Как найти энергию катушки с током

Магнитное поле катушки с током


Магнитное поле катушки с током

3.9

Средняя оценка: 3.9

Всего получено оценок: 280.

3.9

Средняя оценка: 3.9

Всего получено оценок: 280.

Движущийся электрический заряд создает в окружающем пространстве магнитное поле. Поток электронов, проходящих по проводнику создают магнитное поле вокруг проводника. Если металлический провод намотать кольцами на какой-нибудь стержень, то получится катушка. Оказывается магнитное поле, создаваемое такой катушкой, обладает интересными и, самое главное, полезными свойствами.

Почему возникает магнитное поле

Магнитные свойства некоторых веществ, позволяющие притягивать металлические предметы, были известны с давних времен. Но к пониманию сути этого явления удалось приблизиться только в начале XIX века. По аналогии с электрическими зарядами, были попытки объяснить магнитные эффекты с помощью неких магнитных зарядов (диполей). В 1820 г. датский физик Ханс Эрстед обнаружил, что магнитная стрелка отклоняется при пропускании электрического тока через проводник, находящийся около нее.

Тогда же французский исследователь Андре Ампер установил, что два проводника, расположенные параллельно друг другу, вызывают взаимное притяжение при пропускании через них электрического тока в одном направлении и отталкивание, если токи направлены в разные стороны.

Рис. 1. Опыт Ампера с проводами с током. Стрелка компаса вблизи провода с током

На основании этих наблюдений Ампер пришел к выводу, что взаимодействие тока со стрелкой, притяжение (и отталкивание) проводов и постоянных магнитов между собой можно объяснить, если предположить, что магнитное поле создается движущимися электрическими зарядами. Дополнительно Ампер выдвинул смелую гипотезу, согласно которой внутри вещества существуют незатухающие молекулярные токи, которые и являются причиной возникновения постоянного магнитного поля. Тогда все магнитные явления можно объяснить взаимодействием движущихся электрических зарядов, и никаких особенных магнитных зарядов не существует.

Математическую модель (теорию), с помощью которой стало возможным рассчитывать величину магнитного поля и силу взаимодействия, разработал английский физик Джеймс Максвелл. Из уравнений Максвелла, объединивших электрические и магнитные явления, следовало, что:

  • Магнитное поле возникает только в результате движения электрических зарядов;
  • Постоянное магнитное поле существует у природных магнитных тел, но и в этом случае причиной возникновения поля является непрерывное движение молекулярных токов (вихрей) в массе вещества;
  • Магнитное поле можно создать еще с помощью переменного электрического поля, но это тема будет рассмотрена в следующих наших статьях.

Магнитное поле катушки с током

Металлический провод, намотанный кольцами на любой цилиндрический стержень (деревянный, пластмассовый и т.п.) — это и есть электромагнитная катушка. Провод должен быть изолированным, то есть покрыт каким-либо изолятором (лаком или пластиковой оплеткой) во избежание замыкания соседних витков. В результате протекания тока магнитные поля всех витков складываются и получается, что суммарное магнитное поле катушки с током идентично (полностью похоже) магнитному полю постоянного магнита.

Магнитное поле катушки и постоянного магнита

Рис. 2. Магнитное поле катушки и постоянного магнита.

Внутри катушки магнитное поле будет однородное, как в постоянном магните. Снаружи магнитные линии поля катушки с током можно обнаружить с помощью мелких металлических опилок. Линии магнитного поля замкнуты. По аналогии с магнитной стрелкой компаса, катушка с током имеет два полюса — южный и северный. Силовые линии выходят из северного полюса и заканчиваются в южном.

Для катушек с током существуют дополнительные, отдельные названия, которые используют в зависимости от области применения:

  • Катушка индуктивности, или просто — индуктивность. Термин используется в радиотехнике;
  • Дроссель (drossel — регулятор, ограничитель). Используется в электротехнике;
  • Соленоид. Это составное слово происходит от двух греческих слов: solen — канал, труба и eidos — подобный). Так называют специальные катушки с сердечниками из специальных магнитных сплавов (ферромагнетиков), которые используют в качестве электромеханических механизмов. Например, в автомобильных стартерах втягивающее реле — это соленоид.

Рис. 3. Катушки индуктивности, дроссель, соленоид

Энергия магнитного поля

В катушке с током запасается энергия от источника электропитания (батареи, аккумулятора), которая тем больше, чем больше ток I и величина L, которая называется индуктивностью. Энергия магнитного поля катушки с током W вычисляется с помощью формулы:

$$ W = {{ L*I^2}over 2 } $$

Эта формула напоминает формулу для кинетической энергии тела. Индуктивность аналогична массе тела, а сила тока аналогична скорости тела. Магнитная энергия пропорциональна квадрату силы тока, как кинетическая энергия пропорциональна квадрату скорости.

