавливает их, а затем возвращает на тот же электрод.

Напряжение, равное Uз, называют задерживающим напряжением. Оно зависит зависит от максимальной кинетической энергии электронов, которые вырываются под действием света. Измеряя задерживающее напряжение и применяя теорему о кинетической, можно найти максимальное значение кинетической энергии электронов. Оно будет равно:

mv22=eUз

Опыт показывает, что при изменении интенсивности света (плотности потока излучения) задерживающее напряжение не меняется. Значит, не меняется кинетическая энергия электронов. С точки зрения волновой теории света этот факт непонятен. Ведь чем больше интенсивность света, тем большие силы действуют на электроны со стороны электромагнитного поля световой волны и тем большая энергия, казалось бы, должна передаваться электронам. Но экспериментальным путем мы обнаруживаем, что кинетическая энергия вырываемых светом электронов зависит только от частоты света. Отсюда мы можем сделать вывод, являющийся вторым законом фотоэффекта.

Второй закон фотоэффекта:

Максимальная кинетическая энергия фотоэлектронов линейно растет с частотой света и не зависит от его интенсивности.

Причем, если частота света меньше определенной для данного вещества минимальной частоты νmin, фотоэффект наблюдаться не будет.

Теория фотоэффекта

Все попытки объяснить явление фотоэффекта электродинамической теорией Максвелла, согласно которой свет — это электромагнитная волна, непрерывно распределенная в пространстве, оказались тщетными. Нельзя было понять, почему энергия фотоэлектронов определяется только частотой света и почему свет способен вырывать электроны лишь при достаточно малой длине волны.

В попытках объяснить это явление физик Макс Планк предложил, что атомы испускают электромагнитную энергию отдельными порциями — квантами, или фотонами. И энергия каждой порции прямо пропорциональна частоте излучения:

E=hν

h — коэффициент пропорциональности, который получил название постоянной Планка. Она равна 6,63∙10–34 Дж∙с.

Пример №1. Определите энергию фотона, соответствующую длине волны λ = 5∙10–7 м.

Энергия фотона равна:

E=hν

Выразим частоту фотона через скорость света:

ν=cλ

Следовательно:

Идею Планка продолжил развивать Эйнштейн, которому удалось дать объяснение фотоэффекту в 1905 году. В экспериментальных законах фотоэффекта Эйнштейн увидел убедительное доказательство того, что свет имеет прерывистую структуру и поглощается отдельными порциями. Причем энергия Е каждой порции излучения, по его расчетам, полностью соответствовала гипотезе Планка.

Из того, что свет излучается порциями, еще не вытекает вывода о прерывистости структуры самого света. Ведь и воду продают в бутылках, но отсюда не следует, что вода состоит из неделимых частиц. Лишь фотоэффект позволил доказать прерывистую структуру света: излученная порция световой энергии Е = hν сохраняет свою индивидуальность и в дальнейшем. Поглотиться может только вся порция целиком.

Кинетическую энергию фотоэлектрона можно найти, используя закон сохранения энергии. Энергия порции света идет на совершение работы выхода А и на сообщение электрону кинетической энергии. Отсюда:

hν=A+mv22

Работа выхода — минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл.

Полученное выражение объясняет основные факты, касающиеся фотоэффекта. Интенсивность света, по Эйнштейну, пропорциональна числу квантов (порций) энергии в пучке света и поэтому определяет количество вырванных электронов. Скорость же электронов согласно зависит только от частоты света и работы выхода, которая определяется типом металла и состоянием его поверхности. От интенсивности освещения кинетическая энергия фотоэлектронов не зависит.

Для каждого вещества фотоэффект наблюдается лишь при освещении его светом с минимальной частотой волны νmin. Это объясняется тем, что для вырывания электрона без сообщения ему скорости нужно выполнять как минимум работу выхода. Поэтому энергия кванта должна быть больше этой работы:

hν>A

Предельную частоту νmin называют красной границей фотоэффекта. При этой частоте фотоэффект уже наблюдается.

Красная граница фотоэффекта равна:

νmin=Ah

Минимальной частоте, при которой возможен фотоэффект для данного вещества, соответствует максимальная длина волны, которая также носит название красной границы фотоэффекта. Это такая длина волны, при которой фотоэффект еще наблюдается. Обозначается она как λmах или λкр.

Максимальная длина волны, при которой еще наблюдается фотоэффект, равна:

λmax=hcA

Работа выхода А определяется родом вещества. Поэтому и предельная частота vmin фотоэффекта (красная граница) для разных веществ различна. Отсюда вытекает еще один закон фотоэффекта.

Третий закон фотоэффекта:

Для каждого вещества существует максимальная длина волны, при которой фотоэффект еще наблюдается. При больших длинах волн фотоэффекта нет.

Вспомните опыт, который мы описали в самом начале. Когда между цинковой пластинкой и световым пучком мы поставили зеркало, фотоэффект был прекращен. Это связано с тем, что красная граница для цинка определяется величиной λmах = 3,7 ∙ 10-7 м. Эта длина волны соответствует ультрафиолетовому излучению, которое не пропускало стекло.

