Как найти энергию конденсатора в физике

Как рассчитать энергию заряженного конденсатора

Содержание:

  • Что такое энергия заряженного конденсатора

    • Где сосредоточена, в каких единицах измеряется
  • Чему равна энергия заряженного конденсатора

    • По какой формуле можно найти
  • Применение конденсаторов

Что такое энергия заряженного конденсатора

Конденсатор состоит из двух проводников, разделенных слоем диэлектрика.

Простейший конденсатор — две металлические пластины-обкладки, расположенные параллельно, с тонкой прослойкой воздуха между ними. Когда заряды пластин противоположны по знаку, электрическое поле оказывается сосредоточено внутри конденсатора и почти не взаимодействует с внешним миром, что позволяет накапливать на пластинах заряд. Для описания работы, которую нужно затратить, чтобы разделить положительные и отрицательные заряды и полностью зарядить конденсатор, вводится понятие энергии.

Энергия заряженного конденсатора равна работе внешних сил, затраченной, чтобы зарядить его.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Где сосредоточена, в каких единицах измеряется

Вся энергия конденсатора сосредоточена в электрическом поле его пластин. Единица измерения СИ — джоуль.

Чему равна энергия заряженного конденсатора

Согласно закону сохранения энергии, энергия заряженного конденсатора равна работе, которую совершит электрическое поле при сближении пластин вплотную.

По какой формуле можно найти

Основная характеристика поля, напряженность, создаваемая одной из пластин, равна половине напряженности поля во всем конденсаторе. Заряд q, распределенный по поверхности одной пластины, находится в однородном электрическом поле другой. Потенциальную энергию заряда можно найти по формуле:

(W_п;=;qfrac E2d)

где Е — напряженность поля во всем конденсаторе, а d — расстояние между пластинами.

В этой формуле могут использоваться другие известные величины, например, разность потенциалов между пластинами, обозначаемая буквой U. Чтобы вычислить ее, нужно умножить напряженность поля Е на расстояние между пластинами d. Тогда формула для вычисления энергии будет иметь вид:

(W_п;=;frac{qU}2)

Электроемкость изолированного проводника С равна отношению изменения заряда q к изменению потенциала проводника (varphi). Ее можно найти по формуле:

(С;=;frac qU)

Таким образом, для решения задач можно использовать три выражения:

(W_п;=;frac{qU}2;=;frac{q^2}{2C};=;frac{CU^2}2)

Эти формулы справедливы для любого конденсатора, не только для плоского. Если малыми порциями (-triangle q) переносить отрицательный заряд с одной пластины на другую, поле внутри конденсатора будет совершать работу. Если порции заряда малы, для простоты расчетов можно предположить, что напряжение между пластинами не меняется. Тогда работа:

(triangle А = -triangle qU;=;-frac1Cqtriangle q)

(triangle W_п;=;frac1Cqtriangle q)

Построив график зависимости (;frac qC) от (q), мы видим, что приращение энергии численно равно площади прямоугольника (abcd) со сторонами (;frac qCtriangle q). Полное изменение энергии (W_п )будет равняться площади треугольника OBD.

Следовательно, (W_{п;}=;frac{OD;times;DB}2;=;frac{q^2}{2C}).

График энергии конденсатора

 

Применение конденсаторов

Емкость конденсатора не слишком велика, но энергия при разрядке отдается почти мгновенно. Свойство конденсаторов быстро выдавать импульс большой мощности находит применение в лампах-вспышках для фотографирования, электромагнитных ускорителях, импульсных лазерах.Примером может служить генератор Ван де Граафа, позволяющий создавать в лабораторных условиях напряжение в миллионы вольт, чтобы моделировать разряды молний. Также конденсаторы используют в радиотехнике.

Существует тип компьютерных клавиатур, целиком состоящий из конденсаторов под каждой клавишей, при нажатии которой его пластины сближаются. Электронная схема, к которой они подсоединены, распознает, какую клавишу нажали, и передает эту информацию дальше.

Насколько полезной была для вас статья?

