Как найти энергию фотона через длину волны

From Wikipedia, the free encyclopedia

Photon energy is the energy carried by a single photon. The amount of energy is directly proportional to the photon’s electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon’s frequency, the higher its energy. Equivalently, the longer the photon’s wavelength, the lower its energy.

Photon energy can be expressed using any unit of energy. Among the units commonly used to denote photon energy are the electronvolt (eV) and the joule (as well as its multiples, such as the microjoule). As one joule equals 6.24 × 1018 eV, the larger units may be more useful in denoting the energy of photons with higher frequency and higher energy, such as gamma rays, as opposed to lower energy photons as in the optical and radio frequency regions of the electromagnetic spectrum.

Formulas[edit]

Physics[edit]

Photon energy is directly proportional to frequency.[1]

{displaystyle E=hf}

where

This equation is known as the Planck–Einstein relation.

Additionally,

{displaystyle E={frac {hc}{lambda }}}

where

  • E is photon energy
  • λ is the photon’s wavelength
  • c is the speed of light in vacuum
  • h is the Planck constant

The photon energy at 1 Hz is equal to 6.62607015 × 10−34 J

That is equal to 4.135667697 × 10−15 eV

Electronvolt[edit]

Energy is often measured in electronvolts.

To find the photon energy in electronvolts using the wavelength in micrometres, the equation is approximately

{displaystyle E{text{ (eV)}}={frac {1.2398}{lambda {text{ (μm)}}}}}

This equation only holds if the wavelength is measured in micrometers.

The photon energy at 1 μm wavelength, the wavelength of near infrared radiation, is approximately 1.2398 eV.

In chemistry, quantum physics and optical engineering[edit]

See [2]

{displaystyle E=h{nu }}

where

  • E is photon energy (joules),
  • h is the Planck constant
  • The Greek letter ν (nu) is the photon’s frequency.

Examples[edit]

An FM radio station transmitting at 100 MHz emits photons with an energy of about 4.1357 × 10−7 eV. This minuscule amount of energy is approximately 8 × 10−13 times the electron’s mass (via mass-energy equivalence).

Very-high-energy gamma rays have photon energies of 100 GeV to over 1 PeV (1011 to 1015 electronvolts) or 16 nanojoules to 160 microjoules.[3] This corresponds to frequencies of 2.42 × 1025 to 2.42 × 1029 Hz.

During photosynthesis, specific chlorophyll molecules absorb red-light photons at a wavelength of 700 nm in the photosystem I, corresponding to an energy of each photon of ≈ 2 eV ≈ 3 × 10−19 J ≈ 75 kBT, where kBT denotes the thermal energy. A minimum of 48 photons is needed for the synthesis of a single glucose molecule from CO2 and water (chemical potential difference 5 × 10−18 J) with a maximal energy conversion efficiency of 35%.

See also[edit]

  • Photon
  • Electromagnetic radiation
  • Electromagnetic spectrum
  • Planck constant
  • Planck–Einstein relation
  • Soft photon

References[edit]

  1. ^ “Energy of Photon”. Photovoltaic Education Network, pveducation.org.
  2. ^ Andrew Liddle (27 April 2015). An Introduction to Modern Cosmology. John Wiley & Sons. p. 16. ISBN 978-1-118-69025-3.
  3. ^ Sciences, Chinese Academy of. “Observatory discovers a dozen PeVatrons and photons exceeding 1 PeV, launches ultra-high-energy gamma astronomy era”. phys.org. Retrieved 2021-11-25.

To use your Google Account on a browser (like Chrome or Safari), turn on cookies if you haven’t already.

Important: If you get a message that cookies are turned off, you need to turn them on to use your account.

In Chrome

  1. On your computer, open Chrome.
  2. At the top right, click More Moreand then Settings.
  3. Under “Privacy and security,” click Site settings.
  4. Click Cookies and site data.
  5. From here, you can:
    • Turn on cookies: Next to “Blocked,” turn on the switch.
    • Turn off cookies: Turn off Allow all cookies.

