Как найти физические свойства

Физические и химические свойства веществ

Различные вещества отличаются друг от друга своими свойствами.

Свойства вещества — это признаки, по которым одно вещество отличается от других веществ или сходно с ними.

Пример. Сходства и отличия между водой и ацетоном на примере трёх свойств:

Свойства Вещества
Вода Ацетон
Температура кипения 100 °C 56 °C
Цвет нет нет
Запах нет есть

Свойства вещества делятся на физические и химические.

Физические свойства вещества — это свойства вещества, которые можно определить наблюдением, измерением или экспериментальным путём, без его превращения в другое вещество.

Пример. Вода не имеет цвета, вкуса, запаха, в зависимости от окружающих условий может находиться в одном из трёх агрегатных состояний — жидком, твёрдом или газообразном. Цвет, запах, вкус, агрегатное состояние при определённых температуре и давлении — физические свойства.

Физические свойства вещества зависят от его агрегатного состояния.

Пример. Плотность льда, воды и водяного пара различна. Газообразный кислород бесцветный, а жидкий — голубой.

Химические свойства вещества — это свойства вещества, которые проявляются в химических реакциях.

Пример. Вода при очень высокой температуре разлагается на водород и кислород. Вода вступает в химическую реакцию с натрием, при этом образуются гидроксид натрия и водород. Железо окисляется при нагревании на воздухе или в токе кислорода, или при высокой влажности воздуха. Способность окисляться, вступать в химическую реакцию с другими веществами и разлагаться — химические свойства.

Для установления свойств вещества необходимо брать его с минимально возможным количеством примесей. Иногда даже очень малое содержание примеси может привести к сильному изменению некоторых свойств вещества.

Пример. Содержание в цинке лишь сотых долей процента железа или меди ускоряет его взаимодействие с соляной кислотой в сотни раз.

Изучить вещество — это значит узнать его свойства, описать из чего и как оно построено.

Физические свойства

  • Физи́ческие сво́йства вещества — свойства, присущие веществу вне химического взаимодействия: температура плавления, температура кипения, вязкость, плотность, диэлектрическая проницаемость, теплоёмкость, теплопроводность, электропроводность, абсорбция, цвет, концентрация, эмиссия, текучесть, индуктивность, радиоактивность.

    Вещество остается самим собой, то есть химически неизменным, до тех пор, пока сохраняются неизменными состав и строение его молекул (для немолекулярных веществ — пока сохраняется его состав и характер связей между атомами). Различия в физических свойствах и других характеристиках веществ позволяют разделять состоящие из них смеси.

    Физические свойства для одного и того же агрегатного состояния вещества могут быть разные. Например, механические, тепловые, электрические, оптические физические свойства зависят от выбранного направления в кристалле (см. анизотропия) .

Источник: Википедия

Связанные понятия

Химические свойства — свойства веществ (химических элементов, простых веществ и химических соединений), имеющие отношение к химическим процессам, то есть проявляемые в процессе химической реакции и влияющие на неё.

Гетероге́нная систе́ма (от греч. ἕτερος — разный; γένω — рождать) — неоднородная система, состоящая из однородных частей (фаз), разделённых поверхностью раздела. Однородные части (фазы) могут отличаться друг от друга по составу и свойствам. Число веществ (компонентов), термодинамических фаз и степеней свободы связаны правилом фаз. Фазы гетерогенной системы можно отделить друг от друга механическими методами (отстаиванием, фильтрованием, магнитной сепарацией и т. п.). Примерами гетерогенных систем…

Термодинами́ческая фа́за — гомогенная часть гетерогенной системы, ограниченная поверхностью раздела. Менее строго, но более наглядно фазами называют «гомогенные части системы, отделенные от остальных частей видимыми поверхностями раздела». При этом совокупность отдельных гомогенных частей системы, обладающих одинаковыми свойствами, считается одной фазой (например, совокупность кристаллов одного вещества или совокупность капелек жидкости, взвешенных в газе и составляющих туман). Каждая фаза системы…

Гомоге́нная систе́ма (от др.-греч. ὁμός «равный, одинаковый» + γένω «рождать») — однородная система, химический состав и физические свойства которой во всех частях одинаковы или меняются непрерывно (между частями системы нет поверхностей раздела). В гомогенной системе из двух и более химических компонентов каждый компонент распределен в массе другого в виде молекул, атомов, ионов. Составные части гомогенной системы нельзя отделить друг от друга механическим путём.

