Все основные формулы по школьной физике, которые помогут для подготовке к ЕГЭ, а также для решения задач в 7, 8, 9, 10 и 11 классах. Все формулы структурированы, что позволит из запомнить гораздо быстрее.
Равномерное движение |
|
S= U∙t, U= S/t, t=S/U | Уравнение движения при равномерном движении?
где U-скорость, t-время, S-расстояние |
x=x0+U0t | Координата при равномерном прямолинейном движении |
Равномерное движение по окружности |
|
T=t/N, T=1/v, Т=2π/ω T=2πR/U, T=2π ∙√(R/a) |
T – период N – количество оборотов |
v=1/T, v=ω/2π, v=U/2πR, v=1/2π ∙√(a/R), v=N/t, v=L/t |
v – частота R – радиус окружности |
ω=2π/Т, ω=2πv, ω=φ/t ω=U/R, ω=√(a/R) |
ω – угловая скорость t – время |
υ=2πR/Т, υ=2πvR, U=ωR U=√(a/R), U=L/t |
U – линейная скорость тела |
a=υ2/R, a=ω2R, a=Uω |
a – центростремительное ускорение |
L=φR | L – длина дуги окружности (φ – угол поворота (в радианах)) |
Равноускоренное движение |
|
X=X0+υ0∙t+(a∙t2)/2 | Уравнение прямолинейного равноускоренного движения |
S=U0t+a∙t2/2 S= (υ2-υ02) /2а S= (υ+υ0) ∙t /2 = Uср∙t |
Расстояние при равноускоренном движении |
υ=υ0+a∙t | Rонечная скорость тела при равноускоренном движении |
a=(υ-υ 0)/t | Ускорение |
U=√(2gh) tпадения=√(2h/g) S=U∙√(2h/g) |
— Падение тела с высоты — Горизонтальный бросок (h-высота падения, g – ускорение свободного падения 9,8м/с2, t-время падения, S-расстояние) |
hmax=U02/2g | Максимальная высота на которую поднимется тело, брошенное вертикально вверх с начальной скоростью U0 |
tподъема=U0/g | Время подъема тела на максимальную высоту |
tполета=2U0/g | Полное время полета (до возвращения в исходную точку) |
Sторм=U02/2a | Тормозной путь тела двигавшегося до начала торможения со скоростью U0 , а затем тормозившего с ускорением а |
U = √(U02+(gt)2) tgβ = Uy/Ux = gt/U0 |
Полная скорость в произвольный момент времени при горизонтальном броске, и угол наклона скорости к горизонту |
hmax=(U0∙sinα)2/2g tподъема=(U0∙sinα)/g |
Бросок с земли на землю под углом к горизонту равным α. Время подъема до высшей точки и максимальная высота |
Sx=Ux∙tполета |
Полное время и дальность полета при броске под углом к горизонту |
Импульс |
|
p=mυ |
Импульс тела |
Ft=∆p |
Импульс силы |
F=∆p/∆t |
Второй закон Ньютона в импульсной форме |
pk=pn |
Закон сохранения импульса: в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется |
Энергия |
|
A=F∙S∙cosα |
Механическая работа (F – сила, S – путь, – угол между направлением движения и силой) |
P=A/t=F∙υ |
Мощность (если мощность переменная, то рассчитывается средняя мощность) |
Eп=mgh |
Потенциальная энергия тела, поднятого над землей |
Eп=kx2/2 |
Потенциальная энергия упруго деформированного тела |
η=Aп/Аз |
Коэффициент полезного действия |
Ek=mυ2/2 |
Кинетическая энергия тела |
Молекулярная физика |
|
ρ=m/V |
Плотность (ρ – его плотность, m – масса вещества, V – объем) |
ν=N/ Na = m/M |
Количество вещества (N – число частиц вещества, содержащееся в массе вещества m, Na – число Авогадро, m0 – масса одной молекулы вещества, M – молярная масса) |
М=m/ν |
Молярная масса |
m0=m/N=M/Na |
Масса одной молекулы вещества |
P=nkT=1/3nm0υ2 |
Основное уравнение молекулярно-кинетической теории идеального газа (p – давление газа, n = N/V – концентрация его молекул, m0 – масса одной молекулы, Uкв – средняя квадратичная скорость) |
Uкв=√(3kT/m0), Uкв=√(3RT/M) |
Cредняя квадратичная скорость |
Ek=3/2∙kT |
Средняя кинетическая энергия поступательного движения одной молекулы (k – постоянная Больцмана, T – абсолютная температура) |
kNa=R |
Связь универсальной газовой постоянной и постоянной Авогадро |
PV=m/M∙RT |
Уравнение состояния идеального газа (уравнение Клапейрона-Менделеева) |
PV=const (m=const и T= const) |
Газовые законы. Закон Бойля-Мариотта (изотермический процесс) |
V/T=const (m=const и p= const) |
Газовые законы. Закон Гей-Люссака (изобарный процесс) |
P/T =const (m=const и V= const) |
Газовые законы. Закон Шарля (изохорный процесс) |
PV/T=const (m=const ) |
Газовые законы. Универсальный газовый закон (Клапейрона) |
V=Vo(1+λt) |
Тепловое расширение газов описывается законом Гей-Люссака. (V – объем жидкости при 0 °С, V – при температуре t , λ – коэффициент объемного расширения жидкости) |
l=lo(1+αt) |
Изменение линейных размеров, площади и объема тела (lo, So , Vo – соответственно длина, площадь поверхности и объем тела при 0 °С, α – коэффициент линейного расширения тела) |
Динамика |
|
Первый закон Ньютона |
Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальные точки, когда на них не действуют никакие силы (или действуют силы взаимно уравновешенные), находятся в состоянии покоя или равномерного прямолинейного движения |
F=ma |
Второй закон Ньютона (F – сила, m – масса, а – ускорение). |
F1-2 = — F2-1 |
Третий закон Ньютона (сила действия равна силе противодействия) |
Fупр = kx |
Сила упругости (k – жесткость пружины, х – величина растяжения (или сжатия) пружины, оно равно разности между конечной и начальной длиной деформируемой пружины) |
Fy=-kx |
Закон Гука |
Fтр.скольжения=Fтр.макс = μТ |
Сила трения скольжения ( μ– коэффициент трения, N – сила реакции опоры.) |
F=mg |
Сила тяжести — Закон Всемирного тяготения (G – гравитационная постоянная, F – сила с которой притягивается тело массой m к телу или планете массой M, r – расстояние между центрами этих тел) |
gh = GM/(Rn+h)2 = |
Ускорение свободного падения на некоторой высоте от поверхности планеты (h – высота над поверхностью планеты) |
U = √(GM/(Rn+h)) |
Скорость спутника на круговой орбите радиусом r = Rn + h |
U=√(gRn) |
Первая космическая скорость (скорость движения спутника по орбите вблизи поверхности планеты) |
T12/T22 = R13/R23 |
Закон Кеплера для периодов обращение T1 и T2 двух тел, вращающихся вокруг одного притягивающего центра на расстояниях R1 и R2 соответственно |
Р=m(g+a) |
Вес тела, движущегося с ускорением а↑ |
Термодинамика |
|
Q=cm(T2-T1) |
Количество теплоты (энергии) необходимое на нагревания некоторого тела (C-теплоемкость, c-удельная теплоемкость, m- масса, t- температура) |
Q=λm |
Количество теплоты при плавлении (λ – удельная теплота плавления, m – масса расплавившегося тела или кристаллизовавшейся жидкости) |
Q=rm |
Количество теплоты при парообразовании (r – удельная теплота парообразования, m – масса испарившейся жидкости или конденсировавшегося пара) |
Q=qm |
Количество теплоты при сгорании топлива (q – удельная теплота сгорания топлива, m – масса сгоревшего топлива) |
A=P∙ΔV = m/M∙ R∙ΔT, p = const |
Работа идеального газа |
U=3/2∙M/µ∙RT |
Внутренняя энергия идеального одноатомного газа |
ΔU=A+Q |
Первый закон (начало) термодинамики (ЗСЭ) (Q – теплота полученная (отданная) газом) |
η= (Q1 — Q2)/ Q1 |
КПД тепловых двигателей |
η= (Т1 — Т2)/ Т1 |
КПД идеальных двигателей (цикл Карно) |
ρ=pM/RT |
Абсолютная влажность (ρ — абсолютная влажность, р – парциальное давление водяного пара, М – молярная масса, R – универсальная газовая постоянная, Т – абсолютная температура) |
φ=ρ/ρ0∙100% |
Относительная влажность (ρ — абсолютная влажность, ρ0 -количество водяного пара, которое необходимо для насыщения 1 м3 воздуха при данной температуре) (P — давление водяного пара, Pо — давление насыщенного пара при данной температуре) |
Ep = σS |
Поверхностное натяжение (σ – коэффициент поверхностного натяжения данной жидкости) |
Fн= σL |
Сила поверхностного натяжения, действующая на участок границы жидкости длиной L |
Статика и Гидростатика |
|
M=F∙ℓ |
Момент силы (F – сила, ℓ – плечо силы, т.е. кратчайшее расстояние между точкой опоры, относительно которой происходит вращение и линией действия силы) |
Р=F/S |
Давление (F – сила, S – площадь на которую распределено действие силы) |
P=ρ∙g∙h |
Давление на глубине жидкости (p0 – атмосферное давление, ρ – плотность жидкости, g – ускорение свободного падения, h – высота столба жидкости) |
Fa=ρж∙g∙V |
Закон (сила) Архимеда (V – объем погруженной части тела, который иногда также называют объемом вытесненной жидкости) |
Электростатика |
|
q = Ne |
Электрический заряд (N – количество элементарных зарядов, е – элементарный заряд) |
λ=q/L, σ=q/S, ρ=q/V |
Линейная, поверхностная и объемная плотность заряда |
