Как найти фальшивую монету за два взвешивания

sdfrsd kyuggg

Профи

(549)


13 лет назад

Вот задача, которой мы и займёмся на этом уроке: Имеется 9 одинаковых монет. Но одна из них фальшивая. Она легче остальных. (восемь монет одинаковые на вес) Требуется при помощи 2 взвешиваний на чашечных весах без гирь выделить фальшивую монету. Что надо сделать? Для начала я дам Вам весы и девять монет (каждому ученику) Всем хватило? Хорошо. Теперь повторяйте мои действия. Сначала разделим монеты на три группы. В каждой-по три монете. Одну группу оставляем на столе, вторую кладём на одну сторону весов, третью на другую половину. Все положили? Хорошо. У меня чаши равны. Это значит, что фальшивка в группе, которая у меня на столе. Я вижу, у многих учеников та же ситуация. Теперь мы взвешиваем две монеты из третьей группы. Они тоже одинаковые на вес. Значит, третья фальшивая. Теперь я объясню для тех учеников, у которых при взвешивании двух групп монет весы показали неравенство. На той чаше, где веса меньше, лежит фальшивка. Теперь тоже взвесьте по две монеты.

Катя Булычёва

Знаток

(455)


13 лет назад

Делим монеты на две равные кучки. Из каждой кучки берем по 3 монеты, кладем на весы и взвешиваем. Если вес одинаковый то взвешиваем оставшиеся 1и 1 монеты и выявляем фальшивую (более легкую) . Если же одна группа из трех монет легче другой, значит там есть фальшивая монета. Оставляем более легкую группу из трех монет и кладем на весы 1и 1 и действуем по предыдущему алгоритму: если вес одинаков, значит фальшива третья, а если нет то та которая легче.

Genixy

Знаток

(279)


13 лет назад

Элементарно, тока что придумал. При условии что известно что фальшивка тяжелее, либо легче.
Кароче берешь на одну чашу весов ставишь 3 монеты и на другую чашу весов 3 монеты.
1 Если весы ровные, то оставшиеся 3 монеты взвешиваем иначе (ведь фальшивка там) . Взвешиваем по 2 из этих монет. Если весы ровные значит третья фальшивка. Если одна чаша перевешивает другую значит в ней фальшивка.
2 Если при первом взвешивании когда на чашах по 3 монеты.. . перевешивает какая то из чаш, значит там фальшивка, из той чаши опять взвешиваем 2 монеты а третью держим в руке. Весы покажут где фальшивка, – гна перевесившей чаше либо у вас в руке 🙂 типа того.

Zinxxx

Ученик

(176)


5 лет назад

1 Что мы делаем это : 3 монеты на одну чашу весов, 3 на другую, три в стороне. Так находм кучку из трёх монет, в которой есть фальшивая.
2 Что мы делаем это :Из этих трёх монет по одной на чаши весов, одну в стороне. Так находим фальшивую.

Время на прочтение
3 мин

Количество просмотров 204K

Сегодня я снова хочу вернуться к теме о задаче нахождении фальшивой монеты методом взвешивания на весах без циферблата.

Наиболее распространенные из таких задач — определение количества взвешиваний для выявления фальшивой монеты, если:

1) неизвестно какая она по весу;
2) известно, что она легче/тяжелее остальных.

Или обратная задача: можно ли за определенное количество взвешиваний выявить фальшивую из заданного количества монет.

1. Давайте сначала разберемся с 2 вариантом, который является частным случаем варианта 1.

Некоторое время назад, я на Хабре уже описывал решение такой задачи, но в одном из комментариев было замечание о немного странном первом разделении монет, по-этому предлагаю другой алгоритм решения. Хотя результат будет тот же и формула решения задачи остается та же:

N >= log3A,

где N — максимально необходимое количество взвешиваний, натуральное число, округленное в большую сторону;
A — количество монет.
Которая выведена на основании опытов (за 1 взвешивание можно найти одну фальшивую из 3-х монет, за 2 — из 9, за 3 — из 27 и т.д.)

Сам алгоритм решения простой, и я покажу его на примерах

1) Пусть у нас есть 26 монет. Нужно найти одну, которая легче/тяжелее

Первым действием буде разделение монет на три группы, в двух из которых число монет будет одинаковым, важно только что бы в третьей группе — остатке — было меньше монет, чем в каждой из двух других групп. То есть частое округляется к большему натуральному числу. То есть

A = 2 * B + C,

где A — количество монет;
B — частное от деления количества монет на 3, натуральное число, округленное в большую сторону;
C — остаток.

По условию задачи

26/3 = 8.666(6),

26 = 2 * 9 + 8,

При первом взвешивании будут сравниваться две группы: правая (ПГ) — 9 монет и левая (ЛГ) — 9 монет.

Далее у нас возможны два варианта:

1) фальшивая монета в левой/правой группе (9 монет)
2) фальшивая монета в остатке (8 монет)

для 1 варианта следующее деление на группы будет — 9 = 2 * 3 + 3;
для 2 варианта — 8 = 2 * 3 + 2

Ну и за одно взвешивание можно определить какая из 2 или 3 монет легче/тяжелее

Этот же результат я приведу в таблице

№ взвешивания Число монет ЛГ ПГ Остаток
1 26 9 9 8
2 8 3 3 2
2 9 3 3 3
3 2 1 1 0
3 3 1 1 1

по формуле — log326 =2.9656 — соответственно количество взвешиваний — 3.

еще пример:
число монет- 71. По формуле log371 =3.8800 — количество взвешиваний — 4. Проверяем

№ взвешивания Число монет ЛГ ПГ Остаток
1 71 24 24 23
2 23 8 8 7
2 24 8 8 8
3 7 3 3 1
3 8 3 3 2
4 2 1 1 0
4 3 1 1 1

Ну с алгоритм решения этих задач, я думаю, понятен.

2. Теперь перейдем к задачам, в которых не известно легче монета или тяжелее.

В данном случае я предлагаю такое первое действие: разделить монеты на четыре группы, три — с максимально одинаковым количеством монет, а в четвертой группе — остаток. Причем в остатке должны быть 1 или 2 монеты. То есть при делении на 3 частное округляется до меньшего натурального числа.

A = 3 * B + C,

где A — количество монет;
B — частное от деления количества монет на 3, натуральное число, округленное в меньшую сторону;
C — остаток.

Например, для 58-ми монет — это будет 58 = 3 * 19 + 1, для 23 = 3 * 7 + 2, для 15 = 3 * 5 + 0 и т. д.

Далее выполняем два взвешивания:
1) первая и вторая группы;
2) первая и третья группы;
и анализируем результат.
Здесь возможны четыре варианта:1, 2, 3 — это первая, вторая или третья группа отличаются по весу от двух остальных, или они равны, тогда нам повезло, так как фальшивая — в остатке. Так же два взвешивания помогают определить определить тяжелее фальшивая монета или легче. Кстати, если в остатке две монеты, то нужно выполнить еще 2 взвешивания для определения фальшивой монеты.

Теперь у нас есть задача: определить одну фальшивую монету из группы, которая легче/тяжелее.
Что касается формулы, то она примет следующий вид

N >= log3B + 2,

где N — максимально необходимое количество взвешиваний, натуральное число;
B — количество монет в группе после второго взвешивания.
А если учесть, что B = A/3, где A — количество всех монет, тогда получим:

log3B = log3A — 1,
N >= log3A + 1

Итог:

1) если известно, что фальшивая монета легче/тяжелее, тогда максимальное число взвешиваний определяется по формуле:

N >= log3A

2) если не известно, какая фальшивая, тогда максимальное число взвешиваний определяется по формуле:

N >= log3A + 1

где N — максимально необходимое количество взвешиваний, натуральное число, округленное в большую сторону;
А — количество монет.

В каждом из 60 мешков лежит по 20 монет: в одном мешке фальшивые, весом по 9 г, а в остальных – настоящие, весом по 10 г. В нашем распоряжении весы, показывающие вес груза в граммах. Класть на весы можно не более 100 монет. Как за два взвешивания на этих весах определить, в каком мешке фальшивые монеты?

Задача была предложена на аргентинском отборе на олимпиаду Cono Sur 2014 года и потом на 45 Уральском турнире юных математиков.

Разделим 60 мешков на четыре группы 14 мешков и оставшуюся группу из четырёх мешков.

Из первой группы из 14 мешков монет для взвешивания брать не будем. Из второй группы возьмём по одной монете. Из третьей группы возьмём по две монеты. Из четвёртой группы возьмём по три монеты. Из маленькой группы возьмём по четыре монеты.

Таким образом, для взвешивания возьмём 14*0+14*1+14*2+14*3+4*4=100 монет. Если общий вес будет ровно 100*10 г, то фальшивые монеты будут в мешке из первой группы. Если до этого веса не будет хватить 1 г, то фальшивые монеты будут в мешке из второй группы и т.д.

Таким образом, обнаружили группу, в которой не более 14 мешков, где есть мешок с фальшивыми монетами.

Если эта группа состояла из 14 мешков, то для второго взвешивания из первого мешка этой группы возьмём 0 монет, из второго мешка – 1 монету, из третьего мешка – 2 монеты, …, из 14-го мешка возьмём 13 монет.

Всего получится, что мы возьмём 0+1+2+…+13=91 монету.

Опять же, до веса 91*10 г не будет хватать столько, сколько монет из мешка с фальшивыми монетами мы взяли. Это и определит мешок.

Как найти фальшивую монету двумя взвешиваниями – логическая задача

Загадки на логику

Перед нами логическая задача, чтобы решить которую нужно немного пораскинуть мозгами.

Итак условия задачи следующие:

На столе лежат 9 монет. Известно, что одна из монет фальшивая. Фальшивая монета весит меньше чем остальные. У нас имеются весы для взвешивания.

Вопрос:

Как при помощи двух взвешиваний найти фальшивую монету?

Внимание!

Ниже приведен правильный ответ!

Правильный ответ:

Вначале на каждую чашу весов нужно положить по три монеты.

Если после этого весы приходят в равновесие, значит среди этих монет нет фальшивой, берем две из трех оставшихся монет, кладем на разные чаши весов. Если фальшивая монета среди этих двух, то мы поймем на какой она чаше, эта чаша поднимется выше.

А если весы снова придут в равновесие, значит фальшивая монета осталась на столе.

Если же при первом взвешивании весы не пришли в состояние равновесия, значит фальшивая монета уже находится на весах, берем 2 монеты из тех трех, что оказались легче, кладем по 1 на каждую чашу, если одна чаша поднялась выше, значит фальшивая монета на ней, если чаши уравновесились, значит фальшивая – оставшаяся третья.


Похожие новости

Все загадки

Все загадки

Все загадки

Все загадки

Все загадки

Все загадки

Разминка для мозга: сможете решить задачу про фальшивую монету? Проверьте!


25 августа 2020

Отдых

Есть 12 монет, среди них одна поддельная. Помогите математику обнаружить её всего за три взвешивания.

Фото автора Анастасия Сукманова

Анастасия Сукманова

Разминка для мозга: сможете решить задачу про фальшивую монету? Проверьте!

Избранное

За критику налоговой системы император заточил в темницу величайшего математика страны. Но однажды пленнику представился шанс вновь обрести свободу. Один из 12 наместников императора уплатил налог фальшивой монетой, которая уже попала в казну. Император пообещал освободить математика, если тот сумеет найти подделку.

Кадр: TED‑Ed/YouTube

Перед пленником поставили стол, на котором были чашечные весы, карандаш и 12 одинаковых на вид монет. А потом сказали, что фальшивка отличается от остальных денег по весу в большую или меньшую сторону. Взвесить монеты разрешили лишь трижды. Как математику вычислить подделку?

Показать ответ

Скрыть ответ

Читайте также

  • Сложная задачка про голубоглазых пленников, которые застряли на острове
  • Задача про пленников и колпаки, цвет которых нужно определить
  • Задача про тайник Леонардо да Винчи, в который не так-то легко пробраться

Добавить комментарий