Learn how to change more cookie settings in Chrome.

In other browsers

For instructions, check the support website for your browser.

Why cookies are helpful

Cookies are files created by sites you visit. They make your online experience easier by saving browsing information. With cookies, sites can:

  • Keep you signed in
  • Remember your site preferences
  • Give you locally relevant content

We use cookies to improve our services. To learn more, read our Privacy Policy.

Fix problems

If you can’t use your Google Account and get a message that cookies are turned off:

  1. Follow the steps above to turn on cookies.
  2. Try signing in again.

If you still get the error message, here are some possible solutions. Try each one, then try signing in.

  • Open a new browser window.
  • Clear your browser’s cache and cookies. Learn how to clear cache and cookies.
  • Browse in private. Learn how to browse privately in Chrome.
  • Change your browser’s privacy settings. Learn how to change privacy settings.

Was this helpful?

How can we improve it?

В этой статье мы собираемся обдумать взаимосвязь энергии и длины волны вместе с примерами и решить некоторые задачи, чтобы проиллюстрировать то же самое.

Энергия находится в прямой зависимости от частоты электромагнитных излучений. Если длина волны увеличивается, это означает, что повторяемость волны будет уменьшаться, что непосредственно влияет на энергию частицы в волне.

Формула соотношения энергии и длины волны

Энергия частицы может быть связана с ее скоростью во время распространения. Скорость частицы дает представление о частоте и длине волны. Если длина волны мала, то частота и, следовательно, энергия частицы будут увеличиваться.

Если колебания частицы больше в траектории пути, то возвратность частицы в волну больше и длина волны мала, это означает, что энергия, которой обладает частица, больше.

Энергия любого тела связана с его длиной волны уравнением

E=hc/λ

Где «h» — постоянная Планка h = 6.626 * 10-34Js

C – скорость света c=3 *108 м/с и

λ – длина волны света

Энергия обратно пропорциональна длине волны света. Чем меньше длина волны, тем больше энергия частицы в волне.

Задача 1: Рассчитать энергию фотонов, испускающих красный свет. Считайте длину волны луча красного света равной 698 нм. Какова будет энергия, если длина волны уменьшится до 500 нм, то есть если источник излучает зеленый свет?

Данный:λ1=698нм

λ2=500 нм

ч = 6.626 * 10-34 Js

с=3 * 108 м/с

У нас есть,

E=hc/λ1

E = 6.626 * 10-34 Дж* 3 * 108 м/с/698* 10-9m

=0.028* 10-17=28* 10-20Дж

Энергия красной длины волны 28* 10-20Джоули.

Если длина волны λ2=500 нм

Тогда энергия, связанная с зеленым светом, равна

E=hc/λ2

E = 6.626 * 10-34 Дж* 3 * 108 м/с / 500* 10-9m

= 0.03910-17=39* 10-20Дж

Мы видим, что энергия увеличилась до 39*10-20 Джоулей при уменьшении длины волны.

Подробнее о Влияние преломления на длину волны: как, почему, подробные факты.

График взаимосвязи энергии и длины волны

По мере увеличения длины волны частота волны падает, тем самым уменьшая энергию, которой обладает волна. Если мы построим график зависимости энергии от длины волны появляющейся частицы, то график будет выглядеть так, как показано ниже.

связь энергии и длины волны

График зависимости энергии от длины волны

Приведенный выше график ясно показывает, что по мере увеличения длины волны энергия, связанная с частицей, уменьшается экспоненциально.

Связь кинетической энергии и длины волны

Если скорость частицы больше, то очевидно, что кинетическая энергия частицы велика. Кинетическая энергия определяется уравнением

КЭ=1/2мВ2

Где m – масса объекта или частицы

V – скорость массы

Мы можем записать приведенное выше уравнение как

2E=мв2

Умножение «m» в обеих частях уравнения

2mE=(мВ)2

Импульс объекта определяется как произведение массы объекта на скорость, с которой он движется.

p = mv

Следовательно, приведенное выше уравнение становится

P2=2 мВ

P=√2mE

Согласно де Бройлю,

λ =h/p

Подставляя приведенное выше уравнение, мы имеем

λ =h/ √2mE

Приведенное выше уравнение дает связь между энергией и длиной волны частицы.