F=k∙q1∙q2/R2 |
Закон Кулона (сила электростатического взаимодействия двух зарядов величиной q1 и q2, находящихся на расстоянии r друг от друга в веществе с диэлектрической проницаемостью ε): |
E=1/(4πεε0) |
Напряженность электрического поля, которую создает заряд Q на расстоянии r от своего центра |
E= σ/(2εε0) |
Напряженность электрического поля, которую создает заряженная плоскость |
ε=E0/E |
Диэлектрическая проницаемость |
E=F/q |
Напряженность электрического поля |
E=k∙q/R2 |
Напряженность электрического поля точечного заряда |
E=2πkσ |
Напряженность электрического поля бесконечной плоскости |
W= k∙q1q2/R = k∙q1q2/εr |
Потенциальная энергия взаимодействия двух электрических зарядов |
U=Ed, Δφ=E∙ Δl |
Cвязь между напряженностью поля и напряжением |
A=qU, U=A/q |
Работа электрического поля, Напряжение |
A= qEd, U=E∙d |
Работа электрического поля в однородном поле при перемещении заряда вдоль его силовых линий, Напряжение для однородного электрического поля |
φ=W/q |
Потенциал |
φ=k∙q/R |
Потенциал точечного заряда |
C=q/U |
Электроемкость |
C=S∙ε∙ε0/d |
Электроемкость плоского конденсатора |
q=CU |
Заряд конденсатора |
E = U/d = σ/εε0 |
Напряженность поля внутри конденсатора |
F=qE/2 |
Сила притяжения пластин конденсатора |
W=qU/2=q²/2С=CU²/2 |
Энергия заряженного конденсатора |
Электрический ток |
|
I=q/t |
Сила тока (q – заряд, протекший через некоторое поперечное сечение проводника за время t) |
R=ρ∙ℓ/S |
Сопротивление проводника (l – длина проводника, S – площадь его поперечного сечения, ρ – удельное сопротивление материала проводника) |
R=R0(1+αt) |
Сопротивление проводника |
I=U/R |
Закон Ома для участка цепи (U – электрическое напряжение) |
I1=I2=I, U1+U2=U, R1+R2=R |
Законы последовательного соединения |
U1=U2=U, I1+I2=I, 1/R1+1/R2=1/R |
Законы параллельного соединения |
ε=Aст/q |
Электродвижущая сила источника тока, ЭДС (Aст – работа сторонних сил по перемещению заряда q) |
I=ε/(R+r) |
Закон Ома для полной цепи |
I=ε/r |
Сила тока короткого замыкания (R=0) |
Q=A=I2Rt |
Работа электрического тока (закон Джоуля-Ленца). Работа А электрического тока, протекающего по проводнику, обладающему сопротивлением преобразуется в теплоту Q выделяющуюся на проводнике |
P=IU=U2/R=I2R |
Мощность электрического тока |
m = kQ = kIt |
Электролиз. Масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит |
Магнетизм |
|
Fa=IBℓsinα |
Сила Ампера (В – индукция магнитного поля, I – сила тока в проводнике, l – его длина, α – угол между направлением силы тока (т.е. самим проводником) и вектором индукции магнитного поля) |
M = NBIS∙sinα |
Момент сил, действующих на рамку с током (N – количество витков, S – площадь рамки, α – угол между нормалью к рамке и вектором магнитной индукции) |
Fл=Bqυ∙sinα |
Сила Лоренца (q – электрический заряд частицы, υ – её скорость, α – угол между направлением движения частицы и вектором индукции магнитного поля) |
R=mU/qB |
Радиус траектории полета заряженной частицы в магнитном поле |
B=Fmax/ℓ∙I |
Вектор магнитной индукции |
Ф=BSсos α Ф=LI |
Магнитный поток Φ через площадь S |
Ei=ΔФ/Δt |
Закон электромагнитной индукции |
Ei=Вℓυsinα |
ЭДС индукции при движении проводника |
Esi=-L∙ΔI/Δt |
ЭДС самоиндукции |
Wм=LI2/2 |
Энергия магнитного поля катушки |
Колебания |
|
a+ω02x=0 |
Уравнение описывает физические системы способные совершать гармонические колебания с циклической частотой ω0 |
x = A cos (ωt + φ0) |
Уравнением движения для гармонических колебаний (x– координата тела в некоторый момент времени t, A – амплитуда колебаний, ω – циклическая частота колебаний, φ0 –начальная фаза колебаний). |
Х=Хmax∙cos ωt |
Уравнение гармонических колебаний |
T=t/N, v=N/t=1/T |
Связь некоторых характеристик колебательного процесса (T – период, N – количество полных колебаний, v – частота колебаний, ω – циклическая частота) |
υ = x'(t) = –Aω sin (ωt + φ0) |
Скорость тела при колебательном движении |
υm = ωA |
Максимальное (амплитудное) значение скорости |
a = υ'(t) = x»(t) |
Ускорение тела при колебательном движении |
am = Aω2 |
Максимальное (амплитудное) значение ускорения |
ω0=√(g/ℓ) |
Циклическая частота и период колебаний математического маятника (l – длина маятника, g – ускорение свободного падения) |
ω0=√(k/m) |
Циклическая частота и период колебаний пружинного маятника (m – масса груза, k – коэффициент жесткости пружины маятника) |
W=CU2/2+LI2/2 |
Электрический контур |
T=2π ∙√LC |
Период колебаний кол. контура и циклическая частота |
Iд=I0/√2, Iд=Imax/√2 |
Переменный ток характеризуется действующими значениями силы тока и напряжения, которые связаны с амплитудными значениями соответствующих величин; Действующее значение силы тока и напряжения |
P=UдIд =Iд2R=Uд2/R |
Мощность в цепи переменного тока |
U1/U2=n1/n2 |
Трансформатор: если напряжение на входе в трансформатор равно U1, а на выходе U2, при этом число витков в первичной обмотке равно n1, а во вторичной n2 |
λ= υТ=υ/v |
Волны. Длина волны (υ – скорость распространения волны, T – период, v – частота) |
XL=ωL=2πLν |
Индуктивное сопротивление |
Xc=1/ωC |
Емкостное сопротивление |
Z=√(Xc-XL)2+R2 |
Полное сопротивление |
Оптика |
|
Lопт=Ln |
Оптическая длина пути (L – геометрическая длина траектории, по которой «идет» луч света, n – показатель преломление среды, в которой это происходит) |
x=mλL/d |
Интерференционная схема Юнга (L – расстояние между экраном и плоскостью в которой расположены две щели, d – расстояние между этими щелями, λ – длина волны света, которым освещаются щели). |
d∙sin φ=k λ |
Формула дифракционной решетки (d – период решетки, или расстояние между соседними штрихами, φ – угол под которым наблюдается очередной дифракционный максимум, k – номер (порядок) максимума, λ – длина волны света, падающего на дифракционную решетку) |
n21=n2/n1= υ 1/ υ 2 |
Закон преломления света на границе двух прозрачных сред (α – угол падения, β – угол преломления, n1 – показатель преломления первой среды, из которой падает луч, n2 – показатель преломления второй среды, в которую проникает луч) |
n21=sinα/sinβ |
Показатель преломления |
1/F=1/d + 1/f |
Формула линзы (d – расстояние от линзы до предмета, f – расстояние от линзы до изображения, F – фокусное расстояние, D – оптическая сила линзы) |
D=1/F |
Оптическая сила линзы |
Δd=kλ, Δd=(2k+1)λ/2 |
max интерференции, min интерференции |
Атомная и ядерная физика |
|
E=hv=hc/λ |
Энергия кванта света, т.е. фотона (h – постоянная Планка, λ – длина волны света, v – частота света) |
P=mc=h/ λ=Е/с |
Импульс фотона |
hν=Aвых+(mU2/2)max |
Формула Эйнштейна для внешнего фотоэффекта (ЗСЭ) (Авых – работа выхода, слагаемое в скобках –максимальная кинетическая энергия вылетающих электронов, v – частота падающего света) |
(mU2/2)max=еUз |
Максимальная кинетическая энергия вылетающих электронов |
νк = Aвых/h |
Красная граница фотоэффекта |
hνnm = |En – Em| |
Второй постулат Бора (правило частот). При переходе атома из одного стационарного состояния с энергией En в другое стационарное состояние с энергией Em излучается или поглощается квант, энергия которого равна разности энергий стационарных состояний |
N=N0∙2—t/T |
Закон радиоактивного распада |
ECB=(Zmp+Nmn-Mя)∙c2 |
Энергия связи атомных ядер |
Основы СТО |
|
ℓ=ℓ0∙√1-υ2/c2 |
Релятивистское сокращение длины. Длина тела, движущегося со скоростью V в инерциальной системе отсчета уменьшается в направлении движения до длины |
t=t1/√(1-υ2/c2) |
Релятивистское удлинение времени события. Время, за которое происходит некоторое событие в движущейся системе отсчета с точки зрения наблюдателя из неподвижной системы отсчета |
υ=(υ1+υ2)/1+ υ1∙υ2/c2 |
Релятивистский закон сложения скоростей |
Е = mс2 |
Связь энергии и массы тела. Наименьшей энергией Е0 тело обладает в инерциальной системе отсчета относительно которой оно покоится и называется собственной энергией тела (энергия покоя тела) |
Содержание:
Работа, мощность и энергия:
Мы часто слышим от друзей: «Я сегодня выполнил большую работу: выучил наизусть стихотворение и решил пять задач по математике». Но с точки зрения физики никакой работы не совершено, даже если выучить наизусть целую поэму. Что же такое работа в физике?
