Как найти энергию поступательного движения молекул газа

Средняя
кинетическая энергия поступательного
движения молекулы идеального газа
(воспользуемся формулой 2.10)

Екин.
пост.
=


=

=

Екин.
пост.

=


(2.11)

Поступательное
движение молекул может происходить по
осям «Х», «Y»,
«Z»
– есть три поступательных степени
свободы. На одну степень свободы
приходится средняя кинетическая энергия.

Екин.
=

(2.12)

Если
у молекулы i
степеней свободы, средняя кинетическая
энергия молекулы

Екин.
=

kТ (2.13)

i
– число степеней свободы, число независимых
координат, определяющих положение тела
в пространстве.

Молекулу
одноатомного идеального газа (например,
инертного газа) можно считать материальной
точкой с тремя степенями свободы (x,
y, z) поступательного движения.

Для
молекулы двухатомного газа можно принять
с некоторыми допущениями модель жесткой
«гантели» с тремя поступательными
степенями свободы (x,
y, z) и двумя вращательными (вокруг оси Y
и оси Z).
Вращение вокруг оси X
(см. рисунок в таблице 2.3) не учитывается,
поскольку поперечные размеры «гантели»
принимаются пренебрежимо малыми. Итого
число степеней свободы молекулы
двухатомного газа i
= 5 (3 поступательных + 2 вращательных).

У
молекулы трехатомного и многоатомного
газа, если принять модель жёсткого
трехмерного тела (атомы и молекулы не
расположены на одной прямой), число
степеней свободы i
= 3 поступательных + 3 вращательных = 6

В
этом случае учитывается три вращательных
степени свободы: вокруг оси x,
y и z.

Соответственно
средние кинетические энергии молекул
будут равны:

Для
молекулы одноатомного газа –
kТ,

Двухатомного


kТ,

Трех-
и многоатомного – 3kТ
(см. таблицу 2.3).

Таблица
2.3. Средние кинетические энергии молекул
идеального газа

Газ

рисунок

Число
степеней свободы

Средняя
кинетическая энергия молекулы газа,
Екин.

Одноатомный

3
поступательных



Двухатомный

3
пост + 2 вращ. = 5


Трехатомный

3
пост + 3 вращ. = 6


kТ=
3kТ

Внутренняя
энергия идеального тела U
(см 1.2) складывается из суммарной
кинетической энергии движения молекул
относительно друг друга Екин
i
, суммарной потенциальной энергии
взаимодействия молекул друг с другом
и энергии U0
внутримолекулярных, внутриатомных,
внутриядерных движений и взаимодействий
и т. д. и т. д.

Будем
считать, что в изучаемых нами в этой
главе молекулярных явлениях эта часть
внутренней энергии U0
не меняется.

Итак,
внутренняя энергия идеального газа:


(2.14)

Но
так как в модели идеального газа
пренебрегаем взаимодействиями молекул
на расстоянии


0 и остается

U
= 
Екин
i
+
U0
(2.15)

а

Екин
i
=
kT,
где

N
– число молекул,



kT
– средняя кинетическая энергия одной
молекулы (согласно 2.13).

Поэтому

U
=
kT
+ U0

А
так как

N
= NАm/М,

U
=
NА
kT
+ U0

Учтя,
что

NАk
= R,
получим для внутренней энергии идеального
газа

U
=

R
T
+ U0
(2.16)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #

    12.02.201514.57 Mб29Уход за хирургическими больными. Буянов В.М.pdf

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
Определение

Идеальный газ — газ, удовлетворяющий трем условиям:

  • Молекулы — материальные точки.
  • Потенциальная энергия взаимодействия молекул пренебрежительно мала.
  • Столкновения между молекулами являются абсолютно упругими.

Реальный газ с малой плотностью можно считать идеальным газом.

Измерение температуры

Температуру можно измерять по шкале Цельсия и шкале Кельвина. По шкале Цельсия за нуль принимается температура, при которой происходит плавление льда. По шкале Кельвина за нуль принимается абсолютный нуль — температура, при котором давление идеального газа равно нулю, и его объем тоже равен нулю.

Обозначение температуры

  1. По шкале Цельсия — t. Единица измерения — 1 градус Цельсия (1 oC).
  2. По шкале Кельвина — T. Единица измерения — 1 Кельвин (1 К).