Подробнее о Что такое кинетическая энергия света: подробные факты.

Задача 2. Вычислить кинетическую энергию частицы массой 9.1 × 10-31 кг с длиной волны 293 нм. Кроме того, найдите скорость частицы.

Данный: λ = 293 нм

м = 9.1 × 10-31 kg

ч = 6.626 * 10-34Js

с=3 *108 м/с

У нас есть,

λ =h/ √2mE

λ2=h2/ 2мЕ

Е = ч2/ 2мλ2

=(6.626 * 10-34 Дж)2/2* 9.1* 10-31* (293*10-9) 2

= 0.28 * 10-23

Кинетическая энергия, связанная с частицей, равна 0.28*10-23 Джоули.

Теперь, чтобы вычислить скорость частицы, выведем формулу скорости из кинетической энергии:

КЕ=1/2 мВ2

2E= мв2

v=√(2Е/м)

= √(2(0.28*10-23)/(9.8*10-31))

= 0.24 * 104= 2400 м / с

Скорость частицы с длиной волны 298 нм составляет 2400 м/с.

Связь энергии электрона и длины волны

Энергия электрона определяется простым уравнением:

Е=чню

Где «h» — постоянная Планка, а

nu – частота появления электрона

Частота электрона определяется как

ню = v / λ

Где v – скорость электрона и

λ – длина волны электронной волны

Следовательно, энергия связана с длиной волны электрона как

E=hv/λ

Это соотношение позволяет найти энергию, связанную с распространением одиночного электрона с определенной длиной волны, скоростью и частотой. Энергия обратно пропорциональна длине волны. Если длина волны электрона уменьшается, энергия волны должна быть больше.

Электромагнитные волны;
Изображение Фото: Pixabay

Получив энергию в той или иной форме, электрон переходит из более низкого энергетического состояния в более высокое энергетическое состояние. Для перехода электронов из одного состояния в другое энергия электрона определяется уравнением

Э=РE(1/нf– 1/нi)

Где RE=-2.18* 10-18m-1 является константой Ридберга

nf это конечное состояние электрона

ni это начальное состояние электрона

Мы можем далее переписать приведенное выше уравнение как

ч ню = RE(1/нf– 1/нi)

hc/λ =RE(1/нf– 1/нi)

1/λ =REhc(1/nf– 1/нi)

1/λ =R(1/nf– 1/нi)

Где,

Р=РEчс=1.097* 107

По мере того, как электрон получает энергию, электрон переходит и перескакивает в более высокое состояние энергетического уровня и высвобождает энергию электронам, присутствующим в этом состоянии, и либо становится стабильным, либо высвобождает количество энергии и возвращается в более низкие энергетические состояния.

Подробнее о 16+ Пример амплитуды волны: подробные пояснения.

Задача 3: Если электрон переходит из состояния ni=1, чтобы указать nf=2, затем рассчитайте длину волны электрона.

Данный:

ni=1

nf=2

1/λ =RE(1/нf– 1/нi)

1/λ=-1.097*107 * ( 1/2-1/1 )

1/λ=0.5485* 107

Следовательно,

λ = 1/0.5485* 107

λ =1.823*10-7

λ =182.3*10-9=182.3нм

Длина волны света, излучаемого при переходе электрона с одного энергетического уровня на другой, равна 182.3 нм.

Связь лучистой энергии и длины волны

Каждый объект поглощает световые лучи в дневное время в зависимости от его формы, размера и состава. Если температура поверхности объекта достигает температуры выше абсолютного нуля, объект будет излучать излучения в виде волн.