В физике работа оценивает то, что вызвала сила, действуя на движущееся тело. Покажем это на примерах. Рассмотрите внимательно рисунок 216. Что общего в результатах действия силы тяжести на мяч (рис. 216, а), силы давления газа на пулю в пистолете (рис. 216, б) и силы упругости сжатой пружины на шарик (рис. 216, в) после пережигания нити? Все перечисленные силы вызывают разгон тел (мяча, пули, шарика), т. е. увеличение скорости движения.
Л может ли сила, действующая на движущееся тело, уменьшать его скорость? Подбросьте мяч и наблюдайте за его движением вверх (рис. 217). Теперь сила тяжести уменьшает скорость его движения. Во всех случаях, когда сила изменяет скорость движения (увеличивает или уменьшает), говорят, что сила совершает механическую работу.
Механическая работа является физической величиной. Ее значение можно рассчитать. Рассмотрим самый простой случай: направление силы совпадает с направлением движения. Например, идет разгон спортивных саней (рис. 218). Изменение скорости саней, а значит, и работа по их разгону зависят от значения действующей силы (силы спортсменов, разгоняющих сани) и от пройденного санями пути. Чем больше сила и путь, тем большая совершается работа. Этот вывод справедлив для всех движущихся под действием силы тел.
Таким образом, механическая работа — физическая величина, пропорциональная действующей на тело силе и пройденному пути.
Обозначим работу буквой А. Тогда, если направление силы совпадает с направлением движения тела,
Единицей работы в СИ является 1 джоуль (1 Дж). Названа она в честь известного английского физика Дж. П. Джоуля. Один джоуль — это работа, совершаемая силой 1 Н на пути 1 м.
1 джоуль = 1 ньютон • 1 метр.
Для измерения большой работы используют кратные джоулю единицы:
В случае малой работы применяются дольные единицы:
Из формулы работы следует, что если есть силы, но нет движения, то нет и работы. Например, сила тяжести, действующая на лежащий на столе мяч (рис. 219, а), работы не совершает, а в случае падающего мяча (рис. 219, б) — совершает.
Сила не всегда увеличивает скорость движения тела. Так, при движении мяча вверх (см. рис. 217) сила тяжести замедляет его движение. Аналогично при скольжении шайбы по льду сила трения уменьшает скорость движения шайбы. Работу силы (тяжести, трения) в подобных случаях считают отрицательной.
Но положительная и отрицательная работы могут совершаться одновременно и даже быть равными по абсолютной величине. В этом случае скорость движения постоянна. Например, электропоезд на данном участке пути движется равномерно. Это значит, что равнодействующая сил (тяги двигателя и сопротивления движению) равна нулю. По и сила тяги, и сила сопротивления совершают работу. Только работа силы тяги а силы сопротивления Сумма же их равна 0, т. е.
Главные выводы:
- Механическая работа характеризует результат действия силы на движущееся тело и пропорциональна действующей на тело силе и пройденному телом пути.
- Силы, ускоряющие движение тела; совершают положительную работу.
- Силы, замедляющие движение тела, совершают отрицательную работу.
- Единица работы в СИ — 1 джоуль (1 Дж).
Пример решения задачи:
Подъемный кран равномерно поднимает с земли бетонную плиту массой m = 500 кг на один из этажей строящегося дома. Сила упругости троса при этом совершает работу А = 100 кДж. Определите, на какой этаж была поднята плита, если высота одного этажа Чему равна работа равнодействующей сил, приложенных к плите? Коэффициент примите равным
Дано:
Решение:
При равномерном подъеме сила упругости троса равна силе тяжести, действующей на плиту:
Работа силы упругости Высота подъема – число этажей. Тогда
Отсюда
Так как движение плиты равномерное, то равнодействующая сил, приложенных к ней, и работа
Ответ: плита поднята на 6-й этаж; работа равнодействующей сил
Полезная и совершённая работа
Оценивая работу машины, механизма и др., говорят об их коэффициенте полезного действия (КПД). Но что такое КПД? Что означают слова «полезного действия»? А что такое неполезное действие?
Рассмотрим ситуацию: идет уборка картофеля на поле. Фермер поднимает картофель в ведре в кузов автомашины (рис. 221), выгружает, а ведро опускает на землю. Механическую работу совершает мускульная сила фермера, поднявшего ведро массой, например, = 2,0 кг и картофель массой m = 10,0 кг на высоту h = 1,5 м. Какая работа здесь является полезной?
Цель фермера — погрузить в кузов картофель. Исходя из этого, полезной работой является работа по подъему картофеля: А вот работа но подъему самого ведра не является полезной: Вся же совершенная (полная работа) равна:
Какую долю составляет полезная работа от совершенной?
Обозначим отношение буквой (эта) и назовем коэффициентом полезного действия (КПД). Тогда
КПД, как правило, выражают в процентах.
Таким образом, КПД (эффективность работы) в данном случае равен 83 %.
Рассмотрим еще один пример. Дети разгоняют санки, действуя силой F в направлении их движения (рис. 222). Совершенная (полная) работа здесь Цель детей — увеличить скорость движения санок. Но на санки действует еще сила трения скольжения Она тормозит движение санок. Значит, работа детей по преодолению силы трения не является полезной:
Полезной же работой была
Тогда доля полезной работы (КПД)
Физическая величина, равная отношению полезной работы к совершенной (полной), называется коэффициентом полезного действия.
А могут ли механизм, машина, человек работать так, чтобы КПД = 100 %, т. е. чтобы вся совершенная работа была полезной?
Ученые неоднократно пытались создать такую машину (рис. 223), но все попытки оказались безуспешными. (Самостоятельно познакомьтесь в Интернете или справочной литературе с информацией о вечном двигателе.) В работе любой машины, механизма всегда есть неполезная работа, идущая на преодоление трения, сопротивления. А значит, КПД всегда меньше 100 %. А вот сделать неполезную работу минимальной означает повысить КПД.
Главные выводы:
- Совершенная (т. е. полная) механическая работа всегда больше полезной.
- КПД показывает, какую долю составляет полезная работа от всей совершенной.
- Чем больше полезная работа, тем выше КПД.
- КПД всегда меньше 100 %.
Пример решения задачи:
При подъеме картофеля из хранилища глубиной h = 3,6 м подъемным устройством с КПД = 90 % совершена работа = 40 кДж. Сколько мешков картофеля массой = 40 кг каждый было поднято из хранилища? Примите
Дано:
Решение:
Зная совершенную работу и КПД, можно найти полезную работу по подъему мешков картофеля:
Полезная работа – это работа подъемного устройства по преодолению силы тяжести, действующей на картофель:
Масса где N – число мешков картофеля. Тогда откуда
Ответ: N = 25 мешков.
Мощность и единицы мощности
Приобретая автомобиль (рис. 226), газонокосилку, микроволновую печь (рис. 227) и др., человек интересуется их мощностью. Именно мощность является паспортной характеристикой машин и механизмов. Что же такое мощность? Почему так важно ее знать?
Рассмотрим пример. Человек лопатой копает яму для погреба в течение нескольких дней. Такую же яму экскаватор (рис. 228) выкопает за несколько минут. Работа выполняется одинаковая. Одинаковая масса грунта поднимается на одну и ту же высоту. Но быстрота совершения работы человеком и экскаватором разная. За единицу времени экскаватор выполняет во много раз большую работу, чем человек. Для описания быстроты совершения работы вводится мощность.
Физическая величина, равная отношению работы к промежутку времени, за который эта работа совершена, называется мощностью. Обозначается мощность буквой Р.