Цена деления обеих шкал составляет 1 градус. Поэтому изменение температуры в градусах Цельсия равно изменению температуры в Кельвинах:

∆t = ∆T

При решении задач в МКТ используют значения температуры по шкале Кельвина. Если в условиях задачи температура задается в градусах Цельсия, нужно их перевести в Кельвины. Это можно сделать по формуле:

T = t + 273

Если особо важна точность, следует использовать более точную формулу:

T = t + 273,15

Пример №1. Температура воды равна oC. Определить температуру воды в Кельвинах.

T = t + 273 = 2 + 273 = 275 (К)

Основное уравнение МКТ идеального газа

Давление идеального газа обусловлено беспорядочным движением молекул, которые сталкиваются друг с другом и со стенками сосуда. Основное уравнение МКТ идеального газа связывает давление и другие макропараметры (объем, температуру и массу) с микропараметрами (массой молекул, скоростью молекул и кинетической энергией).

Основное уравнение МКТ

Давление идеального газа пропорционально произведению концентрации молекул на среднюю кинетическую энергию поступательного движения молекулы.

p=23nEk

p — давление идеального газа, n — концентрация молекул газа, Ek — средняя кинетическая энергия поступательного движения молекул.

Выражая физические величины друг через друга, можно получить следующие способы записи основного уравнения МКТ идеального газа:

p=13m0nv2

m0— масса одной молекулы газа;

n — концентрация молекул газа;

v2 — среднее значение квадрата скорости молекул газа.

Среднее значение квадрата скорости не следует путать со среднеквадратичной скоростью v, которая равна корню из среднего значения квадрата скорости:

v=v2

p=13ρv2

ρ — плотность газа

p=nkT

k — постоянная Больцмана (k = 1,38∙10–3 Дж/кг)

T — температура газа по шкале Кельвина

Пример №2. Во сколько раз уменьшится давление идеального одноатомного газа, если среднюю кинетическую энергию теплового движения молекул и концентрацию уменьшить в 2 раза?

Согласно основному уравнению МКТ идеального газа, давление прямо пропорционально произведению средней кинетической энергии теплового движения молекул и концентрации его молекул. Следовательно, если каждая из этих величин уменьшится в 2 раза, то давление уменьшится в 4 раза:

Следствия из основного уравнения МКТ идеального газа

Через основное уравнение МКТ идеального газа можно выразить скорость движения молекул (частиц газа):

v=3kTm0=3RTM

R — универсальная газовая постоянная, равная произведения постоянной Авогадро на постоянную Больцмана:

R=NAk=8,31 Дж/К·моль

Температура — мера кинетической энергии молекул идеального газа:

Ek=32kT

T=2Ek3k

Полная энергия поступательного движения молекул газа определяется формулой:

E=NEk

Пример №3. При уменьшении абсолютной температуры на 600 К средняя кинетическая энергия теплового движения молекул неона уменьшилась в 4 раза. Какова начальная температура газа?

Запишем формулу, связывающую температуру со средней кинетической энергией теплового движения молекул, для обоих случаев, с учетом что:

Следовательно:

Составим систему уравнений:

Отсюда:

Задание EF19012

На графике представлена зависимость объёма постоянного количества молей одноатомного идеального газа от средней кинетической энергии теплового движения молекул газа. Опишите, как изменяются температура и давление газа в процессах 1−2 и 2−3. Укажите, какие закономерности Вы использовали для объяснения.


Алгоритм решения

1.Указать, в каких координатах построен график.

2.На основании основного уравнения МКТ идеального газа и уравнения Менделеева — Клапейрона выяснить, как меняются указанные физические величины во время процессов 1–2 и 2–3.

Решение

График построен в координатах (V;Ek). Процесс 1–2 представляет собой прямую линию, исходящую из начала координат. Это значит, что при увеличении объема растет средняя кинетическая энергия молекул. Но из основного уравнения МКТ идеального газа следует, что мерой кинетической энергии молекул является температура:

T=2Ek3

Следовательно, когда кинетическая энергия молекул растет, температура тоже растет.