Это испускаемое излучение пропорционально четвертой степени абсолютной температуры объекта и определяется уравнением

U=ɛΣ Т4A

Где U – излучаемая энергия

ɛ – коэффициент излучения излучения от объекта

Σ — постоянная Стефана-Больцмана, равная Σ=5.67*10-8Вт / м2K4

T – абсолютная температура

А – площадь объекта

Объект с высокой температурой излучает излучение с короткими длинами волн, а более холодные поверхности излучают волны с большей длиной волны. В зависимости от испускаемого излучения и длины волны испускаемого излучения волны классифицируются в соответствии с приведенной ниже таблицей.

Имя и фамилия Радиоволны Микроволны Инфракрасный порт Видимый Ультрафиолетовое рентген Гамма излучение
Длина волны > 1м 1mm-1m 700нм-1мм 400nm-700nm 10nm-380nm 0.01nm-10nm <0.01 нм
частота <300 МГц 300MHz-300GHz 300ГГц-430ТГц 430ТГц-750ТГц 750ТГц-30ФГц 30PHz-30EHz >30 Гц

По мере уменьшения длины волны излучения частота волны возрастает. Длина волны напрямую связана с температурой, поэтому, если частота испускаемого излучения больше, это означает, что энергия объекта высока.

Гамма-лучи, рентгеновские лучи и ультрафиолетовые лучи имеют очень короткую длину волны, поэтому энергия этих волн очень высока по сравнению с видимым, инфракрасным, микроволнами или радиоволнами. Кроме того, чем выше излучение, полученное объектом, тем больше он будет излучать в зависимости от коэффициента излучения объекта.

Ниже приведен график зависимости энергии от длины волны в секунду для разных температур. График показывает, что по мере повышения температуры системы энергия испускаемого излучения также увеличивается с температурой.

График зависимости энергии от длины волны излучения излучения

Для длины волны в видимой области эмиссия излучения максимальна. Это связано с тем, что Солнце излучает УФ-лучи вместе с инфракрасными лучами и видимыми лучами, а эти лучи представляют собой электромагнитные волны дальнего действия. Озоновый слой Земли защищает земную атмосферу от этого вредного излучения и либо отражается обратно, либо задерживается в облаках.

В видимом диапазоне в дневное время излучается больше излучений, поскольку в дневное время от Солнца поступает все больше и больше излучений, а испускается меньше ИК-лучей по сравнению с видимым спектром. Ночью температура снижается, длина волны излучения увеличивается, и объект излучает больше ИК-лучей.

Подробнее о Свойства преломления: волна, физические свойства, исчерпывающие факты.

Задача 4: Коробка длиной 11 см, шириной 2 см и воздухом 7 см нагревается до температуры 1200 Кельвинов. Если коэффициент излучения ящика равен 0.5, то рассчитайте скорость излучения энергии из ящика.

Данный:л=11см

ч=2см

б = 7cm

е =0.5

Σ=5.67* 10-8Вт / м2K4

Т=1200 К

Общая площадь ящика составляет

A=2(фунт+чб+гл)

=2(11*7+7*s 2+2*11)

=2 (77+14+22)

=0.0226 кв.м

Энергия, излучаемая коробкой, равна

U=ɛ Σ T4A

=0.5* 5.67* 10-8* 12004* 0.0226

=1328.6 Вт

Связь частоты энергии и длины волны

Чем больше частота волны, тем больше энергия, связанная с частицей. Энергия связана с частотой волны как

E=ч/ню

Где «h» — постоянная Планка.

nu – частота волны

Частота волны определяется как скорость волны в среде и длина волны.

ню = v / λ

Где v – скорость волны

λ – длина волны

Следовательно,

λ=v/ну

Это дает связь между частотой и длиной волны волны. Это говорит о том, что длина волны и частота обратно пропорциональны друг другу. Если длина волны увеличивается, частота волны уменьшится.

Подробнее о Влияние преломления на частоту: как, почему нет, подробные факты.

Задача 5. Скорость луча света, испускаемого источником, равна 1.9 × 108 РС. Частота возникновения излучаемой волны составляет 450ТГц. Найдите длину волны испускаемого излучения.