За единицу мощности в СИ принимается мощность, при которой действующая на тело сила за время t = 1 с совершает работу А = 1 Дж. Эта единица мощности называется ватт (Вт) в честь английского изобретателя Дж. Уатта. Для измерения больших мощностей используют кратные единицы: гектоватт (гВт), киловатт (кВт), мегаватт (МВт). Обратите внимание:
Для малых мощностей употребляются дольные единицы — милливатт (мВт), микроватт (мкВт):
В быту часто необдуманно единицу мощности киловатт принимают за единицу работы. Но работа из чего следует, что единицей работы может быть только киловатт-час (кВт • ч), но не киловатт (кВт). Выразим мощность через другие единицы — силу и скорость. Мощность но работа путь Тогда
Мощность пропорциональна силе, совершающей работу, и скорости движения. Тогда при постоянной мощности чем меньше скорость, тем больше сила. Вот почему водитель, трогаясь с места или поднимаясь в гору (рис. 229), когда требуется большая сила, едет на малой скорости. Тем самым он увеличивает силу тяги двигателя автомобиля.
Главные выводы
- Мощность — физическая величина, характеризующая быстроту совершения работы.
- Единицей мощности в СИ является 1 ватт.
- Одинаковую мощность можно получить либо при большой скорости и небольшой силе, либо при малой скорости и большой силе.
Для любознательных
В автомобилестроении по традиции используют старинную единицу мощности — лошадиную силу (л. с.). С помощью рисунка сформулируйте самостоятельно определение мощности в 1 лошадиную силу.
Запишем связь 1 л. с. и ватта: 1 л. с. = 736 Вт.
В этих внесистемных единицах мощность первого белорусского трактора МТЗ-2 (1953 г.) была равна 37 л. с. Освоенный в 2010 г. трактор «Беларус-3023» имеет двигатель мощностью 300 л. с. Переведите эти знамения мощности в единицы СИ самостоятельно и сравните их.
Пример решения задачи:
На уроке физкультуры мальчик массой m = 40 кг поднялся по канату на высоту h = 5,0 м за промежуток времени t = 10 с. Определите среднюю мощность, развиваемую мальчиком при подъеме. Коэффициент
Дано:
Решение:
При подъеме по канату работа мускульной силы рук идет на преодоление силы тяжести.
Тогда
Ответ: P = 0, 20 кВт.
Кинетическая энергия
Энергия — одно из наиболее важных и сложных понятий. Причем не только в физике, но и в других науках. А что же такое кинетическая энергия?
Рассмотрим два примера. Шайба, попадая в сетку ворот (рис. 230), прогибает ее. Молот для забивания свай (рис. 231), падая на сваю, загоняет ее в землю на некоторую глубину. Чтобы сильнее прогнуть сетку или глубже забить сваю, шайба и молот должны иметь большую скорость. И шайба, и молот совершили работу. При этом скорость их движения изменилась (уменьшилась до нуля). Совершенные ими работы были разными, даже если предположить, что скорости движения были одинаковыми. Но массы молота и шайбы не равны.
Если тело способно совершить работу, то оно обладает энергией. В физике энергию движущегося тела называют кинетической (от греч. kinetikos — приводящий в движение). Кинетическая энергия обозначается буквой К (или ) и измеряется в СИ в тех же единицах, что и работа, т. е. в джоулях.
Большая кинетическая энергия движущихся тел — камня, автомобиля, железнодорожного состава (рис. 232), метеорита и др. — означает, во-первых, что при разгоне их до данной скорости разгоняющей силой была совершена большая работа и, во-вторых, при их остановке тормозящей силой будет совершена такая же большая работа.
Из примеров следует, что кинетическая энергия зависит от массы тела и скорости его движения. Какой является эта зависимость?
Опыты показывают, что кинетическая энергия прямо пропорциональна массе тела и квадрату скорости его движения:
Увеличение скорости движения тела, например в 4 раза, приводит к возрастанию кинети- Обратите внимание! ческой энергии в 16 раз. Об этом должны всегда помнить водители и пешеходы.
Главные выводы:
- Кинетическая энергия выражает способность движущихся тел совершать работу.
- Кинетическая энергия, как и работа, измеряется в джоулях.
- Кинетическая энергия тела зависит от его массы и скорости.
- Изменить (увеличить или уменьшить) кинетическую энергию тела можно только путем совершения работы (положительной или отрицательной).
Пример решения задачи:
Скорость движения груженого автомобиля массой m = 4,0 т увеличилась от до на пути s = 25 м. Определите силу тяги двигателя автомобиля и работу, которую совершила эта сила. Сопротивление движению не учитывать.
Дано:
Решение:
Чтобы увеличить кинетическую энергию от до сила тяги должна была совершить работу:
Но работа Отсюда
Ответ:
Потенциальная энергия
При разгоне любого тела (санок, автомобиля и др.) у него возникает способность совершить механическую работу — у движущегося тела появляется кинетическая энергия. А если тело неподвижно? Обладает ли оно способностью совершить работу?
Проведем два опыта. В первом поднимем и укрепим на нити над ящиком с песком гирю (рис. 235, а). Во втором между упором и шариком поместим предварительно сжатую и связанную ниткой пружину (рис. 235, б). Оба тела (гиря и пружина) неподвижны и не обладают кинетической энергией. Но и у гири, и у пружины есть возможность совершить работу. Для этого достаточно в обоих случаях пережечь нить. В физике говорят, что тела (поднятая гиря, взаимодействующая с Землей, и сжатая пружина) обладают потенциальной энергией (от лат. potentia — скрытая способность). Потенциальную энергию в СИ измеряют в тех же единицах, что и работу, — в джоулях.
Важно понимать, что потенциальная энергия не появляется сама по себе. В этих опытах гиря была поднята над столом, пружина была сжата какой-то силой. Значит, чтобы тело запасло потенциальную энергию, необходимо совершить работу. Чем сильнее будет сжата пружина, чем выше будет поднято тело, тем больше у них будет запас потенциальной энергии. Тела, представленные на рисунке 236, уже обладают потенциальной энергией. У трамплина она вызвана прогибом (деформацией) доски, у мышеловки — закручиванием пружины, у лука — изменением расположения древка и тетивы. Из этих и других примеров следует, что потенциальная энергия — это энергия, обусловленная взаимным расположением взаимодействующих тел или частей тела (гири и Земли, стрелы и тетивы, звеньев пружины). Обозначается потенциальная энергия буквой П (или ).
Именно благодаря потенциальной энергии сжатой (закрученной) пружины работают механические часы, реле времени микроволновых печей, стиральных машин, движутся некоторые детские игрушки. Потенциальная энергия поднятой с помощью плотины воды заставляет работать гидроэлектростанции (рис. 237).
Главные выводы:
- Неподвижные взаимодействующие тела (система тел) могут обладать способностью совершать механическую работу, а значит, потенциальной энергией.
- Значение потенциальной энергии зависит от взаимного расположения взаимодействующих тел (частей тела).
- Потенциальная энергия изменяется только при совершении работы.
Расчет потенциальной энергии
Кинетическая энергия тела, зависящая от его массы и скорости, выражается формулой Данная формула справедлива и для планеты Земля, мчащейся со скоростью по орбите вокруг Солнца, и для невидимого нашему глазу атома. Существует ли единая формула для расчета потенциальной энергии?
Рассмотрим отдельно два случая: потенциальную энергию притяжения поднятого над поверхностью Земли тела и потенциальную энергию деформированного тела.
В первом случае формулу для расчета потенциальной энергии легко вывести. Если тело массой m поднято относительно поверхности Земли на высоту h (рис. 238), то при его падении сила тяжести может совершить работу:
Это и есть потенциальная энергия поднятого тела:
Значение потенциальной энергии относительно. Так, относительно пола потенциальная энергия светильника (рис. 239) массой m = 1,0 кг, центр тяжести которого расположен на высоте от пола, равна:
Относительно потолка она равна:
Поэтому, приводя значение потенциальной энергии, необходимо указывать уровень, относительно которого она задана, — нулевой уровень потенциальной энергии (это может быть, к примеру, поверхность пола, потолка, стола и т. д.).
Гораздо сложнее дело обстоит с расчетом потенциальной энергии деформированного тела. Мы можем растянуть или сжать пружину, изогнуть или закрутить ее (рис. 240). Потенциальная энергия у пружины будет в каждом из этих случаев. И чем больше упругая деформация, тем больше потенциальная энергия пружины. В данном примере расчет потенциальной энергии придется вести по различным формулам. Более детально с этим вы будете знакомиться в 9-м классе.
Главные выводы:
- Потенциальная энергия притяжения тела к Земле зависит от массы тела и высоты его подъема над нулевым уровнем энергии.
- Значение потенциальной энергии тела зависит от выбора нулевого уровня энергии.
- Потенциальная энергия деформированного тела зависит от величины деформации.
Пример решения задачи:
Парафиновый однородный кубик с длиной ребра а = 10 см лежит на столе на высоте = 0,80 м от пола. Определите потенциальную энергию кубика относительно поверхностей: а) пола; б) стола. Какую работу нужно совершить, чтобы поднять кубик с пола на стол? Коэффициент
Дано:
Решение:
Потенциальная энергия кубика относительно поверхности пола (рис. 241) определяется положением его центра (точки O):
Масса кубика объем тогда:
Потенциальная энергия кубика относительно поверхности стола:
Работа по подъему кубика на высоту равна изменению его потенциальной энергии. Получаем:
Ответ:
Закон сохранения механической энергии
Кинетическая и потенциальная энергии — это два вида механической энергии. Связаны ли они друг с другом? И если да, то в чем выражается эта связь?
Проследим за движением брошенного вверх металлического шарика (рис. 243). В нижней точке траектории сила действия руки на шарик сообщает ему кинетическую энергию. Шарик движется вверх. Скорость его движения, а значит, и кинетическая энергия уменьшаются. Но исчезает ли кинетическая энергия бесследно? Поднимаясь выше, шарик приобретает все большую потенциальную энергию (вспомните: ). В верхней точке скорость и кинетическая энергия шарика равны нулю, а потенциальная максимальна. Значит, в рассмотренном примере происходит превращение энергии из одного вида (кинетической) в другой (потенциальную). При возвращении шарика обратно снова будет идти превращение энергии: с уменьшением высоты (и потенциальной энергии) увеличивается скорость движения шарика (и кинетическая энергия).
Если сопротивление воздуха мало (и им можно пренебречь), брошенный вверх шарик возвращается назад практически с такой же, как в момент бросания, скоростью и кинетической энергией.
А каким будет значение механической энергии шарика в промежуточных точках? Например, на высоте (рис. 243)? При подъеме шарика на высоту его кинетическая энергия уменьшилась, но при этом появилась потенциальная энергия. А чему равна их сумма, т. е. полная механическая энергия? Данный и подобные опыты и расчеты показывают, что если сил сопротивления нет, то полная механическая энергия тела (системы тел), равная сумме кинетической и потенциальной энергий сохраняется. Данное утверждение о постоянстве механической энергии в физике называют законом сохранения механической энергии.
Если силами трения или сопротивления движению нельзя пренебречь, этот закон не выполняется. Заменим в опыте металлический шарик на пенопластовый брусок такой же массы (рис. 244). Мы увидим, что даже при большей, чем у металлического шарика, начальной скорости он не поднимется на такую же высоту и вернется назад с заметно меньшей скоростью. Убывает кинетическая энергия движущейся по горизонтальной поверхности льда шайбы, но потенциальная энергия взамен не появляется. За счет кинетической энергии шайбы совершается работа против сил трения.
В заключение заметим, что явление превращения энергии из одного вида в другой человек научился использовать в практических целях. Энергия падающей воды приводит в действие водяные мельницы и гидроэлектростанции. В Республике Беларусь успешно реализуется государственная программа использования энергии рек. Важная роль в ней отводится таким рекам, как Неман и Западная Двина. Па Немане работает Гродненская ГЭС мощностью 17 МВт. Установленная мощность Витебской ГЭС на Западной Двине — 40 МВт.
Кинетическую энергию ветра человек с давних времен начал использовать с помощью паруса (рис. 245), затем стал применять в ветряных мельницах. В последние годы в нашей стране начато сооружение ветроэлектростанций (рис. 246). Они уникальны тем, что не оказывают вредного воздействия на окружающую среду. Во многих странах успешно используют энергию приливов и отливов вод морей и океанов. Там созданы приливные электростанции.
Главные выводы:
- Кинетическая и потенциальная энергии взаимо-превращаемы.
- При отсутствии сил трения и сопротивления движению полная механическая энергия тела (системы тел) сохраняется.
- Закон сохранения механической энергии не выполняется, если силами трения (сопротивления) нельзя пренебречь.
- Заказать решение задач по физике
Пример решения задачи:
Камень бросили вертикально вверх со скоростью На какой высоте от точки бросания кинетическая энергия камня будет в 4 раза меньше его потенциальной энергии? Сопротивлением движению камня пренебречь. Коэффициент
Дано:
Решение:
За нулевой уровень потенциальной энергии примем уровень O – O, проходящий через точку бросания камня (рис. 247). Значит,
Полная механическая энергия камня в точке бросания 1:
Полная механическая энергия камня в точке 2:
По условию Значит,
Ответ:
Энергия и работа
Энергия – эта количественная мера различных форм движения и взаимодействия (по гречески слово «энергия» означает действие). Энергия в зависимости от вида движения в природе проявляется по-разному. Например, механическая, тепловая, электромагнитная, ядерная энергия и другие. В результате взаимодействия энергия одного вида превращается в энергию другого вида. Однако во всех этих процессах энергия, переданная от одного тела второму (независимо от ее вида), будет равна энергии, полученной вторым телом от первого.
Как известно из второго закона Ньютона, чтобы изменить механическое движение тела на него должны подействовать другие тела. Иначе говоря, среди этих тел происходит обмен энергиями. Для описания такого обмена энергии в механике введено понятие механическая работа, которую принято обозначать буквой .
Механическая работа. Величина, равная скалярному произведению силы на перемещение в направлении действия силы, называется механической работой, т.е.
Здесь: – угол между силой и перемещением s (рисунок 3.1).
Если учитывать, что , то уравнение (3.1) примет вид:
Здесь – проекция силы в направлении смещения.
Основываясь на выражении (3.2), можно сделать следующий вывод:
если , то – работа силы положительна, направление силы и смещение совпадают;
если , то – работа силы отрицательная, направления силы и смещения противоположны;
если , то – работа, выполненная силой, равна нулю, направление силы будет перпендикулярным к направлению смещения.
Работа считается аддитивной (аддитив – по-латински означает суммарный) величиной (в физике аддитивность величины означает, что величина, относящаяся к системе в целом, равна сумме величины, относящихся к ее составным частям).
Если на тело действует несколько сил, то будет:
тогда полная работа равна работе, выполненной равнодействующей сил.
или
Единица работы. Единица измерения работы в системе СИ – Джоуль (Дж):
В качестве единицы работы в СИ принята работа выполненная силой 1Н при смещении тела на 1 м.
Работа силы тяжести. На поверхности Земли на тело действует сила тяжести со стороны Земли, равная . При перемещении тела из точки на высоте от поверхности Земли в точку на высоте от поверхности Земли, смещение тела равно: (рис. 3.2).
Здесь выполненная силой тяжести работа выражается следующей формулой:
Здесь: – вес тела, – его масса, – ускорение свободного падения, – расстояние между уровнями и по вертикали.
Работа, выполненная силой тяжести, не зависит от формы пути, зависит только от высоты спуска. Поэтому работа, выполненная под действием силы тяжести, зависит не от формы траектории, а от начального и конечного состояний. Такая сила называются потенциальной или консервативной. Поле такой силы называется потенциальным полем.
При движении тела вниз из-за соответствия направления силы тяжести и смещения выполненная работа будет положительной, при движении вверх из-за противоположности направлений работа будет отрицательной. Поэтому в случае, когда тело под воздействием силы тяжести смещено и вернулось обратно, выполненная общая работа равняется нулю.
Полной механической энергией системы называется сумма кинетической и потенциальной энергии системы. Например, полная механическая энергия тела массой , двигающегося со скоростью относительно Земли на высоте от поверхности Земли:
Полная механическая энергия системы остается неизменной с течением времени:
Возможны лишь превращения потенциальной энергии и кинетическую и обратно. Выражение (3.5) представляет собой закон сохранения механической энергии.
Проведенные многочисленные эксперименты, теоретические выводы подтвердили строгое соблюдение закона сохранения энергии.
В природе постоянно происходят превращения одного вида энергии в другой (например, механическая энергия переходит в тепловую энергию). Поэтому этот закон также называют законом сохранения и превращения энергии. Этот закон является основным законом природы и действителен не только для макроскопических, но и микроскопических систем.
Энергия никогда не исчезает, ниоткуда не появляется, она может только преобразовываться из одного вида в другой.
В закрытых системах полная энергия сохраняется.
Например, потенциальная энергия тела, падающего с высоты , зависит от его веса и абсолютно не зависит от времени проведения экспериментов.
Коэффициент полезного действия. Введена величина, показывающая, какая часть израсходованной энергии машин и двигателей превращается в полезную работу.
Отношение полезной работы к полной работе называется коэффициентом полезного действия (КПД) и обозначается буквой .
Если полезную работу обозначить , полную работу , тогда формулу КПД можно записать в виде:
КПД не может быть больше единицы (100%). В машинах и двигателях в результате работы силы трения часть полной энергии расходуется и поэтому КПД всегда меньше единицы.
Рассмотрим наклонную плоскость и выполненную работу при подъеме тела вверх. По «золотому правилу» механики, во сколько раз выигрываем в силе, во столько раз проиграем в расстоянии. Но из-за увеличения расстояния смещения не меняется выполненная работа.
Рассмотрим груз с весом на наклонной плоскости длиной , высотой (рис. 3.3). Здесь на тело действует сила трения , параллельная наклонной поверхности тянущая вверх сила , перпендикулярно направленная к наклонной плоскости и противоположно направленная перпендикулярно к поверхности сила (реактивная сила поверхности).
Если не учитывать силу трения, получим уравнение:
Однако с учетом силы трения,
Тогда пишется в следующем виде:
Коэффициент полезного действия:
Сила притяжения, действующая на груз, равна:
- Движение и силы
- Давление в физике
- Строение вещества в физике
- Физическое тело и вещество в физике
- Золотое правило механики
- Потенциальная энергия
- Кинетическая энергия
- Закон сохранения и превращения механической энергии
Оглавление:
- Основные теоретические сведения
- Механическая работа
- Мощность
- Кинетическая энергия
- Потенциальная энергия
- Коэффициент полезного действия
- Закон сохранения механической энергии
- Некоторые рекомендации к решению задач на работу
- Закон сохранения энергии и динамика вращательного движения
- Неупругие соударения
- Абсолютно упругий удар
- Рекомендации к решению некоторых сложных задач на законы сохранения
Основные теоретические сведения
Механическая работа
К оглавлению…
Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы. Работой, совершаемой постоянной силой F, называется физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла между векторами силы F и перемещения S:
Работа является скалярной величиной. Она может быть как положительна (0° ≤ α < 90°), так и отрицательна (90° < α ≤ 180°). При α = 90° работа, совершаемая силой, равна нулю. В системе СИ работа измеряется в джоулях (Дж). Джоуль равен работе, совершаемой силой в 1 ньютон на перемещении 1 метр в направлении действия силы.
Если же сила изменяется с течением времени, то для нахождения работы строят график зависимости силы от перемещения и находят площадь фигуры под графиком – это и есть работа:
Примером силы, модуль которой зависит от координаты (перемещения), может служить сила упругости пружины, подчиняющаяся закону Гука (Fупр = kx).
Мощность
К оглавлению…
Работа силы, совершаемая в единицу времени, называется мощностью. Мощность P (иногда обозначают буквой N) – физическая величина, равная отношению работы A к промежутку времени t, в течение которого совершена эта работа:
По этой формуле рассчитывается средняя мощность, т.е. мощность обобщенно характеризующая процесс. Итак, работу можно выражать и через мощность: A = Pt (если конечно известна мощность и время совершения работы). Единица мощности называется ватт (Вт) или 1 джоуль за 1 секунду. Если движение равномерное, то:
По этой формуле мы можем рассчитать мгновенную мощность (мощность в данный момент времени), если вместо скорости подставим в формулу значение мгновенной скорости. Как узнать, какую мощность считать? Если в задаче спрашивают мощность в момент времени или в какой-то точке пространства, то считается мгновенная. Если спрашивают про мощность за какой-то промежуток времени или участок пути, то ищите среднюю мощность.
КПД – коэффициент полезного действия, равен отношению полезной работы к затраченной, либо же полезной мощности к затраченной:
Какая работа полезная, а какая затраченная определяется из условия конкретной задачи путем логического рассуждения. К примеру, если подъемный кран совершает работу по подъему груза на некоторую высоту, то полезной будет работа по поднятию груза (так как именно ради нее создан кран), а затраченной – работа, совершенная электродвигателем крана.
Итак, полезная и затраченная мощность не имеют строгого определения, и находятся логическим рассуждением. В каждой задаче мы сами должны определить, что в этой задаче было целью совершения работы (полезная работа или мощность), а что было механизмом или способом совершения всей работы (затраченная мощность или работа).
В общем случае КПД показывает, как эффективно механизм преобразует один вид энергии в другой. Если мощность со временем изменяется, то работу находят как площадь фигуры под графиком зависимости мощности от времени:
Кинетическая энергия
К оглавлению…
Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела (энергией движения):
То есть если автомобиль массой 2000 кг движется со скоростью 10 м/с, то он обладает кинетической энергией равной Ек = 100 кДж и способен совершить работу в 100 кДж. Эта энергия может превратиться в тепловую (при торможении автомобиля нагревается резина колес, дорога и тормозные диски) или может быть потрачена на деформацию автомобиля и тела, с которым автомобиль столкнулся (при аварии). При вычислении кинетической энергии не имеет значения куда движется автомобиль, так как энергия, как и работа, величина скалярная.
Тело обладает энергией, если способно совершить работу. Например, движущееся тело обладает кинетической энергией, т.е. энергией движения, и способно совершать работу по деформации тел или придания ускорения телам, с которыми произойдёт столкновение.
Физический смысл кинетической энергии: для того чтобы покоящееся тело массой m стало двигаться со скоростью v необходимо совершить работу равную полученному значению кинетической энергии. Если тело массой m движется со скоростью v, то для его остановки необходимо совершить работу равную его первоначальной кинетической энергии. При торможении кинетическая энергия в основном (кроме случаев соударения, когда энергия идет на деформации) «забирается» силой трения.
Теорема о кинетической энергии: работа равнодействующей силы равна изменению кинетической энергии тела:
Теорема о кинетической энергии справедлива и в общем случае, когда тело движется под действием изменяющейся силы, направление которой не совпадает с направлением перемещения. Применять данную теорему удобно в задачах на разгон и торможение тела.
Потенциальная энергия
К оглавлению…
Наряду с кинетической энергией или энергией движения в физике важную роль играет понятие потенциальной энергии или энергии взаимодействия тел.
Потенциальная энергия определяется взаимным положением тел (например, положением тела относительно поверхности Земли). Понятие потенциальной энергии можно ввести только для сил, работа которых не зависит от траектории движения тела и определяется только начальным и конечным положениями (так называемые консервативные силы). Работа таких сил на замкнутой траектории равна нулю. Таким свойством обладают сила тяжести и сила упругости. Для этих сил можно ввести понятие потенциальной энергии.
Потенциальная энергия тела в поле силы тяжести Земли рассчитывается по формуле:
Физический смысл потенциальной энергии тела: потенциальная энергия равна работе, которую совершает сила тяжести при опускании тела на нулевой уровень (h – расстояние от центра тяжести тела до нулевого уровня). Если тело обладает потенциальной энергией, значит оно способно совершить работу при падении этого тела с высоты h до нулевого уровня. Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком:
Часто в задачах на энергию приходится находить работу по поднятию (переворачиванию, доставанию из ямы) тела. Во всех этих случаях нужно рассматривать перемещение не самого тела, а только его центра тяжести.
Потенциальная энергия Ep зависит от выбора нулевого уровня, то есть от выбора начала координат оси OY. В каждой задаче нулевой уровень выбирается из соображения удобства. Физический смысл имеет не сама потенциальная энергия, а ее изменение при перемещении тела из одного положения в другое. Это изменение не зависит от выбора нулевого уровня.
Потенциальная энергия растянутой пружины рассчитывается по формуле:
где: k – жесткость пружины. Растянутая (или сжатая) пружина способна привести в движение прикрепленное к ней тело, то есть сообщить этому телу кинетическую энергию. Следовательно, такая пружина обладает запасом энергии. Растяжение или сжатие х надо рассчитывать от недеформированного состояния тела.
Потенциальная энергия упруго деформированного тела равна работе силы упругости при переходе из данного состояния в состояние с нулевой деформацией. Если в начальном состоянии пружина уже была деформирована, а ее удлинение было равно x1, тогда при переходе в новое состояние с удлинением x2 сила упругости совершит работу, равную изменению потенциальной энергии, взятому с противоположным знаком (так как сила упругости всегда направлена против деформации тела):
Потенциальная энергия при упругой деформации – это энергия взаимодействия отдельных частей тела между собой силами упругости.
Работа силы трения зависит от пройденного пути (такой вид сил, чья работа зависит от траектории и пройденного пути называется: диссипативные силы). Понятие потенциальной энергии для силы трения вводить нельзя.
Коэффициент полезного действия
К оглавлению…
Коэффициент полезного действия (КПД) – характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии. Он определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой (формула уже приведена выше).
КПД можно рассчитывать как через работу, так и через мощность. Полезная и затраченная работа (мощность) всегда определяются путем простых логических рассуждений.
В электрических двигателях КПД – отношение совершаемой (полезной) механической работы к электрической энергии, получаемой от источника. В тепловых двигателях – отношение полезной механической работы к затрачиваемому количеству теплоты. В электрических трансформаторах – отношение электромагнитной энергии, получаемой во вторичной обмотке, к энергии, потребляемой первичной обмоткой.
В силу своей общности понятие КПД позволяет сравнивать и оценивать с единой точки зрения такие различные системы, как атомные реакторы, электрические генераторы и двигатели, теплоэнергетические установки, полупроводниковые приборы, биологические объекты и т.д.
Из–за неизбежных потерь энергии на трение, на нагревание окружающих тел и т.п. КПД всегда меньше единицы. Соответственно этому КПД выражается в долях затрачиваемой энергии, то есть в виде правильной дроби или в процентах, и является безразмерной величиной. КПД характеризует как эффективно работает машина или механизм. КПД тепловых электростанций достигает 35–40%, двигателей внутреннего сгорания с наддувом и предварительным охлаждением – 40–50%, динамомашин и генераторов большой мощности – 95%, трансформаторов – 98%.
Задачу, в которой нужно найти КПД или он известен, надо начать с логического рассуждения – какая работа является полезной, а какая затраченной.
Закон сохранения механической энергии
К оглавлению…
Полной механической энергией называется сумма кинетической энергии (т.е. энергии движения) и потенциальной (т.е. энергии взаимодействия тел силами тяготения и упругости):
Если механическая энергия не переходит в другие формы, например, во внутреннюю (тепловую) энергию, то сумма кинетической и потенциальной энергии остаётся неизменной. Если же механическая энергия переходит в тепловую, то изменение механической энергии равно работе силы трения или потерям энергии, или количеству выделившегося тепла и так далее, другими словами изменение полной механической энергии равно работе внешних сил:
Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему (т.е. такую в которой не действует внешних сил, и их работа соответственно равна нолю) и взаимодействующих между собой силами тяготения и силами упругости, остается неизменной:
Это утверждение выражает закон сохранения энергии (ЗСЭ) в механических процессах. Он является следствием законов Ньютона. Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой силами упругости и тяготения. Во всех задачах на закон сохранения энергии всегда будет как минимум два состояния системы тел. Закон гласит, что суммарная энергия первого состояния будет равна суммарной энергии второго состояния.
Алгоритм решения задач на закон сохранения энергии:
- Найти точки начального и конечного положения тела.
- Записать какой или какими энергиями обладает тело в данных точках.
- Приравнять начальную и конечную энергию тела.
- Добавить другие необходимые уравнения из предыдущих тем по физике.
- Решить полученное уравнение или систему уравнений математическими методами.
Важно отметить, что закон сохранения механической энергии позволил получить связь между координатами и скоростями тела в двух разных точках траектории без анализа закона движения тела во всех промежуточных точках. Применение закона сохранения механической энергии может в значительной степени упростить решение многих задач.
В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими силами действуют силы трения или силы сопротивления среды. Работа силы трения зависит от длины пути.
Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется. Часть механической энергии превращается во внутреннюю энергию тел (нагревание). Таким образом энергия в целом (т.е. не только механическая) в любом случае сохраняется.
При любых физических взаимодействиях энергия не возникает и не исчезает. Она лишь превращается из одной формы в другую. Этот экспериментально установленный факт выражает фундаментальный закон природы – закон сохранения и превращения энергии.
Одним из следствий закона сохранения и превращения энергии является утверждение о невозможности создания «вечного двигателя» (perpetuum mobile) – машины, которая могла бы неопределенно долго совершать работу, не расходуя при этом энергии.
Разные задачи на работу
К оглавлению…
Если в задаче требуется найти механическую работу, то сначала выберите способ её нахождения:
- Работу можно найти по формуле: A = FS∙cosα. Найдите силу, совершающую работу, и величину перемещения тела под действием этой силы в выбранной системе отсчёта. Обратите внимание, что угол должен быть выбран между векторами силы и перемещения.
- Работу внешней силы можно найти, как разность механической энергии в конечной и начальной ситуациях. Механическая энергия равна сумме кинетической и потенциальной энергий тела.
- Работу по подъёму тела с постоянной скоростью можно найти по формуле: A = mgh, где h – высота, на которую поднимается центр тяжести тела.
- Работу можно найти как произведение мощности на время, т.е. по формуле: A = Pt.
- Работу можно найти, как площадь фигуры под графиком зависимости силы от перемещения или мощности от времени.
Закон сохранения энергии и динамика вращательного движения
К оглавлению…
Задачи этой темы являются достаточно сложными математически, но при знании подхода решаются по совершенно стандартному алгоритму. Во всех задачах Вам придется рассматривать вращение тела в вертикальной плоскости. Решение будет сводиться к следующей последовательности действий:
- Надо определить интересующую Вас точку (ту точку, в которой необходимо определить скорость тела, силу натяжения нити, вес и так далее).
- Записать в этой точке второй закон Ньютона, учитывая, что тело вращается, то есть у него есть центростремительное ускорение.
- Записать закон сохранения механической энергии так, чтобы в нем присутствовала скорость тела в той самой интересной точке, а также характеристики состояния тела в каком-нибудь состоянии про которое что-то известно.
- В зависимости от условия выразить скорость в квадрате из одного уравнения и подставить в другое.
- Провести остальные необходимые математические операции для получения окончательного результата.
При решении задач надо помнить, что:
- Условие прохождения верхней точки при вращении на нити с минимальной скоростью – сила реакции опоры N в верхней точке равна 0. Такое же условие выполняется при прохождении верхней точки мертвой петли.
- При вращении на стержне условие прохождения всей окружности: минимальная скорость в верхней точке равна 0.
- Условие отрыва тела от поверхности сферы – сила реакции опоры в точке отрыва равна нулю.
Неупругие соударения
К оглавлению…
Закон сохранения механической энергии и закон сохранения импульса позволяют находить решения механических задач в тех случаях, когда неизвестны действующие силы. Примером такого рода задач является ударное взаимодействие тел.
Ударом (или столкновением) принято называть кратковременное взаимодействие тел, в результате которого их скорости испытывают значительные изменения. Во время столкновения тел между ними действуют кратковременные ударные силы, величина которых, как правило, неизвестна. Поэтому нельзя рассматривать ударное взаимодействие непосредственно с помощью законов Ньютона. Применение законов сохранения энергии и импульса во многих случаях позволяет исключить из рассмотрения сам процесс столкновения и получить связь между скоростями тел до и после столкновения, минуя все промежуточные значения этих величин.
С ударным взаимодействием тел нередко приходится иметь дело в обыденной жизни, в технике и в физике (особенно в физике атома и элементарных частиц). В механике часто используются две модели ударного взаимодействия – абсолютно упругий и абсолютно неупругий удары.
Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.
При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание). Для описания любых ударов Вам нужно записать и закон сохранения импульса, и закон сохранения механической энергии с учетом выделяющейся теплоты (предварительно крайне желательно сделать рисунок).
Абсолютно упругий удар
К оглавлению…
Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел. Во многих случаях столкновения атомов, молекул и элементарных частиц подчиняются законам абсолютно упругого удара. При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии. Простым примером абсолютно упругого столкновения может быть центральный удар двух бильярдных шаров, один из которых до столкновения находился в состоянии покоя.
Центральным ударом шаров называют соударение, при котором скорости шаров до и после удара направлены по линии центров. Таким образом, пользуясь законами сохранения механической энергии и импульса, можно определить скорости шаров после столкновения, если известны их скорости до столкновения. Центральный удар очень редко реализуется на практике, особенно если речь идет о столкновениях атомов или молекул. При нецентральном упругом соударении скорости частиц (шаров) до и после столкновения не направлены по одной прямой.
Частным случаем нецентрального упругого удара может служить соударения двух бильярдных шаров одинаковой массы, один из которых до соударения был неподвижен, а скорость второго была направлена не по линии центров шаров. В этом случае векторы скоростей шаров после упругого соударения всегда направлены перпендикулярно друг к другу.
Законы сохранения. Сложные задачи
К оглавлению…
Несколько тел
В некоторых задачах на закон сохранения энергии тросы с помощью которых перемещаются некие объекты могут иметь массу (т.е. не быть невесомыми, как Вы могли уже привыкнуть). В этом случае работу по перемещению таких тросов (а именно их центров тяжести) также нужно учитывать.
Если два тела, соединённые невесомым стержнем, вращаются в вертикальной плоскости, то:
- выбирают нулевой уровень для расчёта потенциальной энергии, например на уровне оси вращения или на уровне самой нижней точки нахождения одного из грузов и обязательно делают чертёж;
- записывают закон сохранения механической энергии, в котором в левой части записывают сумму кинетической и потенциальной энергии обоих тел в начальной ситуации, а в правой части записывают сумму кинетической и потенциальной энергии обоих тел в конечной ситуации;
- учитывают, что угловые скорости тел одинаковы, тогда линейные скорости тел пропорциональны радиусам вращения;
- при необходимости записывают второй закон Ньютона для каждого из тел в отдельности.
Разрыв снаряда
В случае разрыва снаряда выделяется энергия взрывчатых веществ. Чтобы найти эту энергию надо от суммы механических энергий осколков после взрыва отнять механическую энергию снаряда до взрыва. Также будем использовать закон сохранения импульса, записанный, в виде теоремы косинусов (векторный метод) или в виде проекций на выбранные оси.
Столкновения с тяжёлой плитой
Пусть навстречу тяжёлой плите, которая движется со скоростью v, движется лёгкий шарик массой m со скоростью uн. Так как импульс шарика много меньше импульса плиты, то после удара скорость плиты не изменится, и она будет продолжать движение с той же скоростью и в том же направлении. В результате упругого удара, шарик отлетит от плиты. Здесь важно понять, что не поменяется скорость шарика относительно плиты. В таком случае, для конечной скорости шарика получим:
Таким образом, скорость шарика после удара увеличивается на удвоенную скорость стены. Аналогичное рассуждение для случая, когда до удара шарик и плита двигались в одном направлении, приводит к результату согласно которому скорость шарика уменьшается на удвоенную скорость стены:
Задачи о максимальных и минимальных значениях энергии сталкивающихся шаров
В задачах такого типа главное понять, что потенциальная энергия упругой деформации шаров максимальна, если кинетическая энергия их движения минимальна – это следует из закона сохранения механической энергии. Сумма кинетических энергий шаров минимальна в тот момент, когда скорости шаров будут одинаковы по величине и направлены в одном направлении. В этот момент относительная скорость шаров равна нулю, а деформация и связанная с ней потенциальная энергия максимальна.
На чтение 4 мин Просмотров 5.7к. Опубликовано 21 октября, 2020
Энергия — что это в физике, как понять на какую энергию задача, что такое закон сохранения энергии, кинетическая энергия, мощность, потенциальная энергия и формула мощности, формула работы все это мы с вами сейчас изучим. Это базовые понятия физики, которые разберем подробно.
Содержание
- Что такое энергия в физике
- Энергия и работа
- Кинетическая энергия
- Потенциальная энергия
- Закон сохранения энергии
- Закон сохранения механической энергии
- Закон сохранения энергии для математического маятника
- Потенциальная энергия пружины
Что такое энергия в физике
Энергия — скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие.
В механике есть два вида энергии: кинетическая энергия и потенциальная энергия. Их сумма называется полной механической энергией.
Энергия и работа
Энергия является мерой способности физической системы совершить работу, поэтому количественно энергия и работа выражаются в одних единицах (джоулях, [Дж]).
Механическая работа численно равна изменению механической энергии. Эту связь работы и энергии мы легко можем почувствовать на себе: например, если провести день очень активно, то к вечеру никаких сил и энергии не останется.
В механике принято считать, что работу по перемещению тела из одного положения в другое совершает сила. Работу силы можно вычислить по формуле:
A=F∙s∙cosα,
где F — сила, совершающая работу, [H];
S — перемещение тела, [м];
α — угол между направлением силы и направлением перемещения.
Если угол α острый, то работа силы положительна, если прямой, то работа равна нулю, если тупой, то работа отрицательна.
Кинетическая энергия
Кинетическая энергия — это энергия движения тела. Кинетическая энергия зависит только от скорости и от массы тела, и определяется формулой:
.
где m — масса тела, [кг],
v — скорость тела, [м/с].
Если тело покоится, его кинетическая энергия равна нулю.
Движущееся тело обладает способностью совершить работу. Например, шар для боулинга способен сбить все 10 кеглей.
Потенциальная энергия
Потенциальная энергия — это энергия взаимодействия тел или частей тела между собой или с внешними полями. Основной физический смысл имеет не само потенциальной энергии, а её изменение. Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Любая физическая система стремится к состоянию с наименьшей потенциальной энергией.
Корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тела, но не от траектории его. Такие силы называются консервативными (потенциальными).
Например, работа силы тяжести не зависит от траектории перемещения тела и равна mgh.
Закон сохранения энергии
Энергия замкнутой физической системы сохраняется. Замкнутой называется система, в которой действуют только консервативные силы.
Закон сохранения механической энергии
Общая сумма потенциальной и кинетической энергии тела остается неизменной, если действуют только силы упругости и тяготения, а сила трения отсутствует.
Eкин+Eпот=const
Потенциальная энергия в поле силы тяжести выражается формулой:
Eпот=mgh
где m — масса тела, [кг],
g — ускорение свободного падения, [Н/кг] или [м/c2].
h — высота положения тела над поверхностью, [м].
За нулевое положение тела может быть принято любое удобное нам положение в зависимости от условий, проводимых опыта и измерений. Это может быть поверхность пола, стола, Земли и так далее.
Закон сохранения энергии для математического маятника
Закон сохранения энергии в поле силы тяжести хорошо иллюстрируется движением математического маятника.
В положении 1 и 3 шарик находится в состоянии покоя на высоте h, его кинетическая энергия равна нулю, а потенциальная равна mgh. При переходе из положения 1 в положение 2 высота и потенциальная энергия уменьшаются, но зато скорость и кинетическая энергия увеличиваются, и в положении 2 кинетическая энергия максимальна и равна mv2/2, а потенциальная энергия минимальна и равна нулю.
Таким образом,
Поднятый над землей груз работы не совершает, но может совершить, если начнет падать вниз. Например, потенциальная энергия падающей воды может превратиться в механическую энергию жернова.
Потенциальная энергия пружины
Потенциальная энергия характеризует взаимодействие между собой частей тела и приближённо выражается формулой:
где k — жёсткость деформированного тела, [Н/м],
Δx — смещение от положения равновесия.
Потенциальная энергия пружины равна нулю, когда пружина не растянута.
Сжатая пружина, распрямляясь, может совершить работу, например, поднять вверх небольшой груз.
Внутренняя энергия тела (обозначается как E или U) — это сумма энергий молекулярных взаимодействий и тепловых движений молекул. Внутреннюю энергию тела нельзя измерить напрямую.
Предыдущий урок: Физика для чайников. Урок 10. Вывод закон сохранения импульса
Итак, вот постепенно мы добрались и до понятия энергии. Надо сказать, что энергия – это весьма интересная штука. Вот такое определение дает на википедия: «Энергия — действие, деятельность, сила, мощь) — скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие». Согласитесь, не очень понятно. Еще более странно, что существует какой-то закон сохранения энергии, согласно которому, энергия не исчезает бесследно и не появился из ниоткуда. По научному он звучит так: «Закон сохранения энергии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени».
На самом деле, этот сохранения энергии выполнялся только для замкнутой системы. Этот как закон сохранения импульса (см. прошлый урок), выводиться аналогично.
Энергия бывают многих разных видов. Разберем некоторые из них.
Кинетическая энергия. Это энергия движущегося тела. Она пропорциональна массе и квадрату скорости, и именно:
В этой формуле E – это энергия, m – масса тела, v – его скорость.
Почему формула именно такая? Дело в том, что кинетическая энергия – эта работа, которую совершит сила, перемещая тело заданной массы на заданное расстояние. Эта работа измеряется в Н*м (Ньютонах на метр). Другое название данной единицы – Джоуль (Дж). Но как связаны расстояние, сила, масса и скорость? Согласно второму закону Ньютона, силы равна произведению массы на ускорение. А пройдённое расстояние равноускоренного тела вычисляется по формуле:
Помните в уроке Физика для чайников. Урок 4. Прямолинейное движение я говорил, что это важная формула? Не правда, ли, формула кинетической энергии похожа на нее? Напомню, что здесь S – пройденное расстояние, a – ускорение, t – время.
А теперь в определении энергии как силы на единицу длины и выполним подстановку:
Здесь F – это сила, v/t – это ускорение (изменение скорости за единицу времени).
Потенциальная энергия. Предположим, Сизиф поднял камень, массой 1 тонна на высоту 1 километр. Когда он толкал камень в гору, он совершал работу. Тратил энергию. Но камень остался неподвижный. Вопрос: куда делась эта энергия? По закону сохранения энергии она же не могла бесследно исчезнуть? И она не исчезла. А превратилась в потенциальную энергию. Чем равна потенциальная энергия? А она равна работе силы тяжести (точнее, работе против силы тяжести):
где h – высота, на которую поднято тело, g – ускорение свободного падения, примерно 9.8 м/с^2, ну а m – масса тела.
В нашем примере Сизиф поднял камень массой 1 тонну на высотку 1 километр, значит, его потенциальная энергия равна
Если камень вдруг скатиться с горы, то его потенциальная энергия превратиться в кинетическую, и горе тому, кого он сшибет.
Тепловая энергия. До сих пор мы рассматривали идеальные случаи (сферического коня в вакууме, так сказать). Но в реальном мире существует сила трения. Вот едет автомобиль, за счет работы двигателя к нему приложена сила, которая двигает его вперед. Но почему при этом скорость автомобиля остается после разгона одинаковой? Почему автомобиль не может разгонятся вечно? Все дело в том, что на него действует сила трения. С одной стороны, работа двигателя толкает автомобиль вперед, с другой стороны тормозит сила терния. Они друг друга уравновешивают, и потому, согласно первому закону Ньютона, автомобиль продолжает движение с одной и той же скоростью.
Но тут получается, что сила, с которой двигатель двигает автомобиль, совершает работу, с затратой энергии. А куда девается эта энергия? Она уходит в тепловую энергию. Если вы будете интенсивно тереть друг о друга две деревяшки, то они нагреться. И могут даже загореться. В древние времена именно так и добывали огонь.
Существует и обратное преобразование: тепловая энергия в кинетическую. Например, нагретый пар толкает поршень, который вращает колесо (паровой двигатель).
Другие виды энергии. Кроме кинетической, тепловой и потенциальной, существует еще множество других видов энергии. Например, электрическая, химическая, ядерная. Вообще, парадоксально, но факт, материя может превращаться в энергию и энергия в материю. Это зафиксировано в знаменитой формуле Эйнштейна:
Здесь m – масса, c – скорость света, примерно 300 миллионов метров в секунду (300 тыс. км/с). Но в расчета используются именно метры в секунду. Это значит, что в одном килограмме вещества запасено 9*10^16 (90 тыс. триллионов) Джоулей энергии. Для сравнения, энергия взрыва атомной бомбы порядка 2 *10^14 Дж, почти в четыреста раз меньше.
Подытожим. Мы познакомились с понятием энергии. Возможно, вы все еще не совсем поняли, что это такое. Не страшно, даже сами физики толком не знают, а что же такое энергия. Поэтому, просто примите как факт, что энергия – это такая неведомая фигня, которая описывается формулами и которая подчиняется закону сохранения энергии. Но если сказать простыми словами, очень утрированно, то энергия – это способность совершать полезную работу. И еще, немаловажно: халявной энергии не бывает и вечный двигатель невозможен.
В будущих уроках (когда мы будем изучать термодинамику), вы познакомитесь с энергией поближе.
Следующий урок: Физика для чайников. Урок 12. Термодинамика