Равнове́сие фаз в термодинамике — состояние, при котором фазы в термодинамической системе находятся в состоянии теплового, механического и химического равновесия.

Упоминания в литературе

К физическим относят процессы, которые, изменяя физические свойства вещества, не изменяют строение элементарных частиц, из которых состоит данное вещество, и не приводит к изменению его химических свойств. При сварке – это нагрев металла, его плавление и кристаллизация, распространение теплоты, деформация изделия.

Нелинейная зависимость электропроводности теста от температуры, в отличие от электропроводности солевого раствора, дает основание утверждать, что природа и изменение электропроводности теста-хлеба при ЭК-выпечке зависит не только от степени диссоциации солей и кислот при повышении температуры, но также и от изменения структурных и физических свойств теста-хлеба. Изложенное дает основание Островскому Я.Г. [115] согласиться с Гинзбургом А.С. в том, что электропроводность теста в значительной мере зависит от состояния коллоидных веществ в процессе взаимодействия их с водой. При этом особое внимание оба автора уделяют аналогии характера изменения электропроводности теста и крахмала.

К физическим свойствам товара относятся: механические (прочность, деформация, твердость, усталость и др.), термические (теплоемкость, теплопроводность, огнестойкость, термостойкость, термическое расширение и др.), оптические (цвет, блеск, прозрачность и др.), акустические (тембр, высота звука, звуковое давление и др.), электрические, а также общие физические свойства (прочностные, деформационные, масса, плотность, пористость и др.). Физико-химические свойства материалов включают: сорбционные показатели и характеристики, определяющие паропроницаемость, водопроницаемость, пылепроницаемость и изготовленных на их основе товаров. Физико-химические свойства играют важную роль в формировании качества изделий с точки зрения их гигиеничности и комфортности (например, величина паропроницаемости, водопроницаемости, пылепроницаемости и гигроскопичности одежды, обуви); выполнения определенных функциональных назначений (адсорбция – как основа моющего действия мыла и синтетических моющих средств) и др.

Физические процессы, протекающие при осветлении сусла, сводятся к гравитационному разделению жидкой и твердой фаз. Скорость этих процессов зависит от сопротивления жидкой среды движению в ней твердого тела, т. е. от физических свойств суспензии и размеров твердых частиц.

Обычная, или легкая, вода имеет 9 разновидностей, встречающихся в природной воде, что связано с наличием у водорода и кислорода изотопов. Та к называют атомы одного химического элемента, которые различаются по весу, но обладают одинаковыми химическими и физическими свойствами. У водорода таких изотопов 2 (Н и D), у кислорода – 3 (16 О, 17 О и 18 О).

Связанные понятия (продолжение)

Ближний порядок — упорядоченность во взаимном расположении атомов или молекул в веществе, которая (в отличие от дальнего порядка) повторяется лишь на расстояниях, соизмеримых с расстояниями между атомами, то есть ближний порядок — это наличие закономерности в расположении соседних атомов или молекул.

Бертоллиды (термин в память К. Л. Бертолле) — соединения переменного состава, не подчиняющиеся законам постоянных и кратных отношений. Бертоллиды являются нестехиометрическими бинарными соединениями переменного состава, который зависит от способа получения. Многочисленные случаи образования бертоллидов открыты в металлических системах, а также среди оксидов, сульфидов, карбидов, нитридов, гидридов и др. соединений переходных металлов. Например, оксид ванадия(II) может иметь в зависимости от условий…

Компоненты (в термодинамике и химии) — независимые составляющие вещества системы, то есть индивидуальные химические вещества, которые необходимы и достаточны для составления данной термодинамической системы, допускают выделение из системы и независимое существование вне её. Изменения масс компонентов выражают все возможные изменения в химическом составе системы, а масса (количество вещества, число частиц) каждого вещества, выбранного в качестве компонента, не зависит от масс (количеств вещества…

Вещества, изучаемые химией (chemical substance) — вещества, состоящие из атомов; вещества, в которых выделение атомов невозможно или теряет физический смысл (например, плазма или звёздное вещество), к предмету рассмотрения химией не относят. Состоящее из атомов вещество — основной объект изучения химии. Вещества в химии принято разделять на индивидуальные вещества (простые и сложные), организованные в атомы, молекулы, ионы и радикалы, и их смеси. Простое вещество образовано атомами одного химического…

Подробнее: Вещество (химия)

Удельная поверхность — усреднённая характеристика размеров внутренних полостей (каналов, пор) пористого тела или частиц раздробленной фазы дисперсной системы.