Рейтинг: 5.00 (Голосов: 1)

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»

Текст с ошибкой:

Расскажите, что не так

Поиск по содержимому

Электрическая
ёмкость —
характеристика проводника, мера его
способности накапливать электрический
заряд.
В теории электрических цепей ёмкостью
называют взаимную ёмкость между двумя
проводниками; параметр ёмкостного
элемента электрической схемы,
представленного в виде двухполюсника.
Такая ёмкость определяется как отношение
величины электрического заряда к разности
потенциалов между
этими проводниками.

В системе СИ ёмкость
измеряется в фарадах.
В системе СГС в сантиметрах.

Для одиночного
проводника ёмкость равна отношению
заряда проводника к его потенциалу в
предположении, что все другие
проводники бесконечно удалены
и что потенциал бесконечно удалённой
точки принят равным нулю. В математической
форме данное определение имеет вид

где  — заряд,  —
потенциал проводника.

Ёмкость определяется
геометрическими размерами и формой
проводника и электрическими свойствами
окружающей среды (еёдиэлектрической
проницаемостью)
и не зависит от материала проводника.
К примеру, ёмкость проводящего шара
радиуса R равна
(в системе СИ):

Понятие ёмкости
также относится к системе проводников,
в частности, к системе двух проводников,
разделённых диэлектриком —конденсатору.
В этом случае взаимная
ёмкость этих
проводников (обкладок конденсатора)
будет равна отношению заряда, накопленного
конденсатором, к разности потенциалов
между обкладками. Для плоского конденсатора
ёмкость равна:

где S —
площадь одной обкладки (подразумевается,
что они равны), d —
расстояние между обкладками, ε — относительная
диэлектрическая проницаемость среды
между обкладками, ε0 =
8.854·10−12 Ф/м
— электрическая
постоянная.

Конденса́тор (от лат. condensare —
«уплотнять», «сгущать») — двухполюсник с
определённым значением ёмкости и
малой омической проводимостью;
устройство для накопления заряда и
энергии электрического поля. Конденсатор
является пассивным электронным
компонентом. Обычно состоит из двух
электродов в форме пластин
(называемых обкладками),
разделённыхдиэлектриком,
толщина которого мала по сравнению с
размерами обкладок.

Виды конденсаторов:
1.
по виду диэлектрика: воздушные, слюдяные,
керамические, электролитические
2. по
форме обкладок: плоские, сферические.
3.
по величине емкости: постоянные,
переменные (подстроечные).

Электроемкость
плоского конденсатора

где
S – площадь пластины (обкладки) конденсатора
d
– расстояние между пластинами
eо –
электрическая постоянная
e –
диэлектрическая проницаемость диэлектрика

Включение
конденсаторов в электрическую цепь

параллельное

последовательное

ЭНЕРГИЯ ЗАРЯЖЕННОГО
КОНДЕНСАТОРА

Конденсатор – это
система заряженных тел и обладает
энергией.
Энергия любого конденсатора:

где
С – емкость конденсатора
q – заряд
конденсатора
U – напряжение на обкладках
конденсатора
Энергия конденсатора
равна работе, которую совершит
электрическое поле при сближении пластин
конденсатора вплотную,
или равна
работе по разделению положительных и
отрицательных зарядов , необходимой
при зарядке конденсатора.

ЭНЕРГИЯ ЭЛЕКТРИЧЕСКОГО
ПОЛЯ КОНДЕНСАТОРА

Энергия конденсатора
приблизительно равна квадрату
напряженности эл. поля внутри
конденсатора.
Плотность энергии эл.
поля конденсатора:

13.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Любой конденсатор — система, которая может запасать энергию в виде заряда, сохранённого на обкладках конденсатора. Попробуем просчитать энергию плоского конденсатора.

Для зарядки конденсатора нужно совершить работу. Эту работу за нас совершает электрическое поле. Энергия заряженного конденсатора в идеальном случае численно равна работе электростатического поля:

displaystyle {{E}_{p}}=A=qEd (1)

Напряжённость поля внутри конденсатора можем выразить в виде:

displaystyle E=frac{q}{varepsilon {{varepsilon }_{0}}S} (2)

  • где

Однако при зарядке конденсатора заряд необходимо загнать только на одну пластину, таким образом, напряжённость нужно брать только от одной пластины:

displaystyle E=frac{q}{2varepsilon {{varepsilon }_{0}}S} (3)