Пример №2. Чему равна красная граница фотоэффекта νmin, если работа выхода электрона из металла равна A = 3,3∙10–19 Дж?

Применим формулу для вычисления красной границы фотоэффекта:

Задание EF15717

При увеличении в 2 раза частоты света, падающего на поверхность металла, задерживающее напряжение для фотоэлектронов увеличилось в 3 раза. Первоначальная частота падающего света была равна 0,75 ⋅1015 Гц. Какова длина волны, соответствующая «красной границе» фотоэффекта для этого металла? Ответ записать в нм.


Алгоритм решения

1.Записать исходные данные.

2.Записать формулу закона сохранения энергии применительно к фотоэффекту.

3.Переписать формулу закона сохранения энергии применительно к опытам 1 и 2.

4.Используя формула, связывающую задерживающее напряжение и кинетическую энергию фотона, определить работу выхода.

5.Записать формулу для красной границы фотоэффекта.

6.Выполнить решение в общем виде.

7.Подставить известные данные и найти искомую величину.

Решение

Запишем исходные данные:

 Частота света в опыте 1: ν1 = ν = 0,75∙1015 Гц.

 Частота света в опыте 2: ν2 = 2ν1 = 2ν Гц.

 Задерживающее напряжение в опыте 1: U1 = U В.

 Задерживающее напряжение в опыте 2: U2 = 3U1 = 3U В.

Запишем формулу закона сохранения энергии:

hν=A+mv22

Применим ее к 1 и 2 опыту, составив систему из двух уравнений:

hν1=A+mv212hν2=A+mv222


Преобразуем:

hν=A+mv2122hν=A+mv222


Формула, связывающая задерживающее напряжение и кинетическую энергию фотона:

mv22=eUз

Известно, что при увеличении частоты в 2 раза задерживающее напряжение увеличилось в 3 раза. Так как задерживающее напряжение прямо пропорционально кинетической энергии фотона, то она (кинетическая энергия), также увеличивается в 3 раза. Следовательно:

mv222=3mv212

Тогда:

hν=A+mv2122hν=A+3mv212

Умножим первое уравнение системы на «–3» и сложим оба уравнения:

3hν=3A3mv2122hν=A+3mv212

hν=2A

Отсюда работа выхода равна:

A=hν2

Формула для нахождения красной границы фотоэффекта:

νmin=Ah

Формула длины волны:

λ=cν

Следовательно, длина волны для красной границы фотоэффекта:

λmin=cνmin=chA=2chhν=2cν

Ответ: 800

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17645

При исследовании зависимости кинетической энергии фотоэлектронов от частоты падающего света фотоэлемент освещался через светофильтры. В первой серии опытов использовался красный светофильтр, а во второй – жёлтый. В каждом опыте измеряли напряжение запирания.

Как изменяются длина световой волны, напряжение запирания и кинетическая энергия фотоэлектронов? Для каждой величины определите соответствующий характер её изменения:

1) увеличится
2) уменьшится
3) не изменится

Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.


Алгоритм решения

1.Определить, от чего зависит и как меняется длина световой волны.

2.Записать закон сохранения энергии, формулу зависимости кинетической энергии от напряжения запирания.

3.Используя формулы, становить, как меняется напряжение запирания и кинетическая энергия.

Решение

Длина световой волны определяется ее цветом. Красный свет имеет большую длину волны. Следовательно, во втором опыте длина световой волны уменьшится.

Закон сохранения энергии для фотоэффекта:

hν=A+mv22

Формула зависимости кинетической энергии от напряжения запирания:

mv22=eUз

Следовательно:

hν=A+eUз

Работы выхода — величина постоянная для данного вещества. Следовательно, напряжение запирания зависит только от частоты световой волны. Частота — величина обратная длине волны. Так как длина волны уменьшилась, частота увеличилась. Следовательно, увеличилось и напряжение запирания.

Поскольку напряжение запирания прямо пропорционально кинетической энергии фотонов, то эта энергия также увеличивается.

Ответ: 211

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17973

На металлическую пластинку падает монохроматическая электромагнитная волна, выбивающая электроны из пластинки. Максимальная кинетическая энергия фотоэлектронов, вылетевших из пластинки в результате фотоэффекта, составляет 3 эВ, а работа выхода из металла в 2 раза больше этой энергии. Чему равна энергия фотонов в падающей волне?

Ответ:

а) 9 эВ

б) 2 эВ

в) 3 эВ

г) 6 эВ


Алгоритм решения

1.Записать исходные данные.

2.Записать формулу закона сохранения энергии применительно к фотоэффекту.

3.Выполнить решение в общем виде.

4.Подставить известные данные и найти искомую величину.

Решение

Запишем исходные данные:

 Максимальная кинетическая энергия выбитых электронов: Emax = 3 эВ.

 Работа выхода из металла: A = 2 Emax.

Закона сохранения энергии для фотоэффекта:

hν=A+mv22

Или:

E=A+Emax=2Emax+Emax=3Emax=3·3=9 (эВ)

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 5.3k

Добавить комментарий