Стеклообразное состояние — твёрдое аморфное метастабильное состояние вещества, в котором нет выраженной кристаллической решётки, условные элементы кристаллизации наблюдаются лишь в очень малых кластерах (в так называемом «среднем порядке»). Обычно это смеси (переохлаждённый ассоциированный раствор), в которых создание кристаллической твёрдой фазы затруднено по кинетическим причинам.

Стандартный водоро́дный электро́д — электрод, использующийся в качестве электрода сравнения при различных электрохимических измерениях и в гальванических элементах. Стандартный водородный электрод представляет собой платиновую пластинку, покрытую платиновой чернью, на которую подается газообразный водород с давлением в 1 атм. и погруженную в водный раствор, содержащий ионы водорода с активностью равной 1. Потенциал стандартного водородного электрода при стандартных условиях (101 325 Па, 298 К) принят…

Электропроводность (электри́ческая проводи́мость, проводимость) — способность тела (среды) проводить электрический ток, свойство тела или среды, определяющее возникновение в них электрического тока под воздействием электрического поля. Также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению.

Ио́нные криста́ллы представляют собой кристаллы, состоящие из ионов, связанных между собой электростатическим притяжением. Примерами таких кристаллов являются галогениды щелочных металлов, в том числе фторид калия, хлорид калия, бромид калия, иодид калия, фторид натрия и другие комбинации ионов натрия, цезия, рубидия и лития с ионами фтора, брома, хлора и иода.NaCl имеет расположение ионов по системе 6:6. Свойства NaCl отражают сильные взаимодействия, которые существуют между ионами. В расплавленном…

Калориметрия (от лат. calor — тепло и лат. metro — измеряю) — совокупность методов измерения количества теплоты, выделяющейся или поглощаемой при протекании различных физических или химических процессов. Методы калориметрии применяют при определении теплоёмкости, тепловых эффектов химических реакций, растворении, смачивании, адсорбции, радиоактивного распада и др. Методы калориметрии также широко применяют в промышленности для определения теплотворной способности топлива.

Межа́томное взаимоде́йствие — электромагнитное взаимодействие электронов и ядра одного атома с электронами и ядром другого атома. Межатомное взаимодействие зависит от расстояния между атомами и электронных оболочек атомов. Мерой межатомного взаимодействия является энергия взаимодействия атомов. Энергия взаимодействия атомов лежит в широком диапазоне. Энергия межатомного взаимодействия является отчётливо выраженной периодической функцией положительного заряда ядра атома.

Поликристалл — агрегат кристаллов какого-либо вещества (в противоположность монокристаллу — отдельному кристаллу). Составляющие поликристалл кристаллы из-за неправильной формы называют кристаллическими зёрнами или кристаллитами. Поликристаллами являются многие естественные и искусственные материалы (минералы, металлы, сплавы, керамики и др.).

Агрега́тное состоя́ние вещества (от лат. aggrego «присоединяю») — физическое состояние вещества, зависящее от соответствующего сочетания температуры и давления.

Суперпарамагнетизм — форма магнетизма, проявляющаяся у ферромагнитных и ферримагнитных частиц. Если такие частицы достаточно малы, то они переходят в однодоменное состояние, то есть становятся равномерно намагниченными по всему объёму. Магнитный момент таких частиц может случайным образом менять направление под влиянием температуры, и при отсутствии внешнего магнитного поля средняя намагниченность суперпарамагнитных частиц равна нулю. Но во внешнем магнитном поле такие частицы ведут себя как парамагнетики…

Двуха́томная моле́кула — молекула, состоящая из двух атомов одного или разных элементов. Если двухатомная молекула состоит из двух атомов того же элемента, например, водород (H2) или азот (N2), тогда она называется гомоядерной. В другом случае, если двухатомная молекула состоит из двух атомов разных элементов, например, монооксид углерода (CO) или оксид азота(II) (NO), то она называется гетероядерной. Атомы двухатомной молекулы связаны при помощи ковалентной связи.

Смесь — система, состоящая из двух или более веществ (компонентов смеси). Однородную смесь называют раствором (газовым, жидким или твёрдым), а неоднородную — механической смесью. Любую смесь можно разделить на компоненты физическими методами; изменения состава компонентов смеси при этом не происходит.