Данный: v=1.9*108 м/с

F=450ТГц=450*1012Hz

Длина волны луча света равна

λ = v/f

=1.9* 108/ 450* 1012

= 0.004222 * 10-4

=422.2* 10-9=422.2нм

Луч света имеет длину волны 422.2 нм.

Связь энергии фотона и длины волны

Энергия, которой обладает фотон, называется энергией фотона и обратно пропорциональна электромагнитной волне фотона по соотношению

E=hc/λ

Где «h» — постоянная Планка.

С – скорость света

λ – длина волны фотона

Частота фотона определяется уравнением

f=с/λ

Где f – частота

Следовательно, фотон с большей длиной волны обладает небольшой единицей энергии, тогда как фотон с меньшей длиной волны дает большое количество энергии.

Подробнее о Какова длина волны фотона: как найти, несколько идей и фактов.

Задача 6: Рассчитать энергию фотона, распространяющегося в электромагнитной волне с длиной волны 620 нм.

Данный: Длина волныλ =620 нм

ч = 6.626 * 10-34 js

с=3 *108 м/с

У нас есть,

E=hc/λ

Е=6.626 * 10-34 Дж*3 * 108 м/с/620* 10-9m

= 0.032 * 10-17= 32 * 10-20 Дж

Энергия, связанная с фотоном, равна 32* 10-20Джоули.

Часто задаваемые вопросы

Q1. Вычислите длину волны электрона, движущегося со скоростью 6.35 × 106 м/с

Данный: v=6.35*106м/с

м=9.1*10-31kg

ч=6.62* 10-34 Js

Кинетическая энергия электрона равна

КЕ=1/2 мВ2

=1/2 * 9.1*10-31* (6.35* 106)2

=1.83* 10-17Дж

Импульс электрона равен

P=√2mE

=√2* 9.1* 10-31* 1.83 * 10-17

= 5.7 * 10-24кг.м / с

Теперь длина волны электрона

λ =h/√2mE

= 6.62 * 10-34/ 5.7 * 10-24

= 4.8 * 10-10m

=48нм

Длина волны электрона, движущегося со скоростью 6.35*106м/с составляет 48 нм.

Q2. Черный объект площадью 180 кв.м находится при температуре 550К. Какова скорость излучения энергии от объекта?

Данный: А=180 кв.м

Т=550К

Поскольку объект имеет черный цвет, коэффициент излучения равен 1.

е =1

У нас есть,

U=ɛΣT4A

=1*с 5.67* 10-8* 5504* 180

= 0.93 * 106МОЩНОСТЬ

Мощность излучения от выброса излучения от объекта составляет 0.93*106Вт.

Какова абсолютная температура системы?

Это неизменное и совершенное значение температуры системы.

Абсолютная температура системы измеряется по шкале градусов Цельсия, Фаренгейта или Кельвина, которые измеряют ноль как абсолютный ноль градусов.

Как длина волны фотона зависит от температуры?

Температура системы определяет подвижность частиц системы.

Чем больше излучений получает система при более высоких температурах, тем больше излучения будет излучаться системой. При более высоких температурах излучаются более короткие волны, а при более низких температурах излучаются более длинные волны.

1) Частота связана с длиной волны следующим образом:

c = λν,

где c – скорость света в вакууме (приблизительно равна 3*10^8 м/с), λ – длина волны и ν – частота.

Отсюда, частота равна:

ν = c/λ = (3*10^8 м/с)/(5*10^-6 м) = 6*10^13 Гц.

2) Энергия фотона связана с его частотой следующим образом:

E = hν,

где h – постоянная Планка (приблизительно равна 6.63*10^-34 Дж*с).

Отсюда, энергия фотона равна:

E = (6.63*10^-34 Дж*с)*(6*10^13 Гц) = 3.98*10^-20 Дж.

3) Масса фотона связана с его энергией следующим образом:

E = mc^2,

где m – масса фотона, c – скорость света в вакууме.

Отсюда, масса фотона равна:

m = E/c^2 = (3.98*10^-20 Дж)/(3*10^8 м/с)^2 = 4.42*10^-36 кг.

