Как найти этилен уравнение

Этилен (этен), получение, свойства, химические реакции.

Этилен (этен), C2H4 –  органическое вещество класса алкенов. Этилен имеет двойную углерод-углеродную связь и поэтому относится к ненасыщенным или непредельным углеводородам.

Этилен (этен), формула, газ, характеристики

Физические свойства этилена (этена)

Химические свойства этилена (этена)

Получение этилена (этена)

Химические реакции – уравнения получения этилена (этена)

Применение и использование этилена (этена)

Этилен (этен), формула, газ, характеристики:

Этилен (этен) –  органическое вещество класса алкенов, состоящий из двух атомов углерода и четырех атомов водорода. Этилен имеет двойную углерод-углеродную связь и поэтому относится к ненасыщенным или непредельным углеводородам.

Химическая формула этилена C2H4, рациональная формула H2CCH2, структурная формула CH2=CH2. Изомеров не имеет.

Строение молекулы:

Этилен

Этилен – бесцветный газ, без вкуса, со слабым запахом. Легче воздуха.

Этилен является фитогормоном, т.е. низкомолекулярным органическим веществом, вырабатываемым растениями и имеющим регуляторные функции. Он образуется в тканях самого растения и выполняет в жизненном цикле растений многообразные функции, среди которых контроль развития проростка, созревание плодов (в частности, фруктов), распускание бутонов (процесс цветения), старение и опадание листьев и цветков, участие в реакции растений на биотический и абиотический стресс, коммуникации между разными органами растений и между растениями в популяции.

Пожаро- и взрывоопасен.

Плохо растворяется в воде. Зато хорошо растворяется в диэтиловом эфире и углеводородах.

Этилен по токсикологической характеристике относится к веществам 4-го класса опасности (малоопасным веществам) по ГОСТ 12.1.007.

Этилен — самое производимое органическое соединение в мире.

Физические свойства этилена (этена):

Наименование параметра: Значение:
Цвет без цвета
Запах со слабым запахом
Вкус без вкуса
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) газ
Плотность (при 20 °C и атмосферном давлении 1 атм.), кг/м3 1,178
Плотность (при 0 °C и атмосферном давлении 1 атм.), кг/м3 1,26
Температура плавления, °C -169,2
Температура кипения, °C -103,7
Температура вспышки, °C 136,1
Температура самовоспламенения, °C 475,6
Критическая температура*, °C 9,6
Критическое давление, МПа 5,033
Взрывоопасные концентрации смеси газа с воздухом, % объёмных от 2,75 до 36,35
Удельная теплота сгорания, МДж/кг 46,988
Коэффициент теплопроводности (при 0 °C и атмосферном давлении 1 атм.), Вт/(м·К) 0,0163
Коэффициент теплопроводности (при 50 °C и атмосферном давлении 1 атм.), Вт/(м·К) 0,0209
Молярная масса, г/моль 28,05

* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.

Химические свойства этилена (этена):

Этилен — химически активное вещество. Так как в молекуле между атомами углерода имеется двойная связь, то одна из них, менее прочная, легко разрывается, и по месту разрыва связи происходит присоединение, замещение, окисление, полимеризация молекул.

Химические свойства этилена аналогичны свойствам других представителей ряда алкенов. Поэтому для него характерны следующие химические реакции:

  1. 1. каталитическое гидрирование (восстановление) этилена:

CH2=CH2 + H2 → CH3-CH3 (kat = Ni, Pd, Pt, to).

  1. 2. галогенирование этилена:

CH2=CH2 + Br2 → CH2Br -CH2Br.

Однако при нагревании этилена до температуры 300 oC разрыва двойной углерод-углеродной связи не происходит – реакция галогенирования протекает по механизму радикального замещения:

CH2=CH2  + Br2 → CH2=CH-Br + HBr (t = 300 oC).

  1. 3. гидрогалогенирование этилена:

CH2=CH2 + HBr → CH3-CH2Br.

  1. 4. гидратация этилена:

CH2=CH2 + H2O → CH3-CH2ОН (H+, to).

Реакция происходит в присутствии минеральных кислот (серной, фосфорной). В результате данной химической реакции образуется этанол.

  1. 5. окисление этилена:

Этилен легко окисляется. В зависимости от условий проведения реакции окисления этилена могут быть получены различные вещества: многоатомные спирты, эпоксиды или альдегиды.

Например,

2CH2=CH2 + O2 → 2C2OH4 (kat = Ag, to).

В результате образуется эпоксид.

2CH2=CH2 + O2 → 2CH3-C(O)H (kat = PdCl2, CuCl, t =  200oС ).

В результате образуется ацетальдегид.

  1. 6. горение этилена:

CH2=CH2 + 3O2 → 2CO2 + 2H2O.

В результате горения этилена происходит разрыв всех связей в молекуле, а продуктами реакции являются углекислый газ и вода.

  1. 7. полимеризация этилена:

nCH2=CH2 → (-CH2-CH2-)n (kat, to).

Получение этилена (этена). Химические реакции – уравнения получения этилена (этена):

Этилен получают как в лабораторных условиях, так и в промышленных масштабах.

В промышленных масштабах этилен получается в результате следующей химической реакции:

  1. 1. каталитическое дегидрирование этана:

CH3-CH3 → CH2=CH2 + H2 (kat = Pt, Ni, Al2O3, Cr2O3, to = 400-600 °C).

Этилен в лабораторных условиях получается в результате следующих химических реакций:

  1. 1. дегидратация этанола:

CH3-CH2-OH → CH2=CH2 + H2O (H2SO4 (conc), to = 170).

  1. 2. дегалогенирования дигалогенпроизводных этана:

CH3-CH2-Br + NaOH → CH2=CH2 + NaBr + H2O (to);

Cl-CH2-CH2-Cl + Zn → CH2=CH2 + ZnCl2.

Cl-CH2-CH2-Cl + Mg → CH2=CH2 + MgCl2.

  1. 3. неполное гидрирование ацетилена:

CH≡CH + H2 → CH2=CH2 (Pd, to).

  1. 4. дегидрогалогенирование галогенпроизводных алканов под действием спиртовых растворов щелочей:

CH3-CH2-Br + KOH → CH2 = CH2 + KBr + H2O.

Применение и использование этилена (этена):

– как сырье в химической промышленности для органического синтеза различных органических соединений: галогенпроизводных, спиртов (этанола, этиленгликоля), винилацетата, дихлорэтан, винилхлорида, окиси этилена, полиэтилена, стирола, уксусной кислоты, этилбензола, этиленгликоля и пр.,

– в производстве полимеров.

Примечание: © Фото //www.pexels.com, //pixabay.com

как получить этилен реакция ацетилен этен 1 2 вещество этилен кислород водород связь является углекислый газ бромная вода
уравнение реакции масса объем полное сгорание моль молекула смесь превращение горение получение этилена
напишите уравнение реакций этилен

Коэффициент востребованности
39 914

1

H

1,008

1s1

2,2

Бесцветный газ

пл=-259°C

кип=-253°C

2

He

4,0026

1s2

Бесцветный газ

кип=-269°C

3

Li

6,941

2s1

0,99

Мягкий серебристо-белый металл

пл=180°C

кип=1317°C

4

Be

9,0122

2s2

1,57

Светло-серый металл

пл=1278°C

кип=2970°C

5

B

10,811

2s2 2p1

2,04

Темно-коричневое аморфное вещество

пл=2300°C

кип=2550°C

6

C

12,011

2s2 2p2

2,55

Прозрачный (алмаз) / черный (графит) минерал

пл=3550°C

кип=4830°C

7

N

14,007

2s2 2p3

3,04

Бесцветный газ

пл=-210°C

кип=-196°C

8

O

15,999

2s2 2p4

3,44

Бесцветный газ

пл=-218°C

кип=-183°C

9

F

18,998

2s2 2p5

4,0

Бледно-желтый газ

пл=-220°C

кип=-188°C

10

Ne

20,180

2s2 2p6

Бесцветный газ

пл=-249°C

кип=-246°C

11

Na

22,990

3s1

0,93

Мягкий серебристо-белый металл

пл=98°C

кип=892°C

12

Mg

24,305

3s2

1,31

Серебристо-белый металл

пл=649°C

кип=1107°C

13

Al

26,982

3s2 3p1

1,61

Серебристо-белый металл

пл=660°C

кип=2467°C

14

Si

28,086

3s2 3p2

1,9

Коричневый порошок / минерал

пл=1410°C

кип=2355°C

15

P

30,974

3s2 3p3

2,2

Белый минерал / красный порошок

пл=44°C

кип=280°C

16

S

32,065

3s2 3p4

2,58

Светло-желтый порошок

пл=113°C

кип=445°C

17

Cl

35,453

3s2 3p5

3,16

Желтовато-зеленый газ

пл=-101°C

кип=-35°C

18

Ar

39,948

3s2 3p6

Бесцветный газ

пл=-189°C

кип=-186°C

19

K

39,098

4s1

0,82

Мягкий серебристо-белый металл

пл=64°C

кип=774°C

20

Ca

40,078

4s2

1,0

Серебристо-белый металл

пл=839°C

кип=1487°C

21

Sc

44,956

3d1 4s2

1,36

Серебристый металл с желтым отливом

пл=1539°C

кип=2832°C

22

Ti

47,867

3d2 4s2

1,54

Серебристо-белый металл

пл=1660°C

кип=3260°C

23

V

50,942

3d3 4s2

1,63

Серебристо-белый металл

пл=1890°C

кип=3380°C

24

Cr

51,996

3d5 4s1

1,66

Голубовато-белый металл

пл=1857°C

кип=2482°C

25

Mn

54,938

3d5 4s2

1,55

Хрупкий серебристо-белый металл

пл=1244°C

кип=2097°C

26

Fe

55,845

3d6 4s2

1,83

Серебристо-белый металл

пл=1535°C

кип=2750°C

27

Co

58,933

3d7 4s2

1,88

Серебристо-белый металл

пл=1495°C

кип=2870°C

28

Ni

58,693

3d8 4s2

1,91

Серебристо-белый металл

пл=1453°C

кип=2732°C

29

Cu

63,546

3d10 4s1

1,9

Золотисто-розовый металл

пл=1084°C

кип=2595°C

30

Zn

65,409

3d10 4s2

1,65

Голубовато-белый металл

пл=420°C

кип=907°C

31

Ga

69,723

4s2 4p1

1,81

Белый металл с голубоватым оттенком

пл=30°C

кип=2403°C

32

Ge

72,64

4s2 4p2

2,0

Светло-серый полуметалл

пл=937°C

кип=2830°C

33

As

74,922

4s2 4p3

2,18

Зеленоватый полуметалл

субл=613°C

(сублимация)

34

Se

78,96

4s2 4p4

2,55

Хрупкий черный минерал

пл=217°C

кип=685°C

35

Br

79,904

4s2 4p5

2,96

Красно-бурая едкая жидкость

пл=-7°C

кип=59°C

36

Kr

83,798

4s2 4p6

3,0

Бесцветный газ

пл=-157°C

кип=-152°C

37

Rb

85,468

5s1

0,82

Серебристо-белый металл

пл=39°C

кип=688°C

38

Sr

87,62

5s2

0,95

Серебристо-белый металл

пл=769°C

кип=1384°C

39

Y

88,906

4d1 5s2

1,22

Серебристо-белый металл

пл=1523°C

кип=3337°C

40

Zr

91,224

4d2 5s2

1,33

Серебристо-белый металл

пл=1852°C

кип=4377°C

41

Nb

92,906

4d4 5s1

1,6

Блестящий серебристый металл

пл=2468°C

кип=4927°C

42

Mo

95,94

4d5 5s1

2,16

Блестящий серебристый металл

пл=2617°C

кип=5560°C

43

Tc

98,906

4d6 5s1

1,9

Синтетический радиоактивный металл

пл=2172°C

кип=5030°C

44

Ru

101,07

4d7 5s1

2,2

Серебристо-белый металл

пл=2310°C

кип=3900°C

45

Rh

102,91

4d8 5s1

2,28

Серебристо-белый металл

пл=1966°C

кип=3727°C

46

Pd

106,42

4d10

2,2

Мягкий серебристо-белый металл

пл=1552°C

кип=3140°C

47

Ag

107,87

4d10 5s1

1,93

Серебристо-белый металл

пл=962°C

кип=2212°C

48

Cd

112,41

4d10 5s2

1,69

Серебристо-серый металл

пл=321°C

кип=765°C

49

In

114,82

5s2 5p1

1,78

Мягкий серебристо-белый металл

пл=156°C

кип=2080°C

50

Sn

118,71

5s2 5p2

1,96

Мягкий серебристо-белый металл

пл=232°C

кип=2270°C

51

Sb

121,76

5s2 5p3

2,05

Серебристо-белый полуметалл

пл=631°C

кип=1750°C

52

Te

127,60

5s2 5p4

2,1

Серебристый блестящий полуметалл

пл=450°C

кип=990°C

53

I

126,90

5s2 5p5

2,66

Черно-серые кристаллы

пл=114°C

кип=184°C

54

Xe

131,29

5s2 5p6

2,6

Бесцветный газ

пл=-112°C

кип=-107°C

55

Cs

132,91

6s1

0,79

Мягкий серебристо-желтый металл

пл=28°C

кип=690°C

56

Ba

137,33

6s2

0,89

Серебристо-белый металл

пл=725°C

кип=1640°C

57

La

138,91

5d1 6s2

1,1

Серебристый металл

пл=920°C

кип=3454°C

58

Ce

140,12

f-элемент

Серебристый металл

пл=798°C

кип=3257°C

59

Pr

140,91

f-элемент

Серебристый металл

пл=931°C

кип=3212°C

60

Nd

144,24

f-элемент

Серебристый металл

пл=1010°C

кип=3127°C

61

Pm

146,92

f-элемент

Светло-серый радиоактивный металл

пл=1080°C

кип=2730°C

62

Sm

150,36

f-элемент

Серебристый металл

пл=1072°C

кип=1778°C

63

Eu

151,96

f-элемент

Серебристый металл

пл=822°C

кип=1597°C

64

Gd

157,25

f-элемент

Серебристый металл

пл=1311°C

кип=3233°C

65

Tb

158,93

f-элемент

Серебристый металл

пл=1360°C

кип=3041°C

66

Dy

162,50

f-элемент

Серебристый металл

пл=1409°C

кип=2335°C

67

Ho

164,93

f-элемент

Серебристый металл

пл=1470°C

кип=2720°C

68

Er

167,26

f-элемент

Серебристый металл

пл=1522°C

кип=2510°C

69

Tm

168,93

f-элемент

Серебристый металл

пл=1545°C

кип=1727°C

70

Yb

173,04

f-элемент

Серебристый металл

пл=824°C

кип=1193°C

71

Lu

174,96

f-элемент

Серебристый металл

пл=1656°C

кип=3315°C

72

Hf

178,49

5d2 6s2

Серебристый металл

пл=2150°C

кип=5400°C

73

Ta

180,95

5d3 6s2

Серый металл

пл=2996°C

кип=5425°C

74

W

183,84

5d4 6s2

2,36

Серый металл

пл=3407°C

кип=5927°C

75

Re

186,21

5d5 6s2

Серебристо-белый металл

пл=3180°C

кип=5873°C

76

Os

190,23

5d6 6s2

Серебристый металл с голубоватым оттенком

пл=3045°C

кип=5027°C

77

Ir

192,22

5d7 6s2

Серебристый металл

пл=2410°C

кип=4130°C

78

Pt

195,08

5d9 6s1

2,28

Мягкий серебристо-белый металл

пл=1772°C

кип=3827°C

79

Au

196,97

5d10 6s1

2,54

Мягкий блестящий желтый металл

пл=1064°C

кип=2940°C

80

Hg

200,59

5d10 6s2

2,0

Жидкий серебристо-белый металл

пл=-39°C

кип=357°C

81

Tl

204,38

6s2 6p1

Серебристый металл

пл=304°C

кип=1457°C

82

Pb

207,2

6s2 6p2

2,33

Серый металл с синеватым оттенком

пл=328°C

кип=1740°C

83

Bi

208,98

6s2 6p3

Блестящий серебристый металл

пл=271°C

кип=1560°C

84

Po

208,98

6s2 6p4

Мягкий серебристо-белый металл

пл=254°C

кип=962°C

85

At

209,98

6s2 6p5

2,2

Нестабильный элемент, отсутствует в природе

пл=302°C

кип=337°C

86

Rn

222,02

6s2 6p6

2,2

Радиоактивный газ

пл=-71°C

кип=-62°C

87

Fr

223,02

7s1

0,7

Нестабильный элемент, отсутствует в природе

пл=27°C

кип=677°C

88

Ra

226,03

7s2

0,9

Серебристо-белый радиоактивный металл

пл=700°C

кип=1140°C

89

Ac

227,03

6d1 7s2

1,1

Серебристо-белый радиоактивный металл

пл=1047°C

кип=3197°C

90

Th

232,04

f-элемент

Серый мягкий металл

91

Pa

231,04

f-элемент

Серебристо-белый радиоактивный металл

92

U

238,03

f-элемент

1,38

Серебристо-белый металл

пл=1132°C

кип=3818°C

93

Np

237,05

f-элемент

Серебристо-белый радиоактивный металл

94

Pu

244,06

f-элемент

Серебристо-белый радиоактивный металл

95

Am

243,06

f-элемент

Серебристо-белый радиоактивный металл

96

Cm

247,07

f-элемент

Серебристо-белый радиоактивный металл

97

Bk

247,07

f-элемент

Серебристо-белый радиоактивный металл

98

Cf

251,08

f-элемент

Нестабильный элемент, отсутствует в природе

99

Es

252,08

f-элемент

Нестабильный элемент, отсутствует в природе

100

Fm

257,10

f-элемент

Нестабильный элемент, отсутствует в природе

101

Md

258,10

f-элемент

Нестабильный элемент, отсутствует в природе

102

No

259,10

f-элемент

Нестабильный элемент, отсутствует в природе

103

Lr

266

f-элемент

Нестабильный элемент, отсутствует в природе

104

Rf

267

6d2 7s2

Нестабильный элемент, отсутствует в природе

105

Db

268

6d3 7s2

Нестабильный элемент, отсутствует в природе

106

Sg

269

6d4 7s2

Нестабильный элемент, отсутствует в природе

107

Bh

270

6d5 7s2

Нестабильный элемент, отсутствует в природе

108

Hs

277

6d6 7s2

Нестабильный элемент, отсутствует в природе

109

Mt

278

6d7 7s2

Нестабильный элемент, отсутствует в природе

110

Ds

281

6d9 7s1

Нестабильный элемент, отсутствует в природе

Металлы

Неметаллы

Щелочные

Щелоч-зем

Благородные

Галогены

Халькогены

Полуметаллы

s-элементы

p-элементы

d-элементы

f-элементы

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

Please wait.

We are checking your browser. gomolog.ru

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6dfa8502882c6b3f • Your IP : 85.95.188.35 • Performance & security by Cloudflare

Химические свойства этилена. Формула этилена

Непредельные углеводороды с двойной химической связью в молекулах относят к группе алкенов. Первым представителем гомологического ряда является этен, или этилен, формула которого: C2H4. Алкены часто называют олефинами. Название является историческим и возникло в 18-м веке, после получения продукта взаимодействия этилена с хлором – этилхлорида, имеющего вид маслянистой жидкости. Тогда этен и назвали маслородным газом. В нашей статье мы изучим его химические свойства, а также получение и применение в промышленности.

Взаимосвязь между строением молекулы и свойствами вещества

Согласно теории строения органических веществ, предложенной М. Бутлеровым, характеристика соединения полностью зависит структурной формулы и вида связей его молекулы. Химические свойства этилена также определяются пространственной конфигурацией атомов, гибридизацией электронных облаков и наличием в его молекуле пи-связи. Два негибридизованных p-электрона атомов углерода перекрываются в плоскости, перпендикулярной плоскости самой молекулы. Формируется двойная связь, разрыв которой обусловливает способность алкенов к реакциям присоединения и полимеризации.

Физические свойства

Этен – это газообразное вещество, с едва уловимым своеобразным запахом. Оно плохо растворимо в воде, но хорошо растворяется в бензоле, тетрахлорметане, бензине и других органических растворителях. Исходя из формулы этилена С2Н4, его молекулярная масса равна 28, то есть этен немного легче воздуха. В гомологическом ряду алкенов с увеличением их массы агрегатное состояние веществ изменяется по схеме: газ – жидкость – твердое соединение.

Получение газа в лаборатории и промышленности

Нагревая этиловый спирт до 140 °С в присутствии концентрированной серной кислоты, можно получить этилен в лабораторных условиях. Еще один способ – отщепление атомов водорода от молекул алканов. Действуя едким натрием или калием на галогензамещенные соединения предельных углеводородов, например на хлорэтан, добывают этилен. В промышленности наиболее перспективным способом его получения является переработка природного газа, а также пиролиз и крекинг нефти. Все химические свойства этилена — реакции гидратации, полимеризации, присоединения, окисления — объясняются наличием в его молекуле двойной связи.

Взаимодействие олефинов с элементами главной подгруппы седьмой группы

Все члены гомологического ряда этена присоединяют атомы галогенов по месту разрыва пи-связи в своей молекуле. Так, водный раствор брома красно-коричневого цвета обесцвечивается, в результате чего образуется уравнение этилена — дибромэтан:

Аналогично протекает реакция с хлором и йодом, в ней присоединение атомов галогенов также происходит по месту разрушения двойной связи. Все соединения – олефины могут взаимодействовать с галогеноводородами: хлороводородом, фтороводородом и т.д. В результате реакции присоединения, протекающей по ионному механизму, образуется вещества – галогенопроизводные предельных углеводородов: хлорэтан, фторэтан.

Промышленное производство этанола

Химические свойства этилена часто используют для получения важных веществ, широко применяемых в промышленности и быту. Например, нагревая этен с водой в присутствии ортофосфорной или серной кислот, под действием катализатора происходит процесс гидратации. Он идет с образованием этилового спирта – многотоннажного продукта, получаемого на химических предприятиях органического синтеза. Механизм реакции гидратации протекает по аналогии с другими реакциями присоединения. Кроме того, взаимодействие этилена с водой также происходит в результате разрыва пи-связи. К свободным валентностям атомов углерода этена присоединяются атомы водорода и гидроксогруппа, входящие в состав молекулы воды.

Гидрогенизация и горение этилена

Несмотря на все вышесказанное, реакция соединения водорода не имеет большого практического значения. Однако она показывает генетическую связь между различными классами органических соединений, в данном случае алканов и олефинов. Присоединяя водород, этен превращается в этан. Противоположный процесс – отщепление от предельных углеводородов атомов водорода приводит к образованию представителя алкенов – этена. Жесткое окисление олефинов, называемое горением, сопровождается выделением большого количества тепла, реакция является экзотермической. Продукты сгорания одинаковы для веществ всех классов углеводородов: алканов, непредельных соединений ряда этилена и ацетилена, ароматических веществ. К ним относятся углекислый газ и вода. Воздух в реакции с этиленом образует взрывчатую смесь.

Реакции окисления

Этен может окисляться раствором перманганата калия. Это одна из качественных реакций, с помощью которой доказывают наличие двойной связи в составе определяемого вещества. Фиолетовая окраска раствора исчезает вследствие разрыва двойной связи и образования двухатомного предельного спирта – этиленгликоля. Продукт реакции имеет широкий спектр применения в промышленности в качестве сырья для получения синтетических волокон, например лавсана, взрывчатых веществ и антифризов. Как видим, химические свойства этилена используются для получения ценных соединений и материалов.

Полимеризация олефинов

Повышение температуры, увеличение давления и применение катализаторов – это необходимые условия для проведения процесса полимеризации. Его механизм отличается от реакций присоединения или окисления. Он представляет собой последовательное связывание многих молекул этилена в местах разрыва двойных связей. Продуктом реакции является полиэтилен, физические характеристики которого зависят от величины n — степени полимеризации. Если она невелика, то вещество находится в жидком агрегатном состоянии. Если показатель приближается к 1000 звеньев, то из такого полимера изготовляют полиэтиленовую пленку, гибкие шланги. Если степень полимеризации превышает 1500 звеньев в цепи, то материал представляет собой твердое вещество белого цвета, жирное на ощупь.

Он идет на изготовление цельнолитых изделий и пластиковых труб. Галогенпроизводное соединение этилена – тефлон обладает антипригарными свойствами и является широко применяемым полимером, востребованным при изготовлении мультиварок, сковород, жаровен. Его высокая способность противостоять истиранию используется в производстве смазок к автомобильным двигателям, а низкая токсичность и толерантность к тканям человеческого организма позволили применять тефлоновые протезы в хирургии.

В нашей статье мы рассмотрели такие химические свойства олефинов, как горение этилена, реакции присоединения, окисления и полимеризации.

Лабораторная работа по химии «Качественное определение углерода в органических веществах. Получение этилена и изучение его свойств»

Разделы: Химия

Тема урока: Качественное определение углерода в органических веществах. Получение этилена и изучение его свойств.

— обеспечить закрепление знаний о химических свойствах предельных и непредельных углеводородов;

— экспериментально подтвердить теоретические знания о лабораторных способах получения этилена и его взаимодействия с веществами;

— наблюдение химических явлений.

— формирование практических умений и навыков обращения с лабораторным оборудованием;

— развить исследовательские умения наблюдать, анализировать, делать выводы.

— развитие познавательного интереса к изучению химии;

— воспитание культуры проведения опытов и соблюдения правил техники безопасности.

Тип занятия: урок формирования и совершенствования умений и навыков.

Вид занятия: лабораторная работа;

Методическое обеспечение: инструкционная карта на выполнение лабораторной работы №7, презентация Power Point.

Оснащение: мультимедиа проектор, компьютер, набор реактивов для выполнения лабораторной работы №7.

Урок сопровождается презентацией. Приложение 1

I. Организационный момент

Приветствие, проверка отсутствующих, проверка готовности студентов к занятию.

II. Сообщение темы занятия, постановка целей урока

Сегодня мы приступаем к выполнению Лабораторной работы №7, по теме: «Качественное определение углерода в органических веществах. Получение этилена и изучение его свойств».

Цель нашего занятия: выявить свойства предельных и непредельных углеводородов с помощью характерных химических реакций. Освоить навыки получения этилена в лабораторных условиях.

Послушайте внимательно притчу, и сделайте выводы:

В очень давние времена при дворе китайского императора жил-был один старый садовник. Цветы и плоды из императорских садов славились по всему Китаю. Росло в саду грушевое дерево, которое плодоносило раз в десять лет, и лишь тогда созревали груши когда было теплое лето. Однажды весной император вызвал своего садовника и приказал, что бы осенью тот принес ему зрелые груши. И пообещал наградить его золотом: «Я дам тебе столько золота, сколько будут весить груши, которые ты мне принесешь. А если не исполнишь — прикажу казнить».

Лето выдалось холодное, не было ни какой надежды, что груши созреют. Но садовник снял недозрелые груши, разложил их в своей комнате и стал окуривать их ладаном. Груши налились, стали янтарно-желтыми и пахли медом. Но садовник не понес груши императору, а раздал детям и после этого исчез. Секрет дозревания груш исчез вместе с ним.

Прошло много столетий прежде чем проверили состав дыма ладана. Оказалось, что в его дыме имеется бесцветный легкий газ — этилен. В настоящее время он используется для дозревания плодов. Назовите другие области применения этилена?

(Предполагаемый ответ: Этилен применяется при изготовлении каучука, растворителей, этилового спирта; при полимеризации этилена получаю полиэтилен — синтетическое высокомолекулярное вещество.)

III. Проверка теоретических знаний студентов

Фронтальный опрос студентов:

1. Какие из этих веществ изомерны между собой?

2. Какое слово лишнее в ряду: метан, пентан, бутен, гексан, октан, декан.

3. Исправьте ошибку в строении молекулы и назовите алкен:

4. Назовите алкен следующего строения:

5. Каким способом в лабораторных условиях получают этилен, запишите уравнение реакции на доске?

(Предполагаемый ответ: Дегидратация спиртов при нагревании и с использованием в качестве катализатора Н2SO4.

Уравнение реакции: )

6. Почему непредельные углеводороды химически более активны, чем предельные?

(Предполагаемый ответ: Непредельные углеводороды химически более активны за счет наличия кратных связей. «Пи»- связь менее прочная, чем «сигма» — связь, поэтому она легко разрушается под действием различных реагентов)

7. Допишите реакцию:

Какие вещества можно идентифицировать с помощью данной реакции

Реакция с бромной водой является качественной реакцией на все непредельные углеводороды.)

8. Какие продукты реакции образуются при полном окислении углеводородов?

(Ответ: При полном окислении углеводородов в избытке кислорода образуются углекислый газ СО2 и вода Н2О .)

9. Вставьте пропущенные слова:

При присоединении веществ типа НХ, где Х = гплоген, — ОН группа, к несимметричным алкенам, атом водорода присоединяется к атому . у . связи, связанному с . числом атомов . .

(Ответ: углерода; кратной (двойной); наибольшим; водорода )

10. Завершите предложение:

Полимеризацией называется процесс соединения одинаковых молекул (мономеров), протекающий за счет разрыва кратных связей, с образованием . .

(Ответ: высокомолекулярного соединения (полимера).)

Часть студентов получает письменные задания: (Приложение 2)

IV. Текущий инструктаж — представление правил техники безопасности с использование презентации.

Прежде чем приступить к самостоятельно работе, необходимо ознакомиться с правилами техники безопасности:

1. Соблюдать осторожность при работе с нагревательными приборами.

2. Спиртовку зажигать, не наклоняя к другой спиртовке, а поднося зажженную спичку к фитилю спиртовки.

3. Гасить спиртовку, накрывая колпаком.

4. При работе с реактивами соблюдать осторожность, не допуская попадания на одежду и кожу.

На данной лабораторной работе вы впервые сталкиваетесь с жидкостями органического происхождения, которые легко проникают в организм в виде паров через кожу. Пары как правило раздражают верхние дыхательные пути, слизистые оболочки глаз и носа.

5. В избежании ожога слизистых оболочек не следует подносить реактивы к лицу, пробовать их на вкус.

V. Самостоятельная работа студентов

Каждый из вас получил инструкционную карту на выполнение лабораторной работы №7. (Приложение 3). Ваша задача подробно изучить инструкционную карту: понять какие цели стоят перед вами при выполнении данной работы; какие умения и навыки вы должны приобрести в ходе выполнения работы. Проверьте соответствует ли набор реактивов заявленному в перечне приборов и реактивов. Еще раз обратите внимания на правила техники безопасности. Тщательно изучите методику проведения опытов, и проделайте опыты. Оформите все записи в тетрадь соответственно предъявляемым в инструкционной карте требованиям.

VI. Итоговые отчеты студентов о проделанной работе

Обратите внимание на пункт инструкционной карты «подведение итогов». После того как вы проделаете все опыты и заполните таблицу с данными приступайте к выполнению итогового задания.

1. Объясните, почему при сгорании муки образуется обуглившаяся масса черного цвета, ведь органические вещества сгорая разлагаются на воду и углекислый газ?

(Предполагаемый ответ: масса черного цвета свидетельствует об образовании углерода, это говорит о том, что произошла реакция неполного окисления, то есть при недостатке кислорода.)

2. Какую роль играет концентрированная серная кислота при получении этилена из этилового спирта.

(Предполагаемый ответ: Концентрированная серная кислота выступает катализатором данного процесса.)

3. Запишите уравнение реакции этилена с йодной водой в структурной форме.

4. Объясните, почему этилен обесцвечивает раствор перманганата калия.

(Предполагаемый ответ: Раствор перманганата калия обесцвечивается в при действии на него этиленом потому, что в процессе реакции образуются двухатомные спирты (диолы) — бесцветные вещества.)

Каждый должен предоставить отчет о проделанной работе в виде: грамотна оформленной тетради, заполненной таблицы с данными о проделанных опытах, и выполненным итоговым заданием из инструкционной карты.

(По усмотрению преподавателя задаются дополнительные вопросы.)

VII. Подведение итогов занятия

Если у кого-то есть вопросы прошу их задавать. Все ли вам понятно? Оценки за урок.

VIII. Домашнее задание

Повторить материал учебника со страниц 189-221.

Составьте цепочку превращений используя изученный материал по темам: «Алканы», «Алкены», «Алкадиены», «Алкины».

источники:

http://www.syl.ru/article/373013/himicheskie-svoystva-etilena-formula-etilena

http://urok.1sept.ru/articles/602124

Содержание

  1. Как получают этилен лабораторным способом
  2. Этилен (этен), получение, свойства, химические реакции
  3. Электронное и пространственное строение молекулы
  4. Видео
  5. Получение
  6. Получение этилена (этена). Химические реакции – уравнения получения этилена (этена):
  7. Получение этилена
  8. Примеры решения задач
  9. Этилен (этен), получение, свойства, химические реакции
  10. Этилен (этен), получение, свойства, химические реакции.
  11. Этилен (этен), формула, газ, характеристики:
  12. Физические свойства этилена (этена):
  13. Химические свойства этилена (этена):
  14. Получение этилена (этена). Химические реакции – уравнения получения этилена (этена):
  15. Применение и использование этилена (этена):

Как получают этилен лабораторным способом

Получение этилена и опыты с ним

Реактивы: этанол, серная кислота, бромная вода, раствор перманганата калия, речной песок.

Оборудование: штатив, спиртовка, пробирка с газоотводной трубкой, штатив с пробирками, фильтровальная бумага или вата, спички.

Схема установки:

Проведение эксперимента

В пробирку налейте 3 мл этанола и осторожно добавьте и 9 мл серной кислоты. Затем добавьте немного сухого речного песка (на кончике чайной ложки). Песок обеспечит ровное кипение жидкости, без толчков и выбросов. Вставьте в пробирку пробку с изогнутой газоотводной трубкой. Приготовьте ещё две пробирки: в первую налейте 2-3 мл разбавленного раствора перманганата калия (розовый цвет), во вторую 2-3 мл раствора брома в воде (желто-коричневый цвет). Для получения этилена пробирку с этанолом и серной кислотой осторожно нагрейте в пламени спиртовки. Продолжая нагревание, опустите конец газоотводной трубки в пробирку с перманганатом калия (трубка должна находиться ниже уровня раствора). Пропускайте этилен до полного исчезновения розовой окраски. Смените пробирку и пропустите этилен через раствор бромной воды до полного обесцвечивания раствора брома. Уберите пробирку с обесцвеченным раствором. Протрите конец газоотводной трубки ватой или фильтровальной бумагой, поверните трубку вверх и подожгите выделяющийся газ. Обратите внимание на цвет пламени.

Реакция дегидратации этанола:

Обесцвечивание раствора Br2:

Исчезает окраска брома и образуется 1,2-дибромэтан.

Обесцвечивание водного раствора KMnO4 (без нагревания):

Исчезает окраска перманганата калия и образуется 1,2-этандиол (этиленгликоль).

Получение пропилена и опыты с ним

Пропилен получают аналогично этилену.

В пробирку помещают 3-4 мл изопропилового спирта и 9-12 мл серной кислоты. Осторожно нагревают. Выделяющийся газ пропускают через растворы бромной воды и перманганата калия, наблюдают исчезновение окраски растворов. Поджигают газ у конца газоотводной трубки.

Обесцвечивание раствора Br2:

Исчезает окраска брома и образуется 1,2-дибромпропан.

Обесцвечивание водного раствора KMnO4 (без нагревания):


Исчезает окраска перманганата калия и образуется 1,2-пропандиол (пропиленгликоль).

Источник

Этилен (этен), получение, свойства, химические реакции

Электронное и пространственное строение молекулы

Атомы углерода находятся во втором валентном состоянии (sp 2 —гибридизация). В результате, на плоскости под углом 120° образуются три гибридных облака, которые образуют три σ-связи с углеродом и двумя атомами водорода; p-электрон, который не участвовал в гибридизации, образует в перпендикулярной плоскости π-связь с р-электроном соседнего атома углерода. Так образуется двойная связь между атомами углерода. Молекула имеет плоскостное строение.

Видео

Получение

  1. Этилен в лаборатории получают при нагревании смеси этилового спирта с концентрированной серной кислотой.
  2. Углеводороды ряда этилена можно получить также дегидрированием предельных углеводородов.
  3. На производстве этилен получают из природного газа и при процессах пиролиза нефти.
  4. Углеводороды ряда этилена можно получить при взаимодействии дигалогенопроизводных предельных углеводородов с металлами.
  5. При действии спиртовых растворов щелочей на галогенопроизводные отщепляется галогеноводород и образуется углеводород с двойной связью.

Получение этилена (этена). Химические реакции – уравнения получения этилена (этена):

Этилен получают как в лабораторных условиях, так и в промышленных масштабах.

В промышленных масштабах этилен получается в результате следующей химической реакции:

  1. 1. каталитическое дегидрирование этана :

Этилен в лабораторных условиях получается в результате следующих химических реакций:

  1. 2. дегалогенирования дигалогенпроизводных этана:
  1. 3. неполное гидрирование ацетилена:
  1. 4. дегидрогалогенирование галогенпроизводных алканов под действием спиртовых растворов щелочей:

Получение этилена

Способы получения этилена можно разделить на промышленные и лабораторные. В первом случае этен – это продуктдегидрирования этана, полученного при крекинге нефти.

В лабораторных условиях этилен можно получить при помощи дегидратации этанола (1), дегалогенированиямоно- и дигалогенпроизводных этана (2, 3) или при неполном гидрировании ацетилена (4):

Примеры решения задач

Задание Осуществите ряд превращений: этан → этен → этанол → этен → хлорэтан → бутан. Решение Для получения этена из этана необходимо использовать реакцию дегидрирования этана, которая протекает в присутствии катализатора (Ni, Pd, Pt) и при нагревании: С2H6 →C2H4 + H2. Получение этанола из этена осуществляют по реакции гидратации, протекающей водой в присутствии минеральных кислот (серной, фосфорной): С2H4 + H2O = C2H5OH. Для получения этена из этанола используют реакцию дегидротации: C2H5OH →(t, H2SO4) → C2H4 + H2O. Получение хлорэтана из этена осуществляют по реакции гидрогалогенирования: С2H4 + HCl → C2H5Cl. Для получения бутана из хлорэтана используют реакцию Вюрца: 2C2H5Cl +2Na → C4H10 + 2NaCl.

Задание Сколько граммов потребуется для бромирования 16,8 г алкена, если известно, что при каталитическом гидрировании такого же количества алкена присоединилось 6,72 л водорода? Каков состав и возможное строение исходного углеводорода? Решение Запишем в общем виде уравнения бромирования и гидрирования алкена: CnH2n + Br2 = CnH2nBr2 (1); CnH2n + H2 = CnH2n+2 (2). Рассчитаем количество вещества водорода: n = V / Vm; n(H2) = V(H2) / Vm; n(H2) = 6,72 / 22,4 = 0,3 моль, следовательно, алкена тоже будет 0,3 моль (уравнение 2), а по условию задачи это 16,8 г. Значит молярная масса его будет равна: M = m / n; M(CnH2n) = m(CnH2n) / n(CnH2n); M(CnH2n) = 16,8 / 0,3 = 56 г/моль, что соответствует формуле C4H8. Согласно уравнению (1) n(CnH2n) :n(Br2) = 1:1, т.е. n(Br2) = n(CnH2n) = 0,3 моль. Найдем массу брома: m = n×M; m(Br2) = n(Br2) × M(Br2); M(Br2) = 2×Ar(Br) = 2×80 = 160 г/моль; m(MnO2) = 0,3 × 160 = 48 г. Составим структурные формулы изомеров: бутен-1 (1), бутен-2 (2), 2-метилпропен (3), циклобутан (4). CH2=CH-CH2-CH3 (1); CH3-CH=CH-CH3 (2); CH2=C(CH3)-CH3 (3); C4H8 (4). Ответ Масса брома равна 48 г.

Источник

Этилен (этен), получение, свойства, химические реакции

Этилен (этен), получение, свойства, химические реакции.

Этилен (этен), C2H4 – органическое вещество класса алкенов. Этилен имеет двойную углерод-углеродную связь и поэтому относится к ненасыщенным или непредельным углеводородам.

Этилен (этен), формула, газ, характеристики:

Этилен (этен) – органическое вещество класса алкенов, состоящий из двух атомов углерода и четырех атомов водорода . Этилен имеет двойную углерод -углеродную связь и поэтому относится к ненасыщенным или непредельным углеводородам.

Химическая формула этилена C2H4, рациональная формула H2CCH2, структурная формула CH2=CH2. Изомеров не имеет.

Этилен – бесцветный газ, без вкуса, со слабым запахом. Легче воздуха.

Этилен является фитогормоном, т.е. низкомолекулярным органическим веществом, вырабатываемым растениями и имеющим регуляторные функции. Он образуется в тканях самого растения и выполняет в жизненном цикле растений многообразные функции, среди которых контроль развития проростка, созревание плодов (в частности, фруктов ), распускание бутонов (процесс цветения), старение и опадание листьев и цветков, участие в реакции растений на биотический и абиотический стресс, коммуникации между разными органами растений и между растениями в популяции.

Пожаро- и взрывоопасен.

Плохо растворяется в воде . Зато хорошо растворяется в диэтиловом эфире и углеводородах.

Этилен по токсикологической характеристике относится к веществам 4-го класса опасности (малоопасным веществам) по ГОСТ 12.1.007.

Этилен — самое производимое органическое соединение в мире.

Физические свойства этилена (этена):

Наименование параметра: Значение:
Цвет без цвета
Запах со слабым запахом
Вкус без вкуса
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) газ
Плотность (при 20 °C и атмосферном давлении 1 атм.), кг/м 3 1,178
Плотность (при 0 °C и атмосферном давлении 1 атм.), кг/м 3 1,26
Температура плавления, °C -169,2
Температура кипения, °C -103,7
Температура вспышки, °C 136,1
Температура самовоспламенения, °C 475,6
Критическая температура*, °C 9,6
Критическое давление, МПа 5,033
Взрывоопасные концентрации смеси газа с воздухом, % объёмных от 2,75 до 36,35
Удельная теплота сгорания, МДж/кг 46,988
Коэффициент теплопроводности (при 0 °C и атмосферном давлении 1 атм.), Вт/(м·К) 0,0163
Коэффициент теплопроводности (при 50 °C и атмосферном давлении 1 атм.), Вт/(м·К) 0,0209
Молярная масса, г/моль 28,05

* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.

Химические свойства этилена (этена):

Этилен — химически активное вещество. Так как в молекуле между атомами углерода имеется двойная связь, то одна из них, менее прочная, легко разрывается, и по месту разрыва связи происходит присоединение, замещение, окисление, полимеризация молекул.

Химические свойства этилена аналогичны свойствам других представителей ряда алкенов. Поэтому для него характерны следующие химические реакции:

  1. 1. каталитическое гидрирование(восстановление)этилена:
  1. 2. галогенирование этилена:

Однако при нагревании этилена до температуры 300 o C разрыва двойной углерод-углеродной связи не происходит – реакция галогенирования протекает по механизму радикального замещения:

  1. 3. гидрогалогенирование этилена:
  1. 4. гидратация этилена:

Реакция происходит в присутствии минеральных кислот (серной, фосфорной). В результате данной химической реакции образуется этанол.

  1. 5. окисление этилена:

Этилен легко окисляется. В зависимости от условий проведения реакции окисления этилена могут быть получены различные вещества: многоатомные спирты, эпоксиды или альдегиды.

В результате образуется эпоксид.

В результате образуется ацетальдегид.

  1. 6. горение этилена:

В результате горения этилена происходит разрыв всех связей в молекуле, а продуктами реакции являются углекислый газ и вода .

  1. 7. полимеризация этилена:

Получение этилена (этена). Химические реакции – уравнения получения этилена (этена):

Этилен получают как в лабораторных условиях, так и в промышленных масштабах.

В промышленных масштабах этилен получается в результате следующей химической реакции:

  1. 1. каталитическое дегидрирование этана :

Этилен в лабораторных условиях получается в результате следующих химических реакций:

  1. 2. дегалогенирования дигалогенпроизводных этана:
  1. 3. неполное гидрирование ацетилена:
  1. 4. дегидрогалогенирование галогенпроизводных алканов под действием спиртовых растворов щелочей:

Применение и использование этилена (этена):

– как сырье в химической промышленности для органического синтеза различных органических соединений: галогенпроизводных, спиртов (этанола, этиленгликоля), винилацетата, дихлорэтан, винилхлорида, окиси этилена, полиэтилена , стирола, уксусной кислоты, этилбензола, этиленгликоля и пр.,

Примечание: © Фото //www.pexels.com, //pixabay.com

как получить этилен реакция ацетилен этен 1 2 вещество этилен кислород водород связь является углекислый газ бромная вода
уравнение реакции масса объем полное сгорание моль молекула смесь превращение горение получение этилена
напишите уравнение реакций этилен

Источник

Этилен
Изображение химической структуры
Ethylene-3D-balls.png
Общие
Систематическое
наименование
Этен
Традиционные названия Этилен
Хим. формула C2H4
Рац. формула H2C = CH2
Физические свойства
Молярная масса 28,05 г/моль
Плотность 0,001178 г/см³
Термические свойства
Температура
 • плавления −169,2 °C
 • кипения −103,7 °C
 • вспышки 136,1 °C
 • самовоспламенения 475,6 °C
Классификация
Рег. номер CAS 74-85-1
PubChem 6325
Рег. номер EINECS 200-815-3
SMILES

C=C

InChI

InChI=1S/C2H4/c1-2/h1-2H2

VGGSQFUCUMXWEO-UHFFFAOYSA-N

RTECS KU5340000
ChEBI 18153
ChemSpider 6085
Безопасность
NFPA 704

NFPA 704 four-colored diamond

4

2

2

Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
Логотип Викисклада Медиафайлы на Викискладе

Этиле́н (эте́н, химическая формула — С2H4) — органическое соединение, относящееся к классу непредельных углеводородов — алкенов (олефинов).

При нормальных условиях — бесцветный горючий газ легче воздуха со слабым сладковатым запахом.

Физические свойства[править | править код]

Этилен — это бесцветный горючий газ со слабым сладковатым запахом. Он легче воздуха и частично растворим в воде (25,6 мл в 100 мл воды при 0 °C), этаноле (359 мл в тех же условиях). Хорошо растворяется в диэтиловом эфире и углеводородах.

Содержит двойную связь и поэтому относится к ненасыщенным или непредельным углеводородам. Играет чрезвычайно важную роль в промышленности, а также является фитогормоном.
Этилен — самое производимое органическое соединение в мире[1]; общее мировое производство этилена в 2008 году составило 113 миллионов тонн и продолжает расти на 2—3 % в год[2].

Этилен обладает наркотическим действием. Имеет 4-й класс опасности[3].

Основные химические свойства[править | править код]

Этилен — химически активное вещество. Так как в молекуле между атомами углерода имеется двойная связь, то одна из них, менее прочная, легко разрывается, и по месту разрыва связи происходит присоединение, окисление, полимеризация молекул.

  • Галогенирование — качественная реакция на непредельные соединения (ввиду обесцвечивания бромной воды):
{displaystyle {mathsf {CH_{2}{text{=}}CH_{2}+Br_{2}rightarrow CH_{2}Br{text{-}}CH_{2}Br}}}
  • Гидрирование:
{displaystyle {mathsf {CH_{2}{text{=}}CH_{2}+H_{2}{xrightarrow[{}]{Ni}}CH_{3}{text{-}}CH_{3}}}}
  • Гидрогалогенирование:
{displaystyle {mathsf {CH_{2}{text{=}}CH_{2}+HBrrightarrow CH_{3}CH_{2}Br}}}
  • Гидратация:
{displaystyle {mathsf {CH_{2}{text{=}}CH_{2}+H_{2}O{xrightarrow[{}]{H^{+}}}CH_{3}CH_{2}OH}}}
Реакцию гидратации открыл A.M. Бутлеров. Данная реакция используется для промышленного получения этилового спирта.
  • Окисление — реакция отличия непредельных соединений от предельных с помощью пропускания через раствор перманганата калия этилена, в результате чего раствор обесцветится[4]:
{displaystyle {mathsf {3CH_{2}{text{=}}CH_{2}+2KMnO_{4}+4H_{2}Orightarrow 3CH_{2}OH{text{-}}CH_{2}OH+2MnO_{2}+2KOH}}}
  • Горение:
{displaystyle {mathsf {CH_{2}{text{=}}CH_{2}+3O_{2}rightarrow 2CO_{2}+2H_{2}O}}}
  • Полимеризация — процесс получения полиэтилена:
{displaystyle {mathsf {nCH_{2}{text{=}}CH_{2}rightarrow ({text{-}}CH_{2}{text{-}}CH_{2}{text{-}})_{n}}}}
  • Димеризация[5]
{displaystyle {mathsf {2CH_{2}{text{=}}CH_{2}rightarrow CH_{2}{text{=}}CH{text{-}}CH_{2}{text{-}}CH_{3}}}}

Получение[править | править код]

Этилен стали широко применять в качестве мономера перед Второй мировой войной в связи с необходимостью получения высококачественного изоляционного материала, способного заменить поливинилхлорид. После разработки метода полимеризации этилена под высоким давлением и изучения диэлектрических свойств получаемого полиэтилена началось его производство в мире.

Основным промышленным методом получения этилена является пиролиз жидких дистиллятов нефти или низших насыщенных углеводородов. Реакция проводится в трубчатых печах при +800—950 °С и давлении 0,3 МПа. При использовании в качестве сырья прямогонного бензина выход этилена составляет примерно 30 %. Одновременно с этиленом образуется также значительное количество жидких углеводородов, в том числе и ароматических. При пиролизе газойля выход этилена составляет примерно 15—25 %. Наибольший выход этилена — до 50 % — достигается при использовании в качестве сырья насыщенных углеводородов: этана, пропана и бутана. Их пиролиз проводят в присутствии водяного пара.

При выпуске с производства, при товарно-учётных операциях, при проверке его на соответствие нормативно-технической документации производится отбор проб этилена по процедуре, описанной в ГОСТ 24975.0-89 «Этилен и пропилен. Методы отбора проб». Отбор пробы этилена может производиться и в газообразном и в сжиженном виде в специальные пробоотборники по ГОСТ 14921.

Промышленно получаемый в России этилен должен соответствовать требованиям, изложенным в ГОСТ 25070-2013 «Этилен. Технические условия».

Структура производства[править | править код]

В настоящее время в структуре производства этилена 66 % приходится на крупнотоннажные установки пиролиза, ~17 % — на малотоннажные установки газового пиролиза, ~11 % составляет пиролиз бензина и 8 % падает на пиролиз этана.

Применение[править | править код]

Этилен является ведущим продуктом основного органического синтеза и применяется для получения следующих соединений (перечислены в алфавитном порядке):

  • Винилацетат;
  • Дихлорэтан / винилхлорид (3-е место, 12 % всего объёма);
  • Дибромметан;
  • Окись этилена (2-е место, 14—15 % всего объёма);
  • Полиэтилен (1-е место, до 60 % всего объёма);
  • Стирол;
  • Уксусная кислота;
  • Этилбензол;
  • Этиленгликоль;
  • Этиловый спирт (этилгидрат технический, непищевой)

Этилен в смеси с кислородом использовался в медицине для наркоза вплоть до середины 1980-х годов в СССР и на ближнем Востоке. Этилен является фитогормоном практически у всех растений[6], среди прочего[7] отвечает за опадание иголок у хвойных.

Электронное и пространственное строение молекулы[править | править код]

Атомы углерода находятся во втором валентном состоянии (sp2-гибридизация). В результате, на плоскости под углом 120° образуются три гибридных облака, которые образуют три σ-связи с углеродом и двумя атомами водорода; p-электрон, который не участвовал в гибридизации, образует в перпендикулярной плоскости π-связь с р-электроном соседнего атома углерода. Так образуется двойная связь между атомами углерода. Молекула имеет плоскостное строение.

Биологическая роль[править | править код]

Сигнальный каскад этилена у растений. Этилен легко проникает сквозь клеточную мембрану и связывается с рецепторами, расположенными на эндоплазматическом ретикулуме. Рецепторы после активации высвобождают связанный EIN2. Это активирует каскад передачи сигнала, который приводит к активации экспрессии определённых генов и в конечном итоге к включению специфического ответа на этилен у данного растения в данной фазе созревания. Активированные участки ДНК считываются в мРНК, которая, в свою очередь, в рибосомах считывается в функционирующий белок фермента, который катализирует биосинтез этилена, тем самым продукция этилена в ответ на изначальный этиленовый же сигнал повышается до определённого уровня, запуская каскад реакций созревания растения.

Этилен — первый из обнаруженных газообразных растительных гормонов, обладающий очень широким спектром биологических эффектов[8]. Этилен выполняет в жизненном цикле растений многообразные функции, среди которых контроль развития проростка, созревание плодов (в частности, фруктов)[9], распускание бутонов (процесс цветения), старение и опадание листьев и цветков. Этилен называют также гормоном стресса, так как он участвует в реакции растений на биотический и абиотический стресс, и синтез его в органах растений усиливается в ответ на разного рода повреждения. Кроме того, являясь летучим газообразным веществом, этилен осуществляет быструю коммуникацию между разными органами растений и между растениями в популяции, что важно, в частности, при развитии стресс-устойчивости[10].

К числу наиболее известных функций этилена относится развитие так называемого тройного ответа у этиолированных (выращенных в темноте) проростков при обработке этим гормоном. Тройной ответ включает в себя три реакции: укорочение и утолщение гипокотиля, укорочение корня и усиление апикального крючка (резкий изгиб верхней части гипокотиля). Ответ проростков на этилен крайне важен на первых этапах их развития, так как способствует пробивание ростков к свету[10].

В коммерческом сборе плодов и фруктов используют специальные комнаты или камеры для дозревания плодов, в атмосферу которых этилен впрыскивается из специальных каталитических генераторов, производящих газообразный этилен из жидкого этанола. Обычно для стимулирования дозревания плодов используется концентрация газообразного этилена в атмосфере камеры от 500 до 2000 ppm в течение 24-48 часов. При более высокой температуре воздуха и более высокой концентрации этилена в воздухе дозревание плодов идёт быстрее. Важно, однако, при этом обеспечивать контроль содержания углекислого газа в атмосфере камеры, поскольку высокотемпературное созревание (при температуре выше 20 градусов Цельсия) или созревание при высокой концентрации этилена в воздухе камеры приводит к резкому повышению выделения углекислого газа быстро созревающими плодами, порой до 10 % углекислоты в воздухе спустя 24 часа от начала дозревания, что может привести к углекислотному отравлению как работников, убирающих уже дозревшие плоды, так и самих фруктов[11].

Этилен использовался для стимулирования созревания плодов ещё в Древнем Египте. Древние египтяне намеренно царапали или слегка мяли, отбивали финики, фиги и другие плоды с целью стимулировать их созревание (повреждение тканей стимулирует образование этилена тканями растений). Древние китайцы сжигали деревянные ароматические палочки или ароматические свечи в закрытых помещениях с целью стимулировать созревание персиков (при сгорании свеч или дерева выделяется не только углекислый газ, но и недоокисленные промежуточные продукты горения, в том числе и этилен). В 1864 году было обнаружено, что утечка природного газа из уличных фонарей вызывает торможение роста близлежащих растений в длину, их скручивание, аномальное утолщение стеблей и корней и ускоренное созревание плодов.[8] В 1901 году русский учёный Дмитрий Нелюбов показал, что активным компонентом природного газа, вызывающим эти изменения, является не основной его компонент, метан, а присутствующий в нём в малых количествах этилен[12]. Позднее в 1917 году Сара Дубт доказала, что этилен стимулирует преждевременное опадание листьев[13]. Однако только в 1934 году Гейн обнаружил, что сами растения синтезируют эндогенный этилен.[14]. В 1935 году Крокер предположил, что этилен является растительным гормоном, ответственным за физиологическое регулирование созревания плодов, а также за старение вегетативных тканей растения, опадание листьев и торможение роста[15].

Этилен образуется практически во всех частях высших растений, включая листья, стебли, корни, цветки, мякоть и кожуру плодов и семена.
Образование этилена регулируется множеством факторов, включая как внутренние факторы (например фазы развития растения), так и факторы внешней среды. В течение жизненного цикла растения, образование этилена стимулируется в ходе таких процессов, как оплодотворение (опыление), созревание плодов, опадание листьев и лепестков, старение и гибель растения. Образование этилена стимулируется также такими внешними факторами, как механическое повреждение или ранение, нападение паразитов (микроорганизмов, грибков, насекомых и др.), внешние стрессы и неблагоприятные условия развития, а также некоторыми эндогенными и экзогенными стимуляторами, такими, как ауксины и другие[16].

Цикл биосинтеза этилена начинается с превращения аминокислоты метионина в S-аденозил-метионин (SAMe) при помощи фермента метионин-аденозилтрансферазы. Затем S-аденозил-метионин превращается в 1-аминоциклопропан-1-карбоксиловую кислоту (АЦК, ACC) при помощи фермента 1-аминоциклопропан-1-карбоксилат-синтетазы (АЦК-синтетазы). Активность АЦК-синтетазы лимитирует скорость всего цикла, поэтому регуляция активности этого фермента является ключевой в регуляции биосинтеза этилена у растений. Последняя стадия биосинтеза этилена требует наличия кислорода и происходит при действии фермента аминоциклопропанкарбоксилат-оксидазы (АЦК-оксидазы), ранее известной как этиленобразующий фермент. Биосинтез этилена у растений индуцируется как экзогенным, так и эндогенным этиленом (положительная обратная связь). Активность АЦК-синтетазы и, соответственно, образование этилена повышается также при высоких уровнях ауксинов, в особенности индолуксусной кислоты, и цитокининов.

Этиленовый сигнал у растений воспринимается минимум пятью различными семействами трансмембранных рецепторов, представляющих собой димеры белков. Известен, в частности, рецептор этилена ETR1 у арабидопсиса (Arabidopsis). Гены, кодирующие рецепторы для этилена, были клонированы у арабидопсиса и затем у томата. Этиленовые рецепторы кодируются множеством генов как в геноме арабидопсиса, так и в геноме томатов. Мутации в любом из семейства генов, которое состоит из пяти типов этиленовых рецепторов у арабидопсиса и минимум из шести типов рецепторов у томата, могут привести к нечувствительности растений к этилену и нарушениям процессов созревания, роста и увядания[17]. Последовательности ДНК, характерные для генов этиленовых рецепторов, были обнаружены также у многих других видов растений. Более того, этиленсвязывающий белок был найден даже у цианобактерий[8].

Неблагоприятные внешние факторы, такие, как недостаточное содержание кислорода в атмосфере, наводнение, засуха, заморозки, механическое повреждение (ранение) растения, нападение патогенных микроорганизмов, грибков или насекомых, могут вызывать повышенное образование этилена в тканях растений. Так, например, при наводнении корни растения страдают от избытка воды и недостатка кислорода (гипоксии), что приводит к биосинтезу в них 1-аминоциклопропан-1-карбоксиловой кислоты. АЦК затем транспортируется по проводящим путям в стеблях вверх, до листьев, и в листьях окисляется до этилена. Образовавшийся этилен способствует эпинастическим движениям, приводящим к механическому стряхиванию воды с листьев, а также увяданию и опаданию листьев, лепестков цветков и плодов, что позволяет растению одновременно и избавиться от избытка воды в организме, и сократить потребность в кислороде за счёт сокращения общей массы тканей[18].

Небольшие количества эндогенного этилена также образуются в клетках животных, включая человека, в процессе перекисного окисления липидов. Некоторое количество эндогенного этилена затем окисляется до этиленоксида, который обладает способностью алкилировать ДНК и белки, в том числе гемоглобин (формируя специфический аддукт с N-терминальным валином гемоглобина — N-гидроксиэтил-валин)[19]. Эндогенный этиленоксид также может алкилировать гуаниновые основания ДНК, что приводит к образованию аддукта 7-(2-гидроксиэтил)-гуанина, и является одной из причин присущего всем живым существам риска эндогенного канцерогенеза[20]. Эндогенный этиленоксид также является мутагеном[21][22]. С другой стороны, существует гипотеза, что если бы не образование в организме небольших количеств эндогенного этилена и этиленоксида, то скорость возникновения спонтанных мутаций и соответственно скорость эволюции была бы ниже.

Примечания[править | править код]

  1. Devanney Michael T. Ethylene (англ.). SRI Consulting (сентябрь 2009). Архивировано из оригинала 18 июля 2010 года.
  2. Ethylene (англ.). WP Report. SRI Consulting (январь 2010). Архивировано из оригинала 31 августа 2010 года.
  3. Газохроматографическое измерение массовых концентраций углеводородов: метана, этана, этилена, пропана, пропилена, бутана, альфа-бутилена, изопентана в воздухе рабочей зоны. Методические указания. МУК 4.1.1306-03 (Утв. главным государственным санитарным врачом РФ 30.03.2003) (недоступная ссылка)
  4. Хомченко Г.П. §16.6. Этилен и его гомологи // Химия для поступающих в вузы. — 2-е изд. — М.: Высшая школа, 1993. — С. 345. — 447 с. — ISBN 5-06-002965-4.
  5. В. Ш. Фельдблюм. Димеризация и диспропорционирование олефинов. М.: Химия, 1978
  6. «Рост и развитие растений» В. В. Чуб. Дата обращения: 21 января 2007. Архивировано из оригинала 20 января 2007 года.
  7. «Delaying Christmas tree needle loss». Дата обращения: 3 января 2011. Архивировано 21 ноября 2011 года.
  8. 1 2 3 Lin, Z.; Zhong, S.; Grierson, D. Recent advances in ethylene research (англ.) // Journal of Experimental Botany : journal. — Oxford University Press, 2009. — Vol. 60, no. 12. — P. 3311—3336. — doi:10.1093/jxb/erp204. — PMID 19567479.
  9. Ethylene and Fruit Ripening Архивная копия от 21 июня 2018 на Wayback Machine / J Plant Growth Regul (2007) 26:143-159 doi:10.1007/s00344-007-9002-y (англ.)
  10. 1 2 Лутова Л.А. Генетика развития растений / ред. С.Г. Инге-Вечтомов. — 2-е изд.. — Санкт-Петербург: Н-Л, 2010. — С. 432.
  11. External Link to More on Ethylene Gassing and Carbon Dioxide Control. ne-postharvest.com Архивная копия от 14 сентября 2010 на Wayback Machine
  12. Нелюбов Д. Н. О горизонтальной нутации у Pisum sativum и некоторых других растений // Труды Санкт-Петербургского Общества Естествознания : журнал. — 1901. — Т. 31, № 1., также Beihefte zum «Bot. Centralblatt», т. Х, 1901
  13. Doubt, Sarah L. The Response of Plants to Illuminating Gas (англ.) // Botanical Gazette : journal. — 1917. — Vol. 63, no. 3. — P. 209—224. — doi:10.1086/332006. — JSTOR 2469142.
  14. Gane R. Production of ethylene by some fruits (англ.) // Nature. — 1934. — Vol. 134, no. 3400. — P. 1008. — doi:10.1038/1341008a0. — Bibcode: 1934Natur.134.1008G.
  15. Crocker W, Hitchcock AE, Zimmerman PW. (1935) «Similarities in the effects of ethlyene and the plant auxins». Contrib. Boyce Thompson Inst. 7. 231-48. Auxins Cytokinins IAA Growth substances, Ethylene
  16. Yang, S. F., and Hoffman N. E. Ethylene biosynthesis and its regulation in higher plants (англ.) // Ann. Rev. Plant Physiol. : journal. — 1984. — Vol. 35. — P. 155—189. — doi:10.1146/annurev.pp.35.060184.001103.
  17. Bleecker A. B., Esch J. J., Hall A. E., Rodríguez F. I., Binder B. M. The ethylene-receptor family from Arabidopsis: structure and function. (англ.) // Philosophical transactions of the Royal Society of London. Series B, Biological sciences. — 1998. — Vol. 353, no. 1374. — P. 1405—1412. — doi:10.1098/rstb.1998.0295. — PMID 9800203. [исправить]
  18. Explaining Epinasty Архивная копия от 22 февраля 2015 на Wayback Machine. planthormones.inf
  19. Filser J. G., Denk B., Törnqvist M., Kessler W., Ehrenberg L. Pharmacokinetics of ethylene in man; body burden with ethylene oxide and hydroxyethylation of hemoglobin due to endogenous and environmental ethylene. (англ.) // Arch Toxicol. : journal. — 1992. — Vol. 66, no. 3. — P. 157—163. — PMID 1303633.
  20. Bolt H. M., Leutbecher M., Golka K. A note on the physiological background of the ethylene oxide adduct 7-(2-hydroxyethyl)guanine in DNA from human blood. (англ.) // Arch Toxicol. : journal. — 1997. — Vol. 71, no. 11. — P. 719—721. — PMID 9363847.
  21. Csanády G. A., Denk B., Pütz C., Kreuzer P. E., Kessler W., Baur C., Gargas M. L., Filser JG. A physiological toxicokinetic model for exogenous and endogenous ethylene and ethylene oxide in rat, mouse, and human: formation of 2-hydroxyethyl adducts with hemoglobin and DNA. (англ.) // Toxicol Appl Pharmacol. : journal. — 2000. — 15 May (vol. 165, no. 1). — P. 1—26. — PMID 10814549.
  22. Thier R., Bolt HM. Carcinogenicity and genotoxicity of ethylene oxide: new aspects and recent advances. (англ.) // Crit Rev Toxicol. : journal. — 2000. — September (vol. 30, no. 5). — P. 595—608. — PMID 11055837.

Литература[править | править код]

  • Горбов А. И. Этилен // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • ГОСТ 24975.0-89 Этилен и пропилен. Методы отбора проб
  • ГОСТ 25070-87 Этилен. Технические условия

Ссылки[править | править код]

  • Безуглова О. С. Этилен. Удобрения и стимуляторы роста. Дата обращения: 22 февраля 2015. Архивировано 22 февраля 2015 года.
  • Полимеризация этилена

Добавить комментарий