Подставим (3) в (1):

displaystyle {{E}_{p}}=qfrac{q}{2varepsilon {{varepsilon }_{0}}S}d=frac{{{q}^{2}}d}{2varepsilon {{varepsilon }_{0}}S} (4)

Вспомним электроёмкость плоского конденсатора:

displaystyle C=frac{varepsilon {{varepsilon }_{0}}S}{d} (5)

Откуда:

displaystyle varepsilon {{varepsilon }_{0}}S=Cd (6)

Подставим (6) в (4):

displaystyle {{E}_{p}}=frac{{{q}^{2}}d}{2Cd}=frac{{{q}^{2}}}{2C} (7)

 Соотношение (7) можно адаптировать под условия задачи, используя определение электроёмкости:

displaystyle C=frac{q}{U} (8)

Тогда подставим (8) в (7):

displaystyle {{E}_{p}}=frac{{{q}^{2}}U}{2q}=frac{qU}{2} (9)

Или, выделив из (8) displaystyle q и подставив в (7), получим:

displaystyle {{E}_{p}}=frac{{{q}^{2}}}{2C}=frac{{{(CU)}^{2}}}{2C}=frac{C{{U}^{2}}}{2} (10)

Тогда, совместив все формы записи энергии:

displaystyle {{E}_{p}}=frac{{{q}^{2}}}{2C}=frac{C{{U}^{2}}}{2}=frac{qU}{2} (11)

Вывод: Для задачи с энергией конденсатора достаточно выбрать форму записи энергии (11), исходя из условий задачи.

Энергия конденсатора

Господа, всем приветище! Сегодня речь пойдет про энергию конденсаторов. Внимание, сейчас будет спойлер: конденсатор может накапливать в себе энергию. Причем иногда очень большую. Что? Это не спойлер, это и так было всем очевидно? Здорово если так! Тогда поехали в этом более подробно разбираться!

В прошлой статье мы пришли к выводу, что заряженный конденсатор, отсоединенный от источника напряжения, может сам в течении некоторого времени (пока не разрядится) давать некоторый ток. Например, через какой-то резистор. По закону Джоуля-Ленца если через резистор течет ток, то на нем выделяется тепло. Тепло – значит, энергия. И берется эта самая энергия из конденсатора – больше, собственно, неоткуда. Значит, в конденсаторе может хранится некоторая энергия. Итак, физика процессов более-менее понятна, поэтому теперь давайте поговорим, как это все описать математически. Потому что одно дело все описать на словах – это круто, замечательно, это должно быть, но в жизни часто надо что-то рассчитать и тут уже обычных слов не достаточно.

Для начала давайте вспомним определение работы из механики. Работа A силы F это произведение этой самой силы F на вектор перемещения s.

Полагаю, что механику вы изучали когда-то и это знаете . Страшные значки векторов нужны только в случае, если направление силы не совпадает с перемещением: вроде случая, когда сила тянет строго прямо, а перемещение идет под каким-то углом к силе. Такое бывает, например, когда груз перемещается по наклонной плоскости. Если же направление силы и перемещения совпадают, то можно смело отбросить вектора и просто перемножать силу на длину пути, получая таким образом работу:

Вспомним теперь статью про закон Кулона. Мы там получили замечательную формулу, которую сейчас самое время вспомнить:

То есть, если у нас есть электрическое поле с напряженностью Е и мы в него помещаем некоторый заряд q, то на этот заряд будет действовать сила F, которую можно рассчитать по этой формуле.

Нам никто не мешает подставить эту формулу в чуть выше написанную формулу для работы. И таким образом найти работу, которую совершает поле при перемещении в нем заряда q на расстояние s. Будем полагать, что мы перемещаем наш заряд q точно по направлению силовых линий поля.  Это позволяет использовать формулу работы без векторов:

Теперь, господа, внимание. Напоминаю одну важную штуку из той же механики. Есть такой особый класс сил, которые называются потенциальные. Если говорить упрощенным языком, то для них верно утверждение, что если эта сила на каком-то отрезке пути совершила работу А, то это значит, что в начале этого пути у тела, над которым совершалась работа, энергия была на это самое А больше, чем в конце. То есть на сколько поработали, на столько и изменилась потенциальная энергия. Работа потенциальных сил не зависит от траектрии и определяется только начальной и конечной точкой. А на замнкнутом пути она вообще равна нулю. Как раз-таки сила электрического поля относится к этому классу сил.