4) Импульс фотона связан с его энергией и частотой следующим образом:

p = E/c = hν/c.

Отсюда, импульс фотона равен:

p = (6.63*10^-34 Дж*с)*(6*10^13 Гц)/(3*10^8 м/с) = 1.39*10^-26 кг*м/с.

Фотон в современной физике считается разновидностью элементарных частиц. В частности, он представляет собой квант электромагнитного излучения (квант — неделимая частица чего-либо).

Энергия и импульс фотона

Фотоны обладают определенной энергией и импульсом. Когда свет испускается или поглощается, он ведет себя подобно не волне, а потоку частиц, имеющих энергию Е = hν, которая зависит от частоты. Оказалось, что порция света по своим свойствам напоминает то, что принято называть частицей. Поэтому свойства света, обнаруживаемые при его излучении и поглощении, стали называть корпускулярными. Сама же световая частица была названа фотоном, или квантом электромагнитного излучения.

Как частица, фотон обладает определенной порцией энергии, которая равна . Энергию фотона часто выражают не через частоту v, а через циклическую частоту:ω = 2πν

При этом в формуле для энергии фотона в качестве коэффициента пропорциональности (постоянной Планка) используется другая величина, обозначаемая и равная:

=h2π1,0545726·1034 (Дж·с)

Учитывая это, формула для определения энергии фотона примет вид:

Е=ω

Согласно теории относительности, энергия частиц связана с массой следующим соотношением:

Е=mс2

Так как энергия фотона равна , то, следовательно, его масса m получается равной:

m=hνс2

У фотона нет собственной массы, поскольку он не может существовать в состоянии покоя. Появляясь, он уже имеет скорость света. Поэтому формула выше показывает только массу движущегося фотона.

По известной массе и скорости фотона можно найти его импульс:

p=mc=hνc=hλ

Внимание! Вектор импульса фотона всегда совпадает с направлением распространения луча света.

Чем больше частота ν, тем больше энергия Е и импульс р фотона и тем отчетливее свет проявляет свои корпускулярные свойства. Из-за того что постоянная Планка мала, энергия фотонов видимого излучения крайне незначительна. К примеру, фотоны, свойственные зеленому свету, имеют энергию, равную всего 4∙10–19 Дж. Несмотря на это, человеческий глаз способен различать изменение освещенности, даже если оно измеряется единичными квантами.

Пример №1. Каков импульс фотона, если длина световой волны λ = 5∙10–7 м?

Корпускулярно-волновой дуализм

Законы теплового излучения и фотоэффекта объясняются только при условии, если начать считать свет потоком частиц. Однако нельзя отрицать тот факт, что свету присущи такие явления как интерференция и дифракция света. Но эти явления встречаются только у волновых процессов. Поэтому в современной физике принято считать свет с дуализмом, иначе — двойственностью свойств.

Когда свет распространяется в средах, он проявляет волновые свойства. Когда он начинает взаимодействовать с веществом (поглощаться или излучаться), проявляются корпускулярные свойства (свойства частицы).

Гипотеза де Бройля

Длительное время электромагнитное поле представлялось как материя, которая распределена в пространстве непрерывно. Электроны же представлялись как очень маленькие частицы материи. Не нет ли здесь ошибки, обратной той, которая была допущена при определении света? Может быть, электрон и другие частицы тоже обладают волновыми свойствами. Такую мысль высказал в 1923 г. французский ученый Луи де Бройль.

Он предположил, что с движением частиц связано распространение некоторых волн. И ученому удалось найти длину волны этих волн. Связь длины волны с импульсом частицы оказалась точно такой же, как и у фотонов. Если длину волны обозначить через λ, а импульс — через р, то получится, что:

λ=hp

Эта формула носит название формулы де Бройля, которая является одной из основных в разделе квантовой физики.

В будущем волновые свойства частиц, о которых предположил де Бройль, были обнаружены экспериментально. Так, удалось получить дифракцию электронов и других частиц на кристаллах. В этих случаях получалась почти такая же картина, как в случае с рентгеновскими и другими лучами. И формула де Бройля также нашла экспериментальное доказательство. Волновые свойства микрочастиц описываются квантовой механикой.