Запишем уравнение Менделеева — Клапейрона:

pV=νRT

Так как количество вещества одинаковое для обоих состояния 1 и 2, запишем:

νR=p1V1T1=p2V2T2

Мы уже выяснили, что объем и температура увеличиваются пропорционально. Следовательно, давление в состояниях 1 и 2 равны. Поэтому процесс 1–2 является изобарным, давление во время него не меняется.

Процесс 2–3 имеет график в виде прямой линии, перпендикулярной кинетической энергии. Так как температуры прямо пропорциональна кинетической энергии, она остается постоянной вместе с этой энергией. Следовательно, процесс 2–3 является изотермическим, температура во время него не меняется. Мы видим, что объем при этом процессе уменьшается. Но так как объем и давление — обратно пропорциональные величины, то давление на участке 2–3 увеличивается.

Ответ:

 Участок 1–2 — изобарный процесс. Температура увеличивается, давление постоянно.

 Участок 2–3 — изотермический процесс. Температура постоянно, давление увеличивается.

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17560

Первоначальное давление газа в сосуде равнялось р1. Увеличив объём сосуда, концентрацию молекул газа уменьшили в 3 раза, и одновременно в 2 раза увеличили среднюю энергию хаотичного движения молекул газа. В результате этого давление р2 газа в сосуде стало равным

Ответ:

а) 13p1

б) 2p1

в) 23p1

г) 43p1


Алгоритм решения

1.Записать исходные данные.

2.Записать основное уравнение МКТ идеального газа.

3.Составить уравнения для состояний 1 и 2.

4.Выразить искомую величину.

Решение

Исходные данные:

 Начальное давление: p0.

 Начальная концентрация молекул: n1 = 3n.

 Конечная концентрация молекул: n2 = n.

 Начальная средняя энергия хаотичного движения молекул: Ek1 = Ek.

 Конечная средняя энергия хаотичного движения молекул: Ek2 = 2Ek.

Основное уравнение МКТ:

p=23nEk

Составим уравнения для начального и конечного состояний:

p1=23n1Ek1=233nEk=2nEk

p2=23n2Ek2=23n2Ek=43nEk

Отсюда:

nEk=p12=3p24

p2=4p16=23p1

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18416

Цилиндрический сосуд разделён неподвижной теплоизолирующей перегородкой. В одной части сосуда находится кислород, в другой – водород, концентрации газов одинаковы. Давление кислорода в 2 раза больше давления водорода. Чему равно отношение средней кинетической энергии молекул кислорода к средней кинетической энергии молекул водорода?


Алгоритм решения

1.Записать исходные данные.

2.Записать основное уравнение МКТ идеального газа.

3.Составить уравнения для обоих газов.

4.Найти отношение средней кинетической энергии молекул кислорода к средней кинетической энергии молекул водорода.

Решение

Анализируя условия задачи, можно выделить следующие данные:

 Концентрации кислорода и водорода в сосуде равны. Следовательно, n1 = n2 = n.

 Давление кислорода вдвое выше давления водорода. Следовательно, p1 = 2p, а p2 = p.

Запишем основное уравнение идеального газа:

p=23nEk

Применим его для обоих газов и получим:

p1=23n1Ek1 или 2p=23nEk1 

p2=23n2Ek2 или p=23nEk2 

Выразим среднюю кинетическую энергию молекул газа из каждого уравнения:

Ek1=3pn

Ek2=3p2n

Поделим уравнения друг на друга и получим:

Ek1Ek2=3pn·2n3p=2

Ответ: 2

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18824

В одном сосуде находится аргон, а в другом – неон. Средние кинетические энергии теплового движения молекул газов одинаковы. Давление аргона в 2 раза больше давления неона. Чему равно отношение концентрации молекул аргона к концентрации молекул неона?


Алгоритм решения

1.Записать исходные данные.

2.Записать основное уравнение МКТ идеального газа.

3.Составить уравнения для обоих газов.

4.Найти отношение концентрации молекул аргона к концентрации молекул неона.

Решение

Анализируя условия задачи, можно выделить следующие данные:

 Средние кинетические энергии теплового движения молекул газов одинаковы. Следовательно, Ek1=Ek2=Ek.

 Давление аргона в 2 раза больше давления неона. Следовательно, p1 = 2p, а p2 = p.