Акти́вность компонентов раствора — эффективная (кажущаяся) концентрация компонентов с учётом различных взаимодействий между ними в растворе, то есть с учётом отклонения поведения системы от модели идеального раствора.

Ионный обмен — это обратимая химическая реакция, при которой происходит обмен ионами между твердым веществом (ионитом) и раствором электролита. Ионный обмен может происходить как в гомогенной среде (истинный раствор нескольких электролитов), так и в гетерогенной, в которой один из электролитов является твёрдым (при контакте раствора электролита с осадком, ионитом и др.).

Вещество́ — одна из форм материи, состоящая из фермионов или содержащая фермионы наряду с бозонами; обладает массой покоя, в отличие от некоторых типов полей, как например электромагнитное.

Просты́е вещества́ — химические вещества, состоящие исключительно из атомов одного химического элемента (из гомоядерных молекул), в отличие от сложных веществ. Являются формой существования химических элементов в свободном виде; или, иначе говоря, химические элементы, не связанные химически ни с каким другим элементом, образуют простые вещества. Известно свыше 400 разновидностей простых веществ.

Углерод — вещество с самым большим числом аллотропических модификаций (более 9 обнаруженных на данный момент).

Подробнее: Аллотропия углерода

Тепловой процесс (термодинамический процесс) — изменение макроскопического состояния термодинамической системы. Если разница между начальным и конечным состояниями системы бесконечно мала, то такой процесс называют элементарным (инфинитезимальным).

Расплав — жидкое расплавленное состояние вещества при температурах в определённых границах, удалённых от критической точки плавления и расположенных между температурами плавления и кипения.

Ио́нный ра́диус — характерный размер шарообразных ионов, применяемый для вычисления межатомных расстояний в ионных соединениях. Понятие “ионный радиус” основано на предположении, что размеры ионов не зависят от состава молекул, в которые они входят. На него влияет количество электронных оболочек и плотность упаковки атомов и ионов в кристаллической решётке.

Зерно (иногда употребляется термин кристаллит) — минимальный объём кристалла, окружённый высокодефектными высокоугловыми границами, в поликристаллическом материале.

В электрохимии стандартный электродный потенциал, обозначаемый Eo, E0, или Eθ, является мерой индивидуального потенциала обратимого электрода (в равновесии) в стандартном состоянии, которое осуществляется в растворах при эффективной концентрации в 1 моль/кг и в газах при давлении в 1 атмосферу или 100 кПа (килопаскалей). Объёмы чаще всего взяты при 25 °C. Основой для электрохимической ячейки, такой, как гальваническая ячейка, всегда является окислительно-восстановительная реакция, которая может быть…

Диффузио́нный слой – приповерхностные объемы материала, химический состав которых изменился в результате диффузии при химико-термической обработке (ХТО). Изменение химического состава этих объемов приводит к изменению фазового состава, структуры и свойств материала диффузионного слоя.

Коллоидные системы, коллоиды (др.-греч. κόλλα — клей + εἶδος — вид; «клеевидные») — дисперсные системы, промежуточные между истинными растворами и грубодисперсными системами — взвесями, в которых дискретные частицы, капли или пузырьки дисперсной фазы, имеющие размер хотя бы в одном из измерений от 1 до 1000 нм, распределены в дисперсионной среде, обычно непрерывной, отличающейся от первой по составу или агрегатному состоянию. В свободнодисперсных коллоидных системах (дымы, золи) частицы не выпадают…

Поверхность раздела фаз — граничная поверхность между любыми двумя контактирующими фазами термодинамической системы. Например, в трёхфазной системе лёд — вода — воздух существуют три поверхности раздела (между льдом и водой, между льдом и воздухом, между водой и воздухом), вне зависимости от того, сколько кусков льда имеется в системе.

Гру́ппа периодической системы химических элементов — последовательность атомов по возрастанию заряда ядра, обладающих однотипным электронным строением.

Сма́чивание — физическое взаимодействие жидкости с поверхностью твёрдого тела или другой жидкости.

Двойной электрический слой (межфазный) (ДЭС) — слой ионов, образующийся на поверхности частиц в результате адсорбции ионов из раствора, диссоциации поверхностного соединения или ориентирования полярных молекул на границе фаз. Ионы, непосредственно связанные с поверхностью, называются потенциалоопределяющими. Заряд этого слоя компенсируется зарядом второго слоя ионов, называемых противоионами.