Вот мы помещаем наш зарядик q в поле. Он под действием этого поля перемещается на некоторое расстояние от точки С до точки D. Пусть для определенности в точке D энергия заряда будет равна 0. При этом перемещении поле совершает работу А. Из этого следует, что в начале пути (в точке C) наш зарядик обладал некоторой энергией W=A. То есть, мы можем записать

Теперь самое время рисовать картинки. Взглянем на рисунок 1. Это немного упрощенная иллюстрация физики процессов плоского конденсатора. Более полное мы рассматривали это в прошлый раз.

Рисунок 1 – Плоский конденсатор

Давайте теперь чуть-чуть искривим свое сознание и глянем на наш конденсатор по-другому, чем раньше. Давайте предположим, что у нас за основу взята, например, синяя пластина. Она создает некоторое поле с некоторой напряженностью. Безусловно, и красная пластина тоже создает поле, но в данный момент это не интересно. Давайте смотреть на красную пластину, как на некоторый заряд +q, расположенный в поле синей пластины. И сейчас мы попробуем применить все вышеописанное к красной пластине как будто это и не пластина вовсе, а просто некоторый заряд +q. Вот так вот хитро. Почему, собственно, нет? Возможно, вы скажите – как же так, раньше мы везде исходили из того, что заряды у нас точечные, а тут – целая большая пластина. Она как-то на точку не совсем тянет. Спокойствие, господа. Никто нам не мешает разбить красную пластину на огромную кучу маленьких частичек, каждую из которых можно считать точечным зарядом Δq. Тогда уже можно без проблем применять все вышеописанное. И если мы выполним все расчеты сил, напряженностей, энергий и прочего для вот таких вот отдельных Δq и потом сложим результаты между собой, то получится, что мы зря так переусердствовали – результат будет ровно таким же, как если бы мы просто при расчетах брали заряд +q. Кто хочет – может проверить, я только за . Однако мы будем сразу работать по упрощенной схеме. Хотелось бы только отметить, что это верно для случая, когда поле у нас однородно и заряды по всем пластинам распределены равномерно. В действительности это не всегда так, однако такое упрощение позволяет существенно облегчить все расчеты и избежать всяких градиентов и интегралов без существенного вреда для практики.

Итак, вернемся к рисунку 1. На нем показано, что между обкладками конденсатора существует поле с некоторой напряженностью Е. Но мы договорились сейчас разделить роли обкладок – синяя у нас источник поля, а красная – заряд в поле. Какое же поле создает одна синяя обкладка отдельно от красной? Какова его напряженность? Очевидно, что она в два раза меньше общей напряженности. Почема это так? Да потому, что если забыть про нашу абстракцию (типа красная пластина и не пластина вовсе, а просто заряд), то в результирующую напряженность Е вносят одинаковый вклад обе обкладки – и красная, и синяя: каждая по Е/2. В результате суммы этих Е/2 как раз и получается та самая Е, которая у нас на картинке. Таким образом (отбрасывая вектора), можно записать

Теперь посчитаем, если можно так выразиться, потенциальную энергию красной обкладки в поле синей обкладки. Заряд мы знаем, напряженность мы знаем, расстояние между обкладками тоже знаем. Поэтому смело записываем

Идем дальше. На деле же никто не мешает поменять местами красную и синюю обкладки. Давайте рассуждать наоборот. Будем рассматривать теперь красную обкладку как источник поля, а синюю – как некоторый заряд –q в этом поле. Думаю, даже без проведения расчета будет очевидно, что результат будет точно такой же. То есть энергия красной пластины в поле синей пластины равна энергии синей пластины в поле красной пластины. И, как вы возможно уже догадались, это и есть энергия конденсатора. Да, вот по этой самой формуле можно произвести расчет энергии заряженного конденсатора:

Слышу, как мне уже кричат: стоп, стоп, опять ты втираешь мне какую-то дичь! Ну ладно, расстояние между пластинами я еще как-то смогу измерить. Но меня почему-то опять заставляют считать заряд, что не понятно как сделать, да еще и напряженность надо знать, а чем я ее померяю?! Мультиметр вроде как не умеет это делать! Все верно, господа, сейчас мы займемся преобразованиями, которые позволят вам измерить энергию конденсатора всего лишь с применением обыкновенного мультиметра.