Запишем основное уравнение идеального газа:

p=23nEk

Применим его для обоих газов и получим:

p1=23n1Ek1 или 2p=23n1Ek 

p2=23n2Ek2 или p=23n2Ek 

Выразим концентрации молекул газа из каждого уравнения:

n1=3pEk

n2=3p2Ek

Поделим уравнения друг на друга и получим:

n1n2=3pEk·2Ek3p=2

Ответ: 2

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 10.8k

Представляем формулу основного уравнения молекулярно-кинетической теории (МКТ) газов:

(где n=NV – это концентрация частиц в газе, N – это число частиц, V – это объем газа, 〈E〉 – это средняя кинетическая энергия поступательного движения молекул газа, υkv – это средняя квадратичная скорость, m0 – это масса молекулы) связывает давление – макропараметр, достаточно просто измеряющийся с такими микропараметрами, как средняя энергия движения отдельной молекулы (или в другом выражении), как масса частицы и ее скорость. Но находя только лишь давление, нельзя установить кинетические энергии частиц отдельно от концентрации. Поэтому для нахождения в полном объеме микропараметров нужно знать еще какую-то физическую величину, связанную с кинетической энергией частиц, составляющих газ. За данную величину можно взять термодинамическую температуру.

Газовая температура

Для определения газовой температуры нужно вспомнить важное свойство, которое сообщает о том, что в условиях равновесия средняя кинетическая энергия молекул в смеси газов одинаковая для различных компонентов данной смеси. Из данного свойства следует то, что если 2 газа в различных сосудах находятся в тепловом равновесии, тогда средние кинетические энергии молекул данных газов одинаковые. Это свойство мы и будем использовать. К тому же в ходе экспериментов доказано, что для любых газов (при неограниченном числе), которые находятся в состоянии теплового равновесия, справедливо следующее выражение:

С учетом вышесказанного, используем (1) и (2) и получаем:

Из уравнения (3) следует, что величина θ, которой мы обозначили температуру, вычисляется в Дж, в чем измеряется также и кинетическая энергия. В лабораторных работах температура в системе измерения вычисляется в кельвинах. Поэтому введем коэффициент, который уберет данное противоречие. Он обозначается k, измеряется в ДжК и равняется 1,38·10-23. Данный коэффициент называется постоянной Больцмана. Таким образом:

Определение 1

θ=kT (4), где T – это термодинамическая температура в кельвинах.

Связь термодинамической температуры и средней кинетической энергией теплового движения молекул газа выражается формулой:

E=32kT (5).

Из уравнения (5) видно, что средняя кинетическая энергия теплового движения молекул прямо пропорциональна температуре газа. Температура является абсолютной величиной. Физический смысл температуры заключается в том, что она, с одной стороны, определяется средней кинетической энергией, которая приходится на 1 молекулу. А с другой стороны, температура – это характеристика системы в целом. Таким образом, уравнение (5) показывает связь параметров макромира с параметрами микромира.

Определение 2

Известно, что температура – это мера средней кинетической энергии молекул.

Можно установить температуру системы, а затем рассчитать энергию молекул.

Абсолютный ноль температур

В условиях термодинамического равновесия все составляющие системы характеризуются одинаковой температурой.

Определение 3

Температура, при которой средняя кинетическая энергия молекул равняется 0, давление идеального газа равняется 0, называется абсолютным нулем температур. Абсолютная температура никогда не является отрицательной.

Пример 1

Необходимо найти среднюю кинетическую энергию поступательного движения молекулы кислорода, если температура T=290 K. А также найти среднюю квадратичную скорость капельки воды диаметра d=10-7 м, взвешенной в воздухе.

Решение

Найдем среднюю кинетическую энергию движения молекулы кислорода по уравнению, связывающему энергию и температуру:

E=32kT (1.1).

Поскольку все величины заданы в системе измерения, проведем вычисления:

E=32·1,38·10-23·10-7=6·10-21 Дж.

Перейдем ко второй части задания. Положим, что капелька, взвешенная в воздухе, – это шар (рисунок 1). Значит, массу капельки можно рассчитать как:
m=ρ·V=ρ·πd36.