Квантовая механика — раздел физики, изучающий теорию движения микрочастиц.

Внимание! Законы Ньютона в квантовой физике в большинстве случаем не могут быть применены.

Давление света

В 1873 г. Максвелл, исходя из представлений об электромагнитной природе света, пришел к выводу: свет должен оказывать давление на препятствия. Предсказанное Максвеллом существование светового давления было экспериментально подтверждено Лебедевым, который в 1900 г. измерил давление света на твердые тела, используя чувствительные крутильные весы. Оно оказалось чрезвычайно малым, около 4∙10-7 Па.

Световое давление, обусловленное солнечным излучением у поверхности Земли, составляет менее 0,0001 Па. Этим и объясняется тот факт, что в обычных условиях давление света заметным образом себя не проявляет. Но давлением света объясняет следующие факты:

  • хвосты комет направлены от ядра кометы в сторону, противоположную Солнцу;
  • изменение орбит искусственных спутников Земли.

информация к уроку Давление света

Свет — это поток фотонов с импульсом:

p=mc

При поглощении веществом фотон перестает существовать, но импульс его, по закону сохранения импульса, не может исчезнуть бесследно. Он предается телу, значит, на тело действует сила.

Приведенное рассуждение будет абсолютно верным, если считать, что свет только веществом поглощается. Но разве это всегда так, свет еще может отражаться телами, а если тело прозрачно, то может проходить сквозь него. В реальных условиях свет частично отражается телом, частично поглощается, а если это, например, стекло, то свет проходит сквозь него. Как будет обстоять дело, если поверхность зеркальная? Возникает световое давление в данном случае?

Для простоты предположим, что свет падает перпендикулярно к поверхности зеркала. Мы знаем, что при абсолютном ударе какого-либо тела о стенку она получает импульс, модуль которого равен удвоенному модулю импульса тела, то есть 2mv. Отражаясь, фотон летит с той же скоростью, но в противоположном направлении. Значит, при отражении фотона от зеркала его импульс изменяется на 2mc. Такое же изменение импульса, но в противоположном направлении, получит зеркало. Импульс, получаемый телом при отражении фотона, будет в 2 раза больше импульса, получаемого телом при поглощении фотона.

Задание EF17985

За время t=4 с детектор поглощает N=6⋅105 фотонов падающего на него монохроматического света. Поглощаемая мощность P=5⋅10−14 Вт. Какова длина волны падающего света?

Ответ:

а) 0,4 мкм

б) 0,6 мкм

в) 520 нм

г) 780 нм


Алгоритм решения

1.Записать исходные данные.

2.Установить взаимосвязь между энергией фотонов и поглощаемой детектором мощностью.

3.Выполнить решение в общем виде.

4.Подставить известные данные и найти искомую величину.

Решение

Запишем исходные данные:

 Количество фотонов: N = 6∙105 шт.

 Поглощенная мощность: P = 5∙10–14 Вт.

Вся энергия фотонов будет поглощена детектором. Согласно закону сохранения энергии:

Nhν=Pt

Длина волны определяется формулой:

λ=cν

Отсюда частота равна:

ν=cλ

Подставим это выражение в записанный закон сохранения энергии:

Nhcλ=Pt

Отсюда длина волны равна:

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17986

При изучении давления света проведены два опыта с одним и тем же лазером. В первом опыте свет лазера направляется на пластинку, покрытую сажей, а во втором – на зеркальную пластинку такой же площади. В обоих опытах пластинки находятся на одинаковом расстоянии от лазера и свет падает перпендикулярно поверхности пластинок.

Как изменится сила давления света на пластинку во втором опыте по сравнению с первым? Ответ поясните, указав, какие физические закономерности Вы использовали для объяснения.


Алгоритм решения

1.Описать процессы, происходящие во время обоих опытов.

2.С помощью физических формул установить, как изменяется сила давления света.