Давайте сперва избавимся от напряженности. Для этого вспомним замечательную формулу, которая связывает напряженность с напряжение:

Да, напряжение между двумя точками в поле равно произведению напряженности этого поля на расстояние между этими двумя точками. Итак, подставляя это полезнейшее выражение в формулу для энергии, получаем

Уже легче, напряженность ушла. Но остался еще заряд, который не понятно как мерить. Что бы от него избавиться, давайте вспомним формулу емкости конденсатора из предыдущей статьи:

Да, для тех, кто забыл, напоминаю, что емкость определяется как отношение этого злополучного заряда, накопленного конденсатором, к напряжению на конденсаторе. Давайте из этой формулы выразим заряд q и подставим его в формулу энергии конденсатора. Получаем

Вот это уже дельная формула, для энергии заряженного конденсатора! Если нам нужно узнать, какая энергия запасена в конденсаторе с емкостью С, заряженного до напряжения U, мы вполне можем это сделать по вот этой вот формуле. Емкость С обычно пишется на самом конденсаторе или на его упаковке, а напряжение всегда можно измерить мультиметром. Из формулы видно, что энергии в конденсаторе тем больше, чем больше емкость самого конденсатора и напряжение на нем. Причем энергия растет прямо пропорционально квадрату напряжения. Это важно помнить. Увеличение напряжения гораздо быстрее приведет к росту энергии, запасенной в конденсаторе, чем увеличение его емкости.

Для особых любителей зарядов можно из формулы определения емкости выразить не заряд, а напряжение и подставить его в формулу для энергии конденсатора. Таким образом, получаем еще одну формулу энергии

Используется эта формула довольно редко, а на практике вообще не припомню, что б по ней что-то считал, но раз она есть, то путь тут тоже будет для полноты картины. Самая ходовая формула это средняя.

Давайте для интереса произведем некоторые расчеты. Пусть у нас есть вот такой вот конденсатор

Рисунок 2 – Конденсатор

И давайте мы его зарядим до напряжения, скажем, 8000 В. Какая энергия будет запасена в таком конденсаторе? Как мы видим из фотографии, емкость данного конденсатора составляет 130 мкФ. Теперь легко выполнить расчет энергии:

Много это или мало? Безусловно, не мало! Даже очень не мало! Скажем так, разрешенная энергия электрошокеров составляет какие-то там смешные единицы джоулей, а тут их тысячи! Принимая во внимание высокое напряжение (8кВ) можно смело утверждать, что для человека контакт с таким заряженным конденсатором скорее всего закончится очень и очень печально. Следует соблюдать особую осторожность при больших напряжениях и энергиях! У нас был случай, когда произошло короткое замыкание нескольких таких вот конденсаторов, соединенных параллельно и заряженных до нескольких киловольт. Господа, это было зрелище не для слабонервных! Бабахнуло так, что у меня потом в ушах пол дня звенело! А на стенах лаборатории осела медь от расплавленных проводов! Спешу успокоить, никто не пострадал, но это стало хорошим поводом дополнительно подумать над способами отвода такой гигантской энергии в случае нештатных ситуаций.

Кроме того, господа, важно всегда помнить, что конденсаторы блоков питания приборов тоже не могут мгновенно разрядиться после отключения прибора от сети, хотя там, безусловно, должно быть какие-то цепи, предназначенные для их разряда. Но должны быть, это не значит, что они там точно есть . Поэтому в любом случае после отключения любого прибора от сети, прежде чем лезть к нему внутрь, лучше подождать пару минут для разряда всех кондеров. И потом, после снятия крышки, прежде чем лапками хвататься за все подряд, следует сначала померить напряжение на силовых накопительных конденсаторах и при необходимости выполнить их принудительный разряд каким-нибудь резистором. Можно, конечно, просто отверткой замкнуть их выводы, если емкости не слишком большие, но такое делать крайне не рекомендуется!

Итак, господа, сегодня мы познакомились с различными методами расчета энергии, запасенной в конденсаторе, а также обсудили, как эти расчеты можно выполнять на практике. На этом потихоньку закругляемся. Всем вам удачи, и до новых встреч!

Вступайте в нашу группу Вконтакте

Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.

Энергия заряженного конденсатора


Энергия заряженного конденсатора

3.9

Средняя оценка: 3.9

Всего получено оценок: 80.

3.9

Средняя оценка: 3.9

Всего получено оценок: 80.

Конденсатор способен накапливать на своих обкладках некоторый заряд. Для создания заряда необходимо совершить работу, передав конденсатору энергию. Выведем формулу энергии заряженного конденсатора.

Поле заряженного конденсатора

Рассмотрим плоский конденсатор, состоящий из двух пластин. При заряде на этих пластинах (обкладках) накапливаются заряды разных знаков. Число носителей заряда на обкладках конденсатора одинаково, и они свободно распределяются по обкладкам. Следовательно, распределение заряда на обкладках будет равномерным и равным. Силовые линии электрического поля выходят из положительных зарядов, и приходят в отрицательные. Значит, их распределение будет равномерным. Таким образом, поле заряженного конденсатора можно считать однородным:

Рис. 1. Электрическое поле внутри плоского конденсатора.

Потенциальная энергия заряда в однородном поле

Поскольку поле заряженного конденсатора однородно, то легко найти работу по перемещению зарядов в этом поле. На пробный заряд $q$, помещенный в поле напряженностью $E$ действует сила:

$$overrightarrow F=qoverrightarrow E$$

А значит, на пути $S$, лежащем вдоль силовой линии, будет совершена работа:

$$A=qES$$

Поскольку электрические силы консервативны, то важно, чтобы начальная и конечная точка перемещения заряда лежали на одной силовой линии, траектория пути роли не играет. Вся совершенная работа равна разности потенциальных энергий в начальной и конечной точках.

Рис. 2. Консервативные силы в физике.

Приняв потенциальную энергию в начальной точке за нуль, получаем, что потенциальная энергия равна совершенной работе по перемещению заряда вдоль силовой линии однородного электрического поля:

$$W=qES$$

Энергия заряженного конденсатора

В заряженном конденсаторе электрическое поле напряженностью $E$ создается зарядами на обоих обкладках. Таким образом, напряженность поля одной обкладки равна $Eover 2$. И в этом поле находится заряд $q$ другой пластины. Расстояние между обкладками $d$. Следовательно, потенциальная энергия такого конденсатора равна:

$$W={qEdover 2}$$

Учитывая, что $Ed=U$, получим:

$$W={qUover 2}$$

Таким образом, энергия заряженного конденсатора прямо пропорциональна сообщенному заряду и напряжению между обкладками. Для конкретного конденсатора эти две величины связаны через электроемкость:

$$С={qover U}$$

Поскольку на практике электроемкость конденсатора чаще всего известна, в формуле энергии удобно заряд выразить через нее. Окончательно получим:

$$W={CU^2over 2}$$

При выводе данной формулы предполагалось, что конденсатор плоский, и его электрическое поле однородно. Однако, формула справедлива для любого конденсатора любой формы.

Плоский, сферический и цилиндрический конденсаторы

Рис. 3. Плоский, сферический и цилиндрический конденсаторы.

Конденсатор, поле которого неоднородно, можно представить в виде бесконечного множества элементарных конденсаторов, соединенных параллельно, поле которых хотя и различно, но в пределах каждого элементарного конденсатора однородно. Емкость параллельных конденсаторов равна сумме составляющих емкостей. А поскольку при параллельном соединении напряжение на всех элементарных конденсаторах будет одно и то же, то в формуле энергии можно заменить значение электроемкости суммой элементарных емкостей. Формула останется справедливой.

Фактически, если поле конденсатора неоднородно, это повлияет лишь на распределение зарядов по обкладкам. Общая энергия при сохранении общей емкости и общего напряжения останется неизменной.

Заключение

Что мы узнали?

Поскольку заряд в электрическом поле обладает некоторой потенциальной энергией, то заряженный конденсатор также обладает энергией. Энергия заряженного конденсатора зависит только от его емкости и от напряжения на нем. Форма конденсатора и распределение поля внутри него роли не играет.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

    Пока никого нет. Будьте первым!

Оценка доклада

3.9

Средняя оценка: 3.9

Всего получено оценок: 80.


А какая ваша оценка?

Добавить комментарий