Абсолютный ноль температур

Рисунок 1

Найдем массу капельки воды. Согласно справочных материалов, плотность воды в нормальных условиях равняется ρ=1000 кгм3, тогда:

m=1000·3,14610-73=5,2·10-19 (кг).

Масса капельки чрезмерно маленькая, поэтому, сама капелька сравнима с молекулой газа, и тогда можно использовать при расчетах формулу средней квадратичной скорости капли:

E=mυkυ22 (1.2),

где 〈E〉 мы уже установили, а из (1.1) понятно, что энергия не зависит от разновидности газа, а зависит только лишь от температуры. Значит, мы можем применить полученную величину энергии. Найдем из (1.2) скорость:

υkυ=2Em=6·2Eπρd3=32kTπρd3 (1.3).

Рассчитаем:

υkυ=2·6·10-215,2·10-19=0,15 мс

Ответ: Средняя кинетическая энергия поступательного движения молекулы кислорода при заданной температуре равняется 6·10-21 Дж. Средняя квадратичная скорость капельки воды при заданных условиях равняется 0,15 м/с.

Пример 2

Средняя энергия поступательного движения молекул идеального газа равняется 〈E〉, а давление газа p. Необходимо найти концентрацию частиц газа.

Решение

В основу решения задачи положим уравнение состояния идеального газа:

p=nkT (2.1).

Прибавим к уравнению (2.1) уравнение связи средней энергии поступательного движения молекул и температуры системы:

E=32kT (2.2).

Из (2.1) выражаем необходимую концентрацию:

n=pkT 2.3.

Из (2.2) выражаем kT:

kT=23E (2.4).

Подставляем (2.4) в (2.3) и получаем:

n=3p2E

Ответ: Концентрацию частиц можно найти по формуле n=3p2E.

Уравнение состояния идеального газа

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: модель идеального газа, связь между давлением и средней кинетической энергией теплового движения молекул идеального газа, связь температуры газа со средней кинетической энергией его частиц, уравнение p=nkT, уравнение Менделеева—Клапейрона.

Из трёх агрегатных состояний вещества наиболее простым для изучения является газообразное. В достаточно разреженных газах расстояния между молекулами намного больше размеров самих молекул (тогда как в жидкостях и твёрдых телах молекулы «упакованы» весьма плотно).Поэтому силы взаимодействия между молекулами таких газов очень малы.

Для описания разреженных газов в физике используется модель идеального газа. В рамках этой модели делаются следующие допущения.

1. Пренебрегаем размерами молекул. Иными словами, молекулы газа считаются материальными точками.
2. Пренебрегаем взаимодействием молекул на расстоянии.
3. Соударения молекул друг с другом и со стенками сосуда считаем абсолютно упругими.

Таким образом, идеальный газ — это газ, частицы которого являются не взаимодействующими на расстоянии материальными точками и испытывают абсолютно упругие соударения друг с другом и со стенками сосуда.

Средняя кинетическая энергия частиц газа

Оказывается, что ключевую роль в описании идеального газа играет средняя кинетическая энергия его частиц.

Частицы газа двигаются с разными скоростями. Пусть в газе содержится N частиц, скорости которых равны v_1, v_2, ldots, v_N. Масса каждой частицы равна m_0. Кинетические энергии частиц:

E_1=frac{displaystyle m_0 v_1^2}{displaystyle 2 vphantom{1^a}}, E_2=frac{displaystyle m_0 v_2^2 }{displaystyle 2 vphantom{1^a}}, ldots,E_N=frac{displaystyle m_0 v_N^2}{displaystyle 2 vphantom{1^a}}.

Средняя кинетическая энергия E частиц газа это среднее арифметическое их кинетических энергий:

E=frac{displaystyle E_1+E_2+ ldots+E_N}{displaystyle N vphantom{1^a}}= frac{displaystyle 1}{displaystyle N vphantom{1^a}}left ( frac{displaystyle m_0 v_1^2}{displaystyle 2 vphantom{1^a}}+frac{displaystyle m_0 v_2^2}{displaystyle 2 vphantom{1^a}}+ ldots + frac{displaystyle m_0 v_N^2}{displaystyle 2 vphantom{1^a}} right ) =frac{displaystyle m_0}{displaystyle 2 vphantom{1^a}}  frac{displaystyle v_1^2+v_2^2+ ldots v_N^2}{displaystyle N vphantom{1^a}}.