Решение

В обоих опытах происходит поглощение световой волны. Этот процесс можно рассматривать как поглощение за время t большого числа световых квантов — N >>1 (фотонов). Фотоны поглощаются пластинкой. Причем каждый фотон передает этой пластинке свой импульс, равный:

pф=hνc

Поэтому импульс пластинки становится равным сумме импульсу всех поглощенных фотонов:

pп=Nhνc

В результате поглощения света пластинкой, покрытой сажей, она приобретает за время t импульс pп в направлении распространения света от лазера. Согласно закону изменения импульса, тела в инерциальной системе отсчета скорость изменения импульса тела равна силе, действующей на него со стороны других тел или полей:

F1=pпt=Nthνc

В результате отражения света от зеркальной пластины отраженный фотон имеет импульс, противоположный импульсу фотона падающей волны:

pф=pфп

Поэтому отраженная волна будет иметь импульс:

pов=Npф=Nhνc

N — количество отраженных фотонов.

В итоге за время t импульс волны под действием зеркальной пластинки изменился. Это изменение будет равно разности импульса отраженной волны и импульса пластинки:

Δp=pовpп=NpфNpф=(N+N)pф

Согласно закону сохранения импульса, импульс системы, состоящей из световой волны и зеркальной пластинки, сохраняется:

Δ(pп+pпл)=0

Отсюда:

Δpпл=Δpп

Но изменение импульса тела в инерциальной системе отсчета происходит только под действием других тел или полей и характеризуется силой:

F2=pплt=N+Nthνc

Если зеркала отражает хорошо, то N ≈ N´. Тогда:

F22F1

Отсюда видно, что сила давления света увеличится вдвое.

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18201

Излучением лазера с длиной волны 3,3⋅10−7 м за время 1,25⋅104 с был расплавлен лёд массой 1 кг, взятый при температуре 0 °С, и полученная вода была нагрета на 100 °С. Сколько фотонов излучает лазер за 1 с? Считать, что 50% излучения поглощается веществом.


Алгоритм решения

1.Записать исходные данные.

2.Установить, какое количество тепла было сообщено льду для его расплавления и нагревания до температуры кипения.

3.Установить, какая энергия была выделена лазером при условии, что лишь половина этой энергии была сообщена льду.

4.Из полученного выражения выразить количество фотонов, излученных лазером за время t.

5.Записать формулу для количества фотонов, выделяемых за время 1 с.

6.Подставить известные данные и вычислить искомую величину.

Решение

Запишем не только те данные, что есть в условии задачи, но и табличные данные, которые нам понадобятся в ходе решения задачи:

 Удельная теплота плавления льда: λльда = 3,4∙105 Дж/кг.

 Удельная теплоемкость воды: c = 4200 Дж/(кг∙оС).

 Начальная температура льда/воды: t1 = 0 оС.

 Конечная температура воды: t2 = 100 оС.

 Коэффициент полезного действия: η = 50%.

 Длина световой волны: λсвета = 3,3∙10–7.

 Время проведения всего опыта: t = 1,25∙104.

Чтобы лед расплавился, а образовавшаяся вода нагрелась до температуры кипения, нужно сообщить ему следующее количество энергии:

Q=Q1+Q2=mλльда+mc(t2t1)

Так как КПД равен 50% (0,5), то это количество теплоты равно половине энергии, выделенной лазером:

Q=ηE

mλльда+mc(t2t1)=ηE

Энергия, выделенная лазером, равна сумме энергий каждого из излученных фотонов, количество которых будет равно N:

E=Nhν

Но частота световой волны равна:

ν=cλсвета

Тогда:

E=Nhcλсвета

Отсюда:

Nhcλсвета

Теперь мы можем записать:

mλльда+mc(t2t1)=ηNhcλсвета

Выразим количество излученных фотонов за все время:

N=λсвета(mλльда+mc(t2t1))ηhc

Если разделить это выражение на время проведения опыта, то мы найдем количество фотонов, излученных за 1 секунду:

N1с=λсвета(mλльда+mc(t2t1))ηhct

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 2.7k

Добавить комментарий