Пове́рхностные явле́ния — совокупность явлений, обусловленных особыми свойствами тонких слоёв вещества на границе соприкосновения фаз. К поверхностным явлениям относятся процессы, происходящие на границе раздела фаз, в межфазном поверхностном слое и возникающие в результате взаимодействия сопряжённых фаз.

Нитрид бора — бинарное соединение бора и азота. Химическая формула: BN. Кристаллический нитрид бора изоэлектронен углероду и, подобно ему, существует в нескольких полиморфных модификациях.

Мартенситное превращение — полиморфное превращение, при котором изменение взаимного расположения составляющих кристалл атомов (или молекул) происходит путём их упорядоченного перемещения, причем относительные смещения соседних атомов малы по сравнению с междуатомным расстоянием. Перестройка кристаллической решётки в микрообластях обычно сводится к деформации её ячейки, и конечная фаза мартенситного превращения может рассматриваться как однородно деформированная исходная фаза. Величина деформации…

Межмолекулярное взаимодействие — взаимодействие между молекулами и/или атомами, не приводящее к образованию ковалентных (химических) связей.

Коэффицие́нт теплово́го расшире́ния — физическая величина, характеризующая относительное изменение объёма или линейных размеров тела с увеличением температуры на 1 К при постоянном давлении. Имеет размерность обратной температуры. Различают коэффициенты объёмного и линейного расширения.

Оптически активные вещества — среды, обладающие естественной оптической активностью. Оптическая активность — это способность среды (кристаллов, растворов, паров вещества) вызывать вращение плоскости поляризации проходящего через неё оптического излучения (света). Метод исследования оптической активности — поляриметрия.

Титана́т ба́рия — соединение оксидов бария и титана BaTiO3. Бариевая соль несуществующей в свободном виде метатитановой кислоты — H2TiO3. Кристаллическая модификация титаната бария со структурой перовскита является сегнетоэлектриком, обладающим фоторефрактивным и пьезоэлектрическим эффектом. После открытия Б. М. Вулом в 1944 году сегнетоэлектрических свойств у титаната бария начался принципиально новый этап в исследовании сегнетоэлектриков.

Изотропи́я, изотро́пность (из др.-греч. ί̓σος «равный, одинаковый, подобный» + τρόπος «направление, характер») — одинаковость физических свойств во всех направлениях, инвариантность, симметрия по отношению к выбору направления (в противоположность анизотропии; частный случай анизотропии — ортотропия).

Фуллери́т (англ. fullerite) — молекулярные кристаллы, продукты объемной полимеризации сферических углеродных молекул фуллеренов C60 и C70 при давлении более 90 000 атмосфер и температуре более 300 ° C. Полученный материал полностью сохраняет жесткую структуру фуллеренов, которые при полимеризации соединяются между собой прочными алмазоподобными связями. Это приводит к появлению пространственных каркасов, имеющих аномально высокую жесткость и твердость.

Антиферромагнетизм (от анти- и ферромагнетизм) — одно из магнитных состояний вещества, отличающееся тем, что магнитные моменты соседних частиц вещества ориентированы навстречу друг другу (антипараллельно), и поэтому намагниченность тела в целом очень мала. Этим антиферромагнетизм отличается от ферромагнетизма, при котором одинаковая ориентация элементарных магнитиков приводит к высокой намагниченности тела.

Длина химической связи — расстояние между ядрами химически связанных атомов. Длина химической связи — важная физическая величина, определяющая геометрические размеры химической связи, её протяжённость в пространстве.

Нанотрубка, иначе тубулярная наноструктура; нанотубулен (англ. nanotube) — топологическая форма наночастиц в виде полого наностержня.

Магнитная восприимчивость — физическая величина, характеризующая связь между магнитным моментом (намагниченностью) вещества и магнитным полем в этом веществе.

Упоминания в литературе (продолжение)

Физические методы наиболее многочисленны. Они используются для определения показателей различных физических свойств товаров: термических, оптических, электрических, гигроскопических и др. Измерения физических свойств в зависимости от метода испытания могут происходить как с разрушением, так и без разрушения образцов.

При растворении в воде некоторых веществ возникает реакция гидролиза (обменного разложения) – химический процесс, характеризующийся образованием двух или более веществ. Это можно наблюдать, например, при взаимодействии с хлором (при отбеливании или намыливании), производстве этилового спирта из древесины и др. Обычно в воде растