Как найти факториал числа 100

Хорошая задача. Сразу вспоминается, как учительница в 3 классе (!) задала задачу: “сколько цифр у числа, образованного произведением всех натуральных чисел от 1 до 100. Я решила эту задачу за одну минуту. ” Я эту задачу решил только спустя 5 лет, когда открыл для себя логарифмы и таблицу Брадиса =) (тогда еще не было у простых смертных персональных компьютеров) . Но не суть.
Начну со второго вопроса, т. к. он попроще.

20 чисел из первых 100 чисел делятся на 5, но из них четыре числа, а именно 25, 50, 75 и 100 содержат по два множителя 5. Итак, 100! будет оканчиваться на 24 нуля. Тут все понятно.

Теперь как найти Факториал 100!
Задача решения факториала оказалась настолько сложной, что точной формулы его нахождения нет до сих пор, но можно привести формулу Стирлинга для приблизительного вычисления факториала:

Она дает результат: 100! ≈ 9,33×10157

Факториал одной сотни записывается как 100! Это произведение всех натуральных чисел до ста включительно. Иногда запись факториала имеет такой вид:

100 х 99 х 98 х 97 х … х 4 х 3 х 2 х 1

Для ответа на вопрос задачи вам не обязательно находить результат умножения. От вас ждут, чтобы вы лишь определили число нулей в конце произведения, не зная, каким именно оно будет. Для решения этой задачи потребуется сформулировать несколько правил. Одно из них вы уже знаете. Взгляните на следующее выражение.

387 000 х 12 900 = 5 027 131 727

Вам не кажется, что здесь есть что-то забавное? Ведь при перемножении двух круглых чисел, то есть тех, которые оканчиваются на нули, невозможно получить некруглое число. Это нарушило бы закон сохранения конечных нулей (закон, который я только что вывел, но, тем не менее, он является верным). Произведение всегда унаследует нулевые окончания своих составляющих. Вот несколько верных примеров этого:

10 х 10 = 100
7 х 20 = 140
30 х 400 = 12 000

Из сомножителей факториала 100 десять заканчиваются на ноль: 10, 20, 30, 40, 50, 60, 70, 80, 90 и 100 (заканчивается на два 0). Это дает уже как минимум одиннадцать конечных нулей, которые 100! обязательно унаследует.
Предупреждение: следование только этому правилу иногда побуждает некоторых кандидатов в своем ответе заявить, что в конце факториала 100 стоят одиннадцать нулей. Такой ответ является неверным. Иногда можно умножить два числа, не заканчивающихся на ноль, и получить произведение, имеющее в конце один или несколько нулей. Вот несколько примеров этого рода:

2 х 5 = 10
5 х 8 = 40
6 х 15 = 90
8 х 125 = 1000

Все, кроме последней пары, входят в сотню составляющих факториала 100. Поэтому ваша работа не закончилась. Теперь мы подходим к закону «сосисок и булочек». Представьте себе ситуацию, когда на пикник одни люди приносят сосиски (в упаковках по десять штук), другие — булочки (упакованные по восемь штук), а некоторые — и то, и другое. Есть единственный способ, позволяющий определить, сколько хотдогов из этих продуктов можно приготовить. Сосчитайте сосиски, сосчитайте булочки и выберите меньшее число из двух.

Тот же самый закон следует использовать и отвечая на наш вопрос. Для этого надо заменить «сосиски» и «булочки» на «сомножители на 2» и «сомножители на 5».

В каждом из приведенных выше уравнений число, которое делится на 2, умножается на число, которое делится на 5. Сомножители на 2 и на 5 при их перемножении «совместно» дают идеальную десятку, что добавляет еще один ноль к общему произведению. Посмотрите на последний пример, где в конце, можно сказать, из воздуха возникает три нуля.

8 х 125 = (2 х 2 х 2) х (5 х 5 х 5)
= (2 х 5) х (2 х 5) х (2 х 5)
= 10 х 10 х 10
= 1000

Поэтому надо составить пары из двоек и пятерок. Возьмем, к примеру, число, равное 692 978 456 718 000 000.

Оно оканчивается на шесть нулей. Это означает, что его можно записать следующим образом:

692 978 456 718 х 10 х 10 х 10 х 10 х 10 х 10,

или так:

692 978 456 718 х (2 х 5) х (2 х 5) х (2 х 5) х (2 х 5) х (2 х 5) х (2 х 5).

Первая часть, 692 978 456 718, не делится на 10. В ином случае она бы оканчивалась на ноль, и можно было бы эту часть уменьшить еще в 10 раз. К тому же здесь есть шесть сомножителей, равных 10 (или 2 х 5), что соответствует шести нулям в конце числа 692 978 456 718 000 000. Ну как, убедительно?

Это дает нам надежную систему для определения количества нулей в конце любого большого числа. Выделите сомножители 2 и 5. Составьте из них пары и перемножьте их: (2 х 5) х (2 х 5) х (2 х 5) х … Число пар из двоек и пятерок равно количеству нулей в конце. Закройте глаза на все, что осталось слева.

В целом слева у вас останется двойка или пятерка, для которых не нашлось пары. Обычно это двойки. Более того, когда вы имеете дело с факториалом, это всегда двойки. (В факториалах имеется больше четных множителей, чем множителей, которые делятся на 5.) Поэтому узким местом является число пятерок. Из этого следует, что вопрос можно сформулировать по-другому: сколько раз 100! можно разделить без остатка на 5?

Эту арифметическую операцию можно легко проделать даже в голове. В диапазоне от 1 до 100 есть 20 чисел, которые делятся на пятерку: 5, 10, 15, …, 95, 100. Обратите внимание, что 25 дает 2 множителя, равные 5 (25 = 5 х 5), и к тому же в этой группе есть еще три числа, в состав которых входит 25: 50, 75 и 100. В совокупности это добавляет еще четыре пятерки, а всего их 24. 24 множителя на пять дают 24 пары с равным числом двоек, в результате чего получается 24 множителя на 10 (оставляя слева еще множество двоек, для которых не оказалось пары). Таким образом, в конце 100! будет 24 нуля.

Если вам любопытно узнать точный ответ, то значение факториала 100 равно:

93 326 215 443 944 152 681 699 238 856 266 700 490 715 968 264 381 621 468 592 963 895 217 599 993 229 915 608 941 463 976 156 518 286 253 697 920 827 223 758 251 185 210 916 864 000 000 000 000 000 000 000 000.

Разбор по книге «Действительно ли Вы достаточно умны, чтобы работать в Google?»

инструкции

Введите целое число 0- 50 000. Калькулятор вычислит факториал и количество содержащихся в нем цифр.

Что такое факториал?

Факториал N – это произведение всех положительных целых чисел от 1 до N включительно. Например, факториал 5 равен 5×4×3×2×1=120. Единственным исключением является 0 !, который определяется как 1. Факториалы отрицательных чисел не определены.

$$( n! =
begin{cases}
1 & text{if $n=0$} \
1 & text{if $n=1$} \
n times (n – 1)! & text{if $n>1$}
end{cases})$$

Факториалы распространены в различных разделах математики, включая комбинаторику , теорию чисел и разложения Тейлора .

Количество конечных нулей

Чтобы определить количество нулей в конце факториала, рекурсивно разделите число на 5, пока частное не станет меньше 5, и просуммируйте результаты после применения функции наибольшего целого числа.

Наибольшая целочисленная функция (обычно обозначается скобками) – это округленное в меньшую сторону целое число. Например, [5] = 5, [4.5] = 4, [-4.5] = -5.

Например, количество нулей в конце в 100! равно ([100/5]=20) + ([20/5]=4) = 24.

Digits in 100!

Digit Count
0 30 (18.99%)
1 15 (9.49%)
2 19 (12.03%)
3 10 (6.33%)
4 10 (6.33%)
5 14 (8.86%)
6 19 (12.03%)
7 7 (4.43%)
8 14 (8.86%)
9 20 (12.66%)
Total 158
Digit Sum 648

Хорошая задача. Сразу вспоминается, как учительница в 3 классе (!) задала задачу: «сколько цифр у числа, образованного произведением всех натуральных чисел от 1 до 100. Я решила эту задачу за одну минуту. » Я эту задачу решил только спустя 5 лет, когда открыл для себя логарифмы и таблицу Брадиса =) (тогда еще не было у простых смертных персональных компьютеров) . Но не суть.
Начну со второго вопроса, т. к. он попроще.

20 чисел из первых 100 чисел делятся на 5, но из них четыре числа, а именно 25, 50, 75 и 100 содержат по два множителя 5. Итак, 100! будет оканчиваться на 24 нуля. Тут все понятно.

Теперь как найти Факториал 100!
Задача решения факториала оказалась настолько сложной, что точной формулы его нахождения нет до сих пор, но можно привести формулу Стирлинга для приблизительного вычисления факториала:

Она дает результат: 100! ≈ 9,33×10157

Факториал

Факториал

Для нахождения факториала нужно умножить все целые числа от выбранного нами числа до 1.

Факториал обозначается символом «!»

4! = 4 · 3 · 2 · 1 = 24
5! = 5 · 4 · 3 · 2 · 1 = 120

Обычно говорят 4! как «факториал четырех».

ВЫЧИСЛЕНИЕ ФАКТОРИАЛА

Можно легко рассчитать факториал, зная значение факториала предыдущего числа:

Как найти факториал

Можно это записать в виде таблицы:

n n!
1 1 1 1
2 2 x 1 = 2 x 1! = 2
3 3 x 2 x 1 = 3 x 2! = 6
4 4 x 3 x 2 x 1 = 4 x 3! = 24
5 5 x 4 x 3 x 2 x 1 = 5 x 4! = 120
6 и так далее и так далее

Для точного определения факториала любого числа следует воспользоваться таблицей факториалов

  • Чтобы вычислить 6!, нужно 5!=120 умножить на 6, получается 720
  • Чтобы вычислить 8!, нужно 7!=5040 умножить на 8, получается 40.320

9! равно 362.880. Попробуйте посчитать 10!
10! = 9!х10
10! = 362.880 х 10 = 3.628.800

ФОРМУЛА ФАКТОРИАЛА

Существует правило как найти n факториал:

Которое означает:
«факториал любого числа — это число, умноженное на факториал предыдущего целого числа»
Итак, 12! = 12 × 11!, . и 100! = 100 × 99!, и т. д.

ФАКТОРИАЛ 0

Это очень интересная тема. Принято, что 0! = 1. А почему?

Никакое умножение чисел не приводит к 1, но давайте проследим факториалы в обратном порядке, скажем, от 4!:

Факториал нуля

И во многих задачах 0! = 1 просто имеет смысл.

ФАКТОРИАЛ ОТРИЦАТЕЛЬНОГО ЧИСЛА

Можем ли мы найти факториалы для чисел меньших нуля?

Нет. Факториалы для таких чисел не определены.

Почему? Легко объяснить на примере.

Начнем с 3! = 3 × 2 × 1 = 6 и спускаемся вниз:
2! = 3! / 3 = 6 / 3 = 2
1! = 2! / 2 = 2 / 2 = 1
0! = 1! / 1 = 1 / 1 = 1
(поэтому 0! = 1)
(−1)! = 0! / 0 = 1 / 0 = ой, деление на ноль не определено

И с этого момента все целочисленные факториалы не определены.

ФАКТОРИАЛ ДРОБНОГО ЧИСЛА

Можем ли мы найти факториалы для таких чисел, как 0,4 или −8,116?

Да мы можем! Но нам нужно углубиться в тему под названием Гамма-функция, которая выходит за рамки этой страницы.

И они могут быть отрицательными (кроме целых чисел).

Вот несколько значений дробных факториалов:

(-1/2)! √π
(1/2)! (1/2)√π
(3/2)! (3/4)√π
(5/2)! (15/8)√π

ПРИМЕНЕНИЕ ФАКТОРИАЛА

Факториалы незаменимы для вычисления количества перестановок, сочетаний и размещений.

Сколько существует разных способов, с помощью которых 7 человек могут прийти первым, вторым и третьим ?
Список довольно длинный, если 7 человек обозначим как a, b, c, d, e, f и g, то список включает:
abc, abd, abe, abf, abg, acb, acd, ace, acf, . и т. д.
Формула для расчета: 7!/(7−3)! = 7!/4!
Выпишем умножение полностью:
(7 × 6 × 5 × 4 × 3 × 2 × 1)/(4 × 3 × 2 × 1) = 7 × 6 × 5
Пояснение: 4 × 3 × 2 × 1 сокращено, т.к. они встречаются в числителе и знаменателе, и осталось только 7 × 6 × 5 . получаем:
7 × 6 × 5 = 210
Итак, есть 210 различных способов, которыми 7 человек могут прийти первым, вторым и третьим.

Что такое 100! / 98!
Используя наши знания из предыдущего примера, мы можем сразу перейти к следующему:
100!/98! = 100 × 99 = 9900

Другие примеры задач с факториалом и их решение на странице решение факториалов.

ИНТЕРЕСНЫЕ ФАКТЫ

70! приблизительно 1,197857 . x 10 100 , что чуть больше, чем в Googol (цифра 1, за которой следует сотня нулей).

100 факториал: 100! приблизительно 9,3326215443944152681699238856 x 10 157

200 факториал: 200! приблизительно 7,8865786736479050355236321393 x 10 374

Алгоритмы быстрого вычисления факториала

Понятие факториала известно всем. Это функция, вычисляющая произведение последовательных натуральных чисел от 1 до N включительно: N! = 1 * 2 * 3 *… * N. Факториал — быстрорастущая функция, уже для небольших значений N значение N! имеет много значащих цифр.

Попробуем реализовать эту функцию на языке программирования. Очевидно, нам понадобиться язык, поддерживающий длинную арифметику. Я воспользуюсь C#, но с таким же успехом можно взять Java или Python.

Наивный алгоритм

Итак, простейшая реализация (назовем ее наивной) получается прямо из определения факториала:

На моей машине эта реализация работает примерно 1,6 секунд для N=50 000.

Далее рассмотрим алгоритмы, которые работают намного быстрее наивной реализации.

Алгоритм вычисления деревом

Первый алгоритм основан на том соображении, что длинные числа примерно одинаковой длины умножать эффективнее, чем длинное число умножать на короткое (как в наивной реализации). То есть нам нужно добиться, чтобы при вычислении факториала множители постоянно были примерно одинаковой длины.

Пусть нам нужно найти произведение последовательных чисел от L до R, обозначим его как P(L, R). Разделим интервал от L до R пополам и посчитаем P(L, R) как P(L, M) * P(M + 1, R), где M находится посередине между L и R, M = (L + R) / 2. Заметим, что множители будут примерно одинаковой длины. Аналогично разобьем P(L, M) и P(M + 1, R). Будем производить эту операцию, пока в каждом интервале останется не более двух множителей. Очевидно, что P(L, R) = L, если L и R равны, и P(L, R) = L * R, если L и R отличаются на единицу. Чтобы найти N! нужно посчитать P(2, N).

Посмотрим, как будет работать наш алгоритм для N=10, найдем P(2, 10):

P(2, 10)
P(2, 6) * P(7, 10)
( P(2, 4) * P(5, 6) ) * ( P(7, 8) * P(9, 10) )
( (P(2, 3) * P(4) ) * P(5, 6) ) * ( P(7, 8) * P(9, 10) )
( ( (2 * 3) * (4) ) * (5 * 6) ) * ( (7 * 8) * (9 * 10) )
( ( 6 * 4 ) * 30 ) * ( 56 * 90 )
( 24 * 30 ) * ( 5 040 )
720 * 5 040
3 628 800

Получается своеобразное дерево, где множители находятся в узлах, а результат получается в корне
Дерево вычисления факториала

Реализуем описанный алгоритм:

Для N=50 000 факториал вычисляется за 0,9 секунд, что почти вдвое быстрее, чем в наивной реализации.

Алгоритм вычисления факторизацией

Второй алгоритм быстрого вычисления использует разложение факториала на простые множители (факторизацию). Очевидно, что в разложении N! участвуют только простые множители от 2 до N. Попробуем посчитать, сколько раз простой множитель K содержится в N!, то есть узнаем степень множителя K в разложении. Каждый K-ый член произведения 1 * 2 * 3 *… * N увеличивает показатель на единицу, то есть показатель степени будет равен N / K. Но каждый K 2 -ый член увеличивает степень еще на единицу, то есть показатель становится N / K + N / K 2 . Аналогично для K 3 , K 4 и так далее. В итоге получим, что показатель степени при простом множителе K будет равен N / K + N / K 2 + N / K 3 + N / K 4 +…

Для наглядности посчитаем, сколько раз двойка содержится в 10! Двойку дает каждый второй множитель (2, 4, 6, 8 и 10), всего таких множителей 10 / 2 = 5. Каждый четвертый дает четверку (2 2 ), всего таких множителей 10 / 4 = 2 (4 и 8). Каждый восьмой дает восьмерку (2 3 ), такой множитель всего один 10 / 8 = 1 (8). Шестнадцать (2 4 ) и более уже не дает ни один множитель, значит, подсчет можно завершать. Суммируя, получим, что показатель степени при двойке в разложении 10! на простые множители будет равен 10 / 2 + 10 / 4 + 10 / 8 = 5 + 2 + 1 = 8.

Если действовать таким же образом, можно найти показатели при 3, 5 и 7 в разложении 10!, после чего остается только вычислить значение произведения:

10! = 2 8 * 3 4 * 5 2 * 7 1 = 3 628 800

Осталось найти простые числа от 2 до N, для этого можно использовать решето Эратосфена:

Эта реализация также тратит примерно 0,9 секунд на вычисление 50 000!

Библиотека GMP

Как справедливо отметил pomme скорость вычисления факториала на 98% зависит от скорости умножения. Попробуем протестировать наши алгоритмы, реализовав их на C++ с использованием библиотеки GMP. Результаты тестирования приведены ниже, по ним получается что алгоритм умножения в C# имеет довольно странную асимптотику, поэтому оптимизация дает относительно небольшой выигрыш в C# и огромный в C++ с GMP. Однако этому вопросу вероятно стоит посвятить отдельную статью.

Сравнение производительности

Все алгоритмы тестировались для N равном 1 000, 2 000, 5 000, 10 000, 20 000, 50 000 и 100 000 десятью итерациями. В таблице указано среднее значение времени работы в миллисекундах.
Таблица результатов

График с линейной шкалой
График с линейной шкалой

График с логарифмической шкалой
График с логарифмической шкалой

Идеи и алгоритмы из комментариев

Хабражители предложили немало интересных идей и алгоритмов в ответ на мою статью, здесь я оставлю ссылки на лучшие из них

1! 1 2! 2 3! 6 4! 24 5! 120 6! 720 7! 5 040 8! 40 320 9! 362 880 10! 3 628 800 11! 39 916 800 12! 479 001 600 13! 6 227 020 800 14! 87 178 291 200 15! 1 307 674 368 000 16! 20 922 789 888 000 17! 355 687 428 096 000 18! 6 402 373 705 728 000 19! 121 645 100 408 832 000 20! 2 432 902 008 176 640 000 21! 51 090 942 171 709 440 000 22! 1 124 000 727 777 607 680 000 23! 25 852 016 738
884 976 640 000 24! 620 448 401 733
239 439 360 000 25! 15 511 210 043
330 985 984 000 000 26! 403 291 461 126
605 635 584 000 000 27! 10 888 869 450 418
352 160 768 000 000 28! 304 888 344 611 713
860 501 504 000 000 29! 8 841 761 993 739 701
954 543 616 000 000 30! 265 252 859 812 191 058
636 308 480 000 000

© Школяр. Математика (при поддержке «Ветвистого древа») 2009—2021

Добавить комментарий