Для расчета величины индуктивности катушки существует следующая формула:

$$ L = μ *{{N^2*S}over l_к} $$

N — число витков катушки;

S — площадь поперечного сечения катушки;

lк — длина катушки;

μ — магнитная проницаемость материала сердечника — справочная величина. Сердечник представляет собой металлический стержень, помещенный внутрь катушки. Он позволяет значительно увеличивать величину магнитного поля.

Заключение

Что мы узнали?

Итак, мы узнали, что магнитное поле возникает только в результате движения электрических зарядов. Магнитное поле катушки с током похоже на магнитное поле постоянного магнита. Энергию магнитного поля катушки можно рассчитать, зная силу тока I и индуктивность L.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

  • Kirill Pelipes

    10/10

  • Даша Литош

    10/10

Оценка доклада

3.9

Средняя оценка: 3.9

Всего получено оценок: 280.


А какая ваша оценка?

Определение 1

Самоиндукция – это значимый частный случай электромагнитной индукции, когда магнитный поток, изменяясь и вызывая ЭДС индукции, создается током в самом контуре.

В случае, когда ток рассматриваемого контура по каким-либо причинам изменен, то имеет место изменение и магнитного поля этого тока, а значит и собственного магнитного потока, проходящего через контур. В контуре создается ЭДС самоиндукции, создавая препятствие для изменений тока в контуре (по правилу Ленца).

Собственный магнитный поток Φ, который проходит через контур или катушку с током, является пропорциональным силе тока I: Φ=LI.

Определение 2

Коэффициент пропорциональности L в формуле Φ=LI есть коэффициент самоиндукции или индуктивность катушки. Единица индуктивности в СИ носит название генри (Гн). Индуктивность контура или катушки равна 1 Гн, когда при силе постоянного тока 1 А собственный поток составляет 1 Вб: 1 Гн=1 Вб1 А.

Расчет индуктивности

Пример 1

Для наглядности произведем расчет индуктивности длинного соленоида, который имеет N витков, площадь сечения S и длину l. Соленоид – это цилиндрическая катушка индуктивности, у которой длина много больше диаметра. Магнитное поле соленоида задается формулой:

B=μ0nI,

где I является обозначением тока в соленоиде, n = Ne указывает число витков на единицу длины соленоида.

Магнитный поток внутри катушки соленоида, проходящий через все N витков, составляет:

Φ=B·S·N=μ0n2Sl

Таким образом, индуктивность соленоида будет выражена формулой:

L=μ0n2S·l=μ0n2V,

где V=Sl – объем соленоида, содержащий магнитное поле.

Результат, который мы получили, не берет в расчет краевых эффектов, а значит он является приближенно верным лишь для катушек достаточной длины. Когда соленоид заполнен веществом, имеющим магнитную проницаемость μ, при заданном токе I индукция магнитного поля будет возрастать по модулю в μ раз, а значит и индуктивность катушки с сердечником тоже получит увеличение в μ раз:

Lμ=μ·L=μ0·μ·n2·V.

Определение 3

ЭДС самоиндукции, которая возникает в катушке при постоянном значении индуктивности, в соответствии с законом Фарадея записывается в виде формулы:

δинд=δL=-∆Φ∆t=-L∆I∆t.

ЭДС самоиндукции является прямо пропорциональной индуктивности катушки и скорости изменения силы тока в ней.

Магнитное поле выступает носителем энергии. Так же, как заряженный конденсатор обладает запасом электрической энергии, катушка, по виткам которой проходит ток, обладает запасом магнитной энергии. Включив электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, при размыкании ключа будем наблюдать короткую вспышку лампы (рис. 1.21.1). Ток в цепи появится под влиянием ЭДС самоиндукции. Источником энергии, которая будет выделяться в этом процессе электрической цепью, будет служить магнитное поле катушки.

Расчет индуктивности

Рисунок 1.21.1. Магнитная энергия катушки. В момент размыкания ключа K лампа ярко вспыхнет.

Закон сохранения энергии позволяет говорить, что вся энергия, составляющая запас катушки, будет выделена в виде джоулева тепла. Обозначим как R полное сопротивление цепи, тогда за время Δt будет выделено количество теплоты ΔQ=I2·R·Δt.

Ток в цепи составляет:

I=δLR=-LR∆I∆t

Выражение для ΔQ можем записать так:

∆Q=-L·I·∆I=-Φ(I)∆I

В данной записи ΔI < 0; значение тока в цепи постепенно снижается от изначального I0 до нуля. Полное количество теплоты, которое выделится в цепи, возможно получить, осуществив действие интегрирования в пределах от I0 до 0. Тогда получим:

Q=LI022

Графический вывод формулы

Существует возможность получить записанную формулу, используя графический метод. Для этого отобразим на графике зависимость магнитного потока Φ(I) от тока I (рис. 1.21.2). Полное количество выделившейся теплоты, которое равно изначальному запасу энергии магнитного поля, определится как площадь получившегося на рис. 1.21.2 треугольника:

Графический вывод формулы

Рисунок 1.21.2. Вычисление энергии магнитного поля.

В итоге формула энергии Wм магнитного поля катушки с индуктивностью L, создаваемого током I, будет записана в виде формулы:

Wм=ΦI2=LI22=Φ22L

Используем выражение, которое мы получили, для энергии катушки к длинному соленоиду с магнитным сердечником. Применяя указанные выше формулы для коэффициента самоиндукции Lμ соленоида и для магнитного поля B, создаваемого током I, получим запись:

Wм=μ0·μ·n2·I22V=B22μ0·μV

В этой формуле V является объемом соленоида. Полученное выражение демонстрирует нам, что магнитная энергия имеет локализацию не в витках катушки, по которым проходит ток, а распределена по всему объему, в котором возникло магнитное поле.

Определение 4

Объёмная плотность магнитной энергии – это физическая величина, которая равна энергии магнитного поля в единице объема: Wм=B22μ·μ.

В свое время Максвелл продемонстрировал, что указанная формула (в нашем случае выведенная для длинного соленоида) верна для любых магнитных полей.

Печатать книгуПечатать книгу

Сайт: Профильное обучение
Курс: Физика. 10 класс
Книга: § 33. Явление самоиндукции. Индуктивность. Энергия магнитного поля катушки с током
Напечатано:: Гость
Дата: Вторник, 16 Май 2023, 14:28

Оглавление

  • Самоиндукция
  • Наблюдение самоиндукции
  • Энергия магнитного поля
  • Примеры решения задач
  • Упражнение 24

Фарадей опытным путём установил, что электромагнитная индукция проявляется во всех случаях изменения магнитного потока через поверхность, ограниченную контуром. Современник Фарадея американский физик Джозеф Генри (1797–1878) независимо от своего английского коллеги открыл некоторые из электромагнитных эффектов. В 1829 г. Генри обнаружил, что ЭДС индукции возникает в неподвижном контуре и в отсутствие изменения внешнего магнитного поля. Каков механизм возникновения ЭДС индукции в этом случае?

Самоиндукция. Если электрический ток, проходящий в замкнутом проводящем контуре, по каким-либо причинам изменяется, то изменяется и магнитное поле, создаваемое этим током. Это влечёт за собой изменение магнитного потока через поверхность, ограниченную контуром. Поскольку магнитный поток Ф пропорционален модулю магнитной индукции В поля, который, в свою очередь, пропорционален силе тока I в контуре, то

straight Ф tilde I.

Коэффициенту пропорциональности между магнитным потоком Ф и силой тока I Томсон (лорд Кельвин) в 1853 г. предложил название «коэффициент самоиндукции»:

Коэффициент самоиндукции L часто называют индуктивностью контура. В СИ индуктивность измеряют в генри (Гн). Индуктивность контура равна 1 Гн, если при силе тока в контуре 1 А магнитный поток через поверхность, ограниченную этим контуром, равен 1 Вб. Индуктивность зависит от размеров и формы контура, а также от магнитных свойств среды, в которой находится этот контур.

Если электрический ток, проходящий в контуре, изменяется, то он создаёт изменяющийся магнитный поток, что приводит к появлению ЭДС индукции. Это явление назвали самоиндукцией.

Самоиндукция — явление возникновения ЭДС индукции в электрической цепи в результате изменения силы тока в этой же цепи.

Возникающую в этом случае ЭДС назвали электродвижущей силой самоиндукции. Согласно закону электромагнитной индукции,

calligraphic E subscript straight с equals negative fraction numerator increment straight Ф over denominator increment t end fraction equals negative fraction numerator increment open parentheses L I close parentheses over denominator increment t end fraction.

Если индуктивность контура не изменяется во времени, т. е. L = const, то

calligraphic E subscript straight с equals negative L fraction numerator increment I over denominator increment t end fraction. 

Поскольку контур замкнут, ЭДС самоиндукции создаёт в нём ток самоиндукции. Силу тока самоиндукции можно определить по закону Ома I subscript straight с equals calligraphic E subscript straight с over R где R — сопротивление контура. Согласно правилу Ленца, ток самоиндукции всегда направлен так, чтобы противодействовать изменению тока, создаваемого источником. При возрастании силы тока ток самоиндукции направлен против тока источника, а при уменьшении — направления тока источника и тока самоиндукции совпадают.

От теории к практике

Какой должна быть скорость изменения силы тока, чтобы в катушке с индуктивностью L = 0,20 Гн возникла ЭДС самоиндукции calligraphic E subscript straight с = 4,0 В?

Рис.
Рис. 185

Отсылка к просмотру видеоролика

Наблюдение самоиндукции. Для наблюдения явления самоиндукции соберём электрическую цепь, состоящую из катушки с большой индуктивностью, резистора с электрическим сопротивлением, равным сопротивлению обмотки катушки, двух одинаковых лампочек, ключа и источника постоянного тока. Схема цепи представлена на рисунке 185. При замыкании ключа лампочка Л2 начинает светиться практически сразу, а лампочка Л1 — с заметным запаздыванием. При возрастании силы тока I1, созданного источником на участке, образованном катушкой и лампочкой Л1, ЭДС самоиндукции в катушке имеет такую полярность, что создаваемый ею ток самоиндукции Iс направлен навстречу току источника. В результате рост силы тока I1 источника замедляется, и сила тока I1 — |Iс| не сразу достигает своего максимального значения.

Материал повышенного уровня

Рис.
Рис. 185.1

Явление самоиндукции можно наблюдать и при размыкании электрической цепи. Соберём цепь, состоящую из катушки с большим количеством витков 1, намотанных на железный сердечник 2, к зажимам которой подключена лампочка с большим электрическим сопротивлением по сравнению с сопротивлением обмотки катушки (рис. 185.1). В качестве источника тока возьмём источник, ЭДС которого 2 В. Лампочка подключена параллельно катушке. При размыкании ключа сохраняется замкнутой часть цепи, состоящая из уже последовательно соединённых катушки и лампочки.

Пока ключ замкнут, лампочка будет тускло светиться, так как отношение сил токов, проходящих через лампочку и катушку, обратно отношению их сопротивлений I subscript straight л over I subscript straight к equals R subscript straight к over R subscript straight л. Однако при размыкании ключа можно увидеть, что лампочка ярко вспыхивает. Почему это происходит? При размыкании цепи сила тока в катушке убывает, что приводит к возникновению ЭДС самоиндукции. Возникающий в цепи ток самоиндукции, согласно правилу Ленца, совпадает по направлению с током катушки, не позволяя ему резко уменьшать силу тока. Это и обеспечивает вспышку лампочки. Заметим, что явление самоиндукции имеет место в любых случаях изменения силы тока в цепи, содержащей индуктивность, или изменения самой индуктивности.

Материал повышенного уровня

Энергия магнитного поля. Откуда берётся энергия, обеспечивающая вспышку лампочки? Это не энергия источника тока, так как он уже отсоединён. Вспышка лампочки происходит одновременно с уменьшением силы тока в катушке и создаваемого током магнитного поля. Можно предположить, что запасённая в катушке в процессе самоиндукции энергия магнитного поля превращается во внутреннюю энергию спирали лампочки и энергию её излучения.

При замыкании цепи, состоящей из источника тока с ЭДС calligraphic E subscript 0, катушки с индуктивностью L и резистора, сопротивление которого R, сила тока в цепи начнёт возрастать и появится ЭДС самоиндукции calligraphic E subscript straight с equals negative L fraction numerator increment I over denominator increment t end fraction.

Тогда в соответствии с законом Ома сила тока в цепи I equals fraction numerator calligraphic E subscript 0 plus calligraphic E subscript straight с over denominator R end fraction.

Значит, calligraphic E subscript 0 equals I R plus L fraction numerator increment I over denominator increment t end fraction.

Умножив полученное равенство на IΔt, где Δt — достаточно малый промежуток времени, в течение которого сила тока I остаётся практически постоянной, найдём элементарную работу, совершаемую сторонними силами в источнике тока: calligraphic E subscript 0 I increment t equals I squared R increment t plus L I increment I.

Рис.
Рис. 185.2

В процессе установления тока, когда сила тока I и магнитный поток Ф = LI возрастают, работа, совершаемая сторонними силами в источнике тока, превышает выделяющееся в резисторе количество теплоты. Элементарная дополнительная работа, совершаемая сторонними силами за промежуток времени Δt при преодолении ЭДС самоиндукции в процессе установления тока (рис. 185.2):

δAдоп = ФΔI.

Полная дополнительная работа Адоп, равная сумме элементарных дополнительных работ δAдоп в процессе установления тока, равна сумме площадей всех аналогичных столбиков, т. е. площади фигуры под графиком зависимости Ф = Ф(I) (см. рис. 185.2).

A subscript доп equals fraction numerator straight Ф subscript уст I subscript уст over denominator 2 end fraction equals fraction numerator L I subscript уст superscript 2 over denominator 2 end fraction.

Эта работа превращается в энергию магнитного поля катушки, поэтому:

W subscript straight м equals fraction numerator L I squared over denominator 2 end fraction comma 

где L — индуктивность контура; I — сила тока.

От теории к практике

Какова индуктивность катушки, если при силе тока I = 2,0 А энергия магнитного поля катушки Wм = 1,2 Дж?

img

img

1. Что называют самоиндукцией?

2. В каких опытах можно наблюдать явление самоиндукции?

3. От чего зависит ЭДС самоиндукции?

4. Что называют индуктивностью? В каких единицах в СИ её измеряют?

5. Как вычислить энергию магнитного поля катушки с током?

Материал повышенного уровня

6. Почему для создания электрического тока в цепи с катушкой индуктивности источник тока должен затратить энергию?

Примеры решения задач

Пример 1. На рисунке 186 представлен график зависимости силы тока, проходящего по соленоиду, от времени. Определите максимальное значение модуля ЭДС самоиндукции в соленоиде, если его индуктивность L = 40 мГн.

Рис.

Рис. 186

Дано:
L = 40 мГн = 4,0 · 10–2 Гн

open vertical bar calligraphic E subscript straight с close vertical bar subscript max — ?

Решение: ЭДС самоиндукции calligraphic E subscript straight с equals negative L fraction numerator increment I over denominator increment t end fraction. Анализируя график (рис. 186), можно сделать вывод, что сила тока, проходящего по соленоиду, изменяется на трёх участках:

1) от момента времени t1 = 0,0 с до момента времени t2 = 2,0 с сила тока изменяется на ΔI1 = 10 А за промежуток времени Δt1 = 2,0 с;

2) от момента времени t3 = 4,0 с до момента времени t4 = 6,0 с сила тока изменяется на ΔI2 = –20 А за промежуток времени Δt2 = 2,0 с;

3) от момента времени t5 = 8,0 с до момента времени t6 = 10,0 с сила тока изменяется на ΔI3 =10 А за промежуток времени Δt3 = 2,0 с.

Поскольку промежутки времени Δt1 = Δ t2 = Δ t3 = 2,0 с, то очевидно, что максимальное значение модуля скорости изменения силы тока, а следовательно, и максимальное значение модуля ЭДС самоиндукции, создаваемой в соленоиде, соответствует промежутку времени Δt2 = 2,0 с (от t3 = 4,0 с до t4 = 6,0 с):

open vertical bar calligraphic E subscript straight с close vertical bar subscript max equals L open vertical bar fraction numerator increment I subscript 2 over denominator increment t subscript 2 end fraction close vertical bar.

Таким образом,

open vertical bar calligraphic E subscript straight с close vertical bar subscript max equals 4 comma 0 times 10 to the power of negative 2 end exponent space Гн times fraction numerator open vertical bar negative 20 space straight А close vertical bar over denominator 2 comma 0 space straight с end fraction equals 0 comma 40 space straight В.

Ответopen vertical bar calligraphic E subscript straight с close vertical bar subscript max = 0,40 В.

Пример 2. На рисунке 187 представлен график зависимости ЭДС самоиндукции, возникающей в катушке с индуктивностью L = 2,0 мГн, от времени. Определите изменения силы тока на участках I, II и III графика. Чему равна энергия магнитного поля в момент времени t = 4,0 с, если в начальный момент времени сила тока в катушке I = 0?

Рис.

Рис. 187

Дано:
L = 2,0 мГн = 2,0 · 10–3 Гн
t = 4,0 с

ΔII — ? ΔIII — ?
ΔIIII — ? Wм — ?

Решение: Анализируя график, можно сделать вывод, что на участке I ЭДС самоиндукции calligraphic E subscript сI = –3,0 мВ, на участке III — calligraphic E subscript сIII = 6,0 мВ. Изменение силы тока на этих участках графика можно определить, воспользовавшись законом электромагнитной индукции для явления самоиндукции:

calligraphic E subscript с equals negative L fraction numerator increment I over denominator increment t end fractionincrement I equals negative fraction numerator calligraphic E subscript с increment t over denominator L end fraction.

increment I subscript straight I equals negative fraction numerator negative 3 comma 0 times 10 to the power of negative 3 end exponent space straight В times 4 comma 0 space straight с over denominator 2 comma 0 times 10 to the power of negative 3 end exponent space Гн end fraction equals 6 comma 0 space straight Аincrement I subscript III equals negative fraction numerator 6 comma 0 times 10 to the power of negative 3 end exponent space straight В times 2 comma 0 space straight с over denominator 2 comma 0 times 10 to the power of negative 3 end exponent space Гн end fraction equals negative 6 comma 0 space straight А.

На участке II графика calligraphic E subscript с II end subscript = 0, следовательно, сила тока не изменялась: ΔIII = 0.

В момент времени t = 4,0 с энергия магнитного поля катушки W subscript straight м equals fraction numerator L I squared over denominator 2 end fraction.

Следовательно,

W subscript straight м equals fraction numerator 2 comma 0 times 10 to the power of negative 3 end exponent space Гн times open parentheses 6 comma 0 space straight А close parentheses squared over denominator 2 end fraction equals 36 times 10 to the power of negative 3 end exponent space Дж equals 36 space мДж.

Ответ: ΔII = 6,0 А; ΔIII = 0; ΔIIII = –6,0 А; Wм = 36 мДж.

Материал повышенного уровня

Пример 3. За промежуток времени Δt = 9,50 мс сила тока в катушке индуктивности равномерно возросла от I1 = 1,60 А до I2 = 2,40 А. При этом в катушке возникала ЭДС самоиндукции calligraphic E subscript straight с = ‒14,0 В. Определите собственный магнитный поток в конце процесса нарастания тока и приращение энергии магнитного поля катушки.

Дано:
Δt = 9,50 мс = 9,50 · 10-3 с
I1 = 1,60 А
I2 = 2,40 А
calligraphic E subscript straight с = ‒14,0 В

Фс — ?
ΔWм — ?

Решение: При изменении в катушке силы тока от I1 до I2 возникает собственный магнитный поток Фс = LI2. Индуктивность L катушки можно определить из закона электромагнитной индукции для явления самоиндукции: calligraphic E subscript straight с equals negative L fraction numerator increment I over denominator increment t end fraction equals negative L fraction numerator I subscript 2 minus I subscript 1 over denominator increment t end fraction. Следовательно,

L equals negative fraction numerator calligraphic E subscript straight с increment t over denominator I subscript 2 minus I subscript 1 end fraction equals fraction numerator calligraphic E subscript straight с increment t over denominator I subscript 1 minus I subscript 2 end fraction. Тогда straight Ф subscript straight с equals fraction numerator calligraphic E subscript straight с increment t I subscript 2 over denominator I subscript 1 minus I subscript 2 end fraction.

straight Ф subscript straight с equals fraction numerator negative 14 comma 0 space straight В times 9 comma 50 times 10 to the power of negative 3 end exponent space straight с times 2 comma 40 space straight А over denominator 1 comma 60 space straight А minus 2 comma 40 space straight А end fraction equals 0 comma 399 space Вб equals 399 space мВб.

Приращение энергии магнитного поля катушки

increment W subscript straight м equals W subscript straight м 2 end subscript minus W subscript straight м 1 end subscript equals fraction numerator L I subscript 2 superscript 2 over denominator 2 end fraction minus fraction numerator L I subscript 1 superscript 2 over denominator 2 end fraction equals L over 2 open parentheses I subscript 2 superscript 2 minus I subscript 1 superscript 2 close parentheses equals fraction numerator negative calligraphic E subscript straight с increment t open parentheses I subscript 2 superscript 2 minus I subscript 1 superscript 2 close parentheses over denominator 2 open parentheses I subscript 2 minus I subscript 1 close parentheses end fraction equals fraction numerator negative calligraphic E subscript straight с increment t open parentheses I subscript 2 plus I subscript 1 close parentheses over denominator 2 end fraction.

increment W subscript straight м equals fraction numerator negative open parentheses negative 14 comma 0 space straight В close parentheses times 9 comma 50 times 10 to the power of negative 3 end exponent space straight с times left parenthesis 2 comma 40 space straight А plus 1 comma 60 straight А right parenthesis over denominator 2 end fraction equals 0 comma 266 space Дж space equals space 266 space мДж.

Ответ: Фс = 399 мВб, ΔWм = 266 мДж.

Упражнение 24

1. Сила тока, проходящего по замкнутому проводящему контуру, I = 1,2 А. Магнитное поле этого тока создаёт магнитный поток Ф = 3,0 мВб через поверхность, ограниченную контуром. Определите индуктивность контура.

2. При равномерном изменении силы тока в катушке на ΔI = –4,0 А за промежуток времени Δt = 0,10 с в ней возникает ЭДС самоиндукции calligraphic E subscript straight с = 20 В. Определите индуктивность катушки.

3. Определите ЭДС самоиндукции, возникающую в катушке, индуктивность которой L = 1,2 Гн, при равномерном изменении силы тока от I1 = 2,0 А до I2 = 6,0 А за промежуток времени Δt = 0,60 с. Определите приращение энергии магнитного поля при заданном изменении силы тока.

Рис.
Рис. 188

4. На рисунке 188 представлен график зависимости силы тока в катушке, индуктивность которой L = 10 мГн, от времени. Определите ЭДС самоиндукции через промежутки времени t1 = 10 с и t2 = 20 с от момента начала отсчёта времени.

5. Сила тока в катушке равномерно уменьшилась от I1 = 10 А до I2 = 5,0 А. При этом энергия магнитного поля изменилась на ΔWм = –3,0 Дж. Определите индуктивность катушки и первоначальное значение энергии магнитного поля.

6. Определите ЭДС самоиндукции, возникающую в катушке, индуктивность которой L = 0,12 Гн, при равномерном уменьшении силы тока от I1 = 8,0 А, если за промежуток времени t1 = 0,20 с энергия магнитного поля уменьшилась в α = 2,0 раза.

Материал повышенного уровня

7. Энергия магнитного поля катушки с индуктивностью L1 = 0,5 Гн больше энергии магнитного поля катушки с индуктивностью L2 в α = 1,5 раза. Определите индуктивность второй катушки, если отношение собственного магнитного потока через поверхности, ограниченные витками второй катушки, к собственному магнитному потоку через поверхности, ограниченные витками первой катушки, straight Ф subscript 2 over straight Ф subscript 1 equals 2.