Последний множитель — это средний квадрат скорости, обозначаемый просто v_2:

v_2=frac{displaystyle v_1^2+v_2^2+ ldots v_N^2}{displaystyle N vphantom{1^a}}.

Тогда формула для средней кинетической энергии приобретает привычный вид:

E=frac{displaystyle m_0 v^2}{displaystyle 2 vphantom{1^a}}. (1)

Корень из среднего квадрата скорости называется средней квадратической скоростью:

v=sqrt{ frac{displaystyle v_1^2+v_2^2+ ldots v_N^2}{displaystyle N vphantom{1^a}}}.

Основное уравнение МКТ идеального газа

Cвязь между давлением газа и средней кинетической энергией его частиц называется основным уравнением молекулярно-кинетической теории идеального газа. Эта связь выводится из законов механики и имеет вид:

p= frac{displaystyle 2}{displaystyle 3 vphantom{1^a}} nE.   (2)

где n — концентрация газа (число частиц в единице объёма). С учётом (1) имеем также:

p= frac{displaystyle 1}{displaystyle 3 vphantom{1^a}} m_0 nv^2.   (3)

Что такое m_0n? Произведение массы частицы на число частиц в единице объёма даёт массу единицы объёма, то есть плотность: m_0n= rho. Получаем третью разновидность основного уравнения:

p= frac{displaystyle 1}{displaystyle 3 vphantom{1^a}} rho v^2.   (4)

Энергия частиц и температура газа

Можно показать, что при установлении теплового равновесия между двумя газами выравниваются средние кинетические энергии их частиц. Но мы знаем, что при этом становятся равны и температуры газов. Следовательно, температура газа — это мера средней кинетической энергии его частиц.

Собственно, ничто не мешает попросту отождествить эти величины и сказать, что температура газа — это средняя кинетическая энергия его молекул. В продвинутых курсах теоретической физики так и поступают. Определённая таким образом температура измеряется в энергетических единицах — джоулях.

Но для практических задач удобнее иметь дело с привычными кельвинами. Связь средней кинетической энергии частиц и абсолютной температуры газа даётся формулой:

E= frac{displaystyle 3}{displaystyle 2 vphantom{1^a}} kT,   (5)

где k=1,38 cdot 10^{-23} Дж/К — постоянная Больцмана.

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Уравнение состояния идеального газа» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.05.2023

Условие задачи:

Какова средняя кинетическая энергия поступательного движения молекул газа, если при концентрации молекул 2,65·1025 м-3 давление равно 98,8 кПа?

Задача №4.1.6 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Дано:

(n=2,65 cdot 10^{25}) м-3, (p=98,8) кПа, (E_к-?)

Решение задачи:

Запишем основное уравнение МКТ идеального газа:

[p = frac{1}{3}{m_0}nupsilon _{кв}^2;;;;(1)]

Среднюю кинетическую энергию молекул газа можно определить по формуле:

[{E_к} = frac{{{m_0}upsilon _{кв}^2}}{2}]

С учетом этой формулы, формула (1) примет такой вид:

[p = frac{2}{3}n{E_к}]

Откуда искомая величина (E_к) равна:

[{E_к} = frac{{3p}}{{2n}}]

Задача решена в общем виде, теперь посчитаем численный ответ:

[{E_к} = frac{{3 cdot 98,8 cdot {{10}^3}}}{{2 cdot 2,65 cdot {{10}^{25}}}} = 5,59 cdot {10^{ – 21}};Дж]

В задачнике ответ дан не в Джоулях, а в электрон-Вольтах. Известно, что:

[1;эВ = 1,6 cdot {10^{ – 19}};Дж]

Поэтому:

[{E_к} = 5,59 cdot {10^{ – 21}};Дж = 0,035;эВ]

Ответ: 0,035 эВ.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Смотрите также задачи:

4.1.5 Определить давление водорода, если средняя квадратичная скорость его молекул
4.1.7 Определить давление, при котором 1 м3 газа, имеющий температуру 60 C, содержит
4.1.8 Сколько молекул содержится в 1 л воды?

Добавить комментарий