Переход на повышенный уровень

«Искусство
экспериментатора состоит в том,

чтобы
уметь задавать природе

вопросы
и понимать её ответы».

Майкл
Фарадей

Задача
1.

Какой должна быть сила тока в катушке с индуктивностью 20 мГн, чтобы энергия
магнитного поля составляла 5 Дж?

ДАНО:

СИ

РЕШЕНИЕ

Энергия магнитного поля определяется по формуле

Из данной формулы выразим искомую силу тока

Ответ:
22,4 А.

Задача
2.

На катушке с индуктивностью 80 мГн поддерживается постоянное напряжение 12 В.
Известно, что сопротивление катушки равно 3 Ом. Найдите энергию, которая
выделится при размыкании цепи. Также найдите ЭДС самоиндукции в катушке,
предполагая, что размыкание произошло за 10 мс.

ДАНО:

СИ

РЕШЕНИЕ

Энергия магнитного поля определяется по выражению

Запишем закон Ома для участка цепи

Тогда с учётом закона Ома энергия магнитного поля равна

Запишем закон самоиндукции

При размыкании цепи
изменение силы тока будет равно току, протекавшему в цепи. Знак минус
означает, что сила тока уменьшилась

Ответ:
Энергия магнитного поля – 0,64 Дж; ЭДС самоиндукции – 32 В.

Задача
3.

Соленоид длиной 40 см содержит 5 витков на каждый сантиметр. Найдите энергию
магнитного поля при силе тока в 5 А, если при этом магнитный поток через
поперечное сечение соленоида равен 10 мВб.

ДАНО:

СИ

РЕШЕНИЕ

Энергия магнитного поля определяется по формуле

Индуктивность соленоида
равна отношению магнитного потока к силе тока. В данном случае, это
соотношение умножается на число витков, поскольку такой индуктивностью
обладает каждый виток соленоида

Тогда с учётом последней формулы получаем

Количество витков можно определить по формуле

Ответ:
5 Дж.

Задача
4.

При увеличении силы тока в катушке от 3 А до 8 А, энергия магнитного поля
возросла на 20 Дж. Найдите индуктивность этой катушки.

ДАНО:

РЕШЕНИЕ

Энергия магнитного поля определяется по формуле

Применим эту формулу для начальной и конечной силы тока

Изменение энергии магнитного поля можно рассчитать по
формуле

Тогда

Ответ:
0,73 Гн.

Задача
5.

Катушка с индуктивностью 0,5 Гн включена в цепь. В цепи произошёл скачок
напряжения, изображённый на графике. Известно, что при этом скачке в катушке
возникла ЭДС самоиндукции 10 В. Как изменилась энергия магнитного поля?

ДАНО:

РЕШЕНИЕ

Запишем закон самоиндукции

Энергия магнитного поля рассчитывается по формуле

Из графика видно, что за время 1 с напряжение
изменилось от 50 В до 30 В

Запишем закон Ома для участка цепи

Применим закон Ома для силы
тока до и после скачка напряжения

Из закона самоиндукции получаем

Тогда силы тока до и после
скачка напряжения

Изменение энергии магнитного поля определяется по выражению

Преобразуем эту формулу с учётом выражений для определения
силы тока

Проверим размерности

Ответ:
энергия уменьшилась на 400 Дж.

Содержание:

  • Расчет индуктивности
  • Определение энергии магнитного поля катушки индуктивности

Определение 1

Рассмотрим проводящий контур. Если проходящий по контуру ток будет меняться во времени, то в том же контуре возникнет электродвижущая сила. Такое явление называется самоиндукция.

Самоиндукция возникает за счёт взаимосвязи переменных электрического и магнитного полей. Если по контуру идёт переменный ток, то он создаёт переменное магнитное поле. Оно в свою очередь обуславливает изменение потока вектора магнитной индукции через поверхность, ограниченную контуром. Изменяющийся поток, согласно закону электромагнитной индукции вызывает появление ЭДС (электродвижущей силы)

При этом, магнитный поток контура Φ находится в прямой зависимости от величины тока. Выполняется соотношение: Φ=LI.

Определение 2

Коэффициент самоиндукции (L), также называемый индуктивностью контура или катушки, является коэффициентом пропорциональности в формуле Φ=LI. Физический смысл величины в том, что она является мерой электрической инерции катушки (контура).

В международной системе СИ, индуктивность измеряется в Генри (Гн). Контур обладает индуктивностью в 1 Генри, если при росте, либо снижении электротока на 1 Ампер за 1 секунду, создаётся ЭДС индукции величиной в 1 Вольт. Верна запись: $ 1Гн = 1Вбcdot 1А$.

Расчет индуктивности

Пример 1

Чтобы лучше понять, что такое индуктивность, рассмотрим пример вычисления данного параметра для катушки, имеющей N витков. Обладающей площадью поперечного сечения S и длина которой составляет l. В этом случае возьмём такую катушку цилиндрической формы, длина которой во много раз больше диаметра. Запишем магнитную индукцию:

$ B = μ_0 nI $

I — ток в катушке;

$ n = N/e $ — величина, характеризующая количество витков, соответствующее единице длины катушки.

Запишем выражение для магнитного потока проходящего через N витков:

$ Φ = B cdot S cdot N = (μ_0 n^2 cdot S)/l $

Запишем выражение для индуктивности:

$ L = μ_0 cdot n^2 S cdot l = $,

$ V = Scdot l $ – объем катушки с магнитным полем.

Наше решение является оценочным и не рассматривает целый ряд нюансов, таких, как, например, краевые эффекты. Однако оно остаётся полностью верным в определённых граничных условиях — так, влиянием краевых эффектов можно пренебречь, если длина катушки в несколько раз больше её диаметра.

Несмотря на ограничения, данный пример хорошо иллюстрирует принцип возникновения ЭДС самоиндукции. Также видно, что от типа вещества которым заполнена катушка, точнее от его магнитной проницаемости μ, зависит индуктивность. Она будет тем больше по модулю, чем больше μ. Индуктивность катушки имеющей сердечник будет в μ раз больше, чем у такой же катушки, но без сердечника:

$ L_μ = μ cdot L = μ_0 cdot μ cdot n ^2 cdot V $

Определение 3

Также мера инерции электрического контура (катушки), то есть способность сопротивляться изменению (повышению, понижению, возникновению) электрического тока в нём, характеризуется через ЭДС самоиндукции. Параметр зависит от характеристик вещества проводника. Записывает следующим образом:

$delta _{инд}=delta_L = -frac{triangle Ф}{triangle t} = -L frac{triangle I}{triangle t} $

ЭДС самоиндукции имеет зависимость не только от скорости приращения или убывания магнитного потока, но и от того как быстро происходит изменение тока, протекающего в проводящем контуре.

В случае подключения катушки, созданное ею магнитное поле играет роль накопителя энергии. Проверить это утверждение не трудно, достаточно включить в схему параллельно катушке лампу. При отключении схемы от питания, лампа ненадолго зажжётся — это убывающее магнитное поле создало ЭДС, сгенерировало непродолжительный электрический ток.

В целом же энергия запасаемая катушкой и вовсе никуда не исчезает. Согласно закону сохранения энергии она превращается во внутреннюю энергию, вызывая нагрев. Пусть R сопротивление системы, а Δt время передачи тепловой энергии, тогда верно следующее выражение:

$triangle Q = I^{2}Rtriangle t$

Для электротока:

$I=frac{delta_L}{R} = – frac{L}{R}frac{triangle I}{ triangle t}$

Изменение тепла $ triangle Q $:

$triangle Q = − L ⋅ I ⋅ triangle I = − Φ ( I ) triangle I $

Очевидно, что изменение тока $ triangle I < 0 $;

При передаче энергии происходит уменьшение электротока от $I_0$ до нулевого значения. Интегрируя по электротоку получим выражение для тепловой энергии, которая выделится при отключении катушки от питания:

$ Q = frac {L I_0^2}{2} $

Определение энергии магнитного поля катушки индуктивности

Зависимость магнитного потока Φ от электротока I, то получим прямую, направленную под углом из центра координат. Попробуем с помощью такого графика определить энергию магнитного поля. Здесь вся, выделившаяся в виде тепла, энергия будет представлена в виде площади прямоугольного треугольника, катетами которого станут значения потока и элетротока. Тогда используя выражение

Φ=LI

получим для энергии $ W_м $ магнитного поля катушки, имеющей индуктивность L, проходящий ток I, следующее выражение:

$ W_м = frac {Φ I} {2} = frac {L I^2}{2} = frac {Φ^2} (2 L) $

Применим здесь выведенное в первом примере выражение и получим формулу:

$ W_м = frac {μ_0 μ n^2 I^2}{2} V = frac {B^2} {2 μ_0 μ} V $, где

$ L_μ $ — самоиндукция;

В — индукция магнитного поля;

I — величина силы тока;

V — объем соленоида.

Формула наглядно показывает характер распределения энергии магнитного поля. Он не сосредоточена в витках или в сердечнике — она равномерно распределена по всему объёму соленоида.

Определение 4

Введём понятие плотность энергии. Данный параметр актуален для магнитного поля и характеризует способность электромагнитного элемента накапливать энергию. Плотность показывает количество энергии сосредоточенное в одной единице объёма. Вычисляется как:

$W_м = frac{B^2}{ 2 μ_0 ⋅ μ} $

Согласно исследованиям Максвелла, формула верно описывает физическую величину применительно к любым магнитным полям.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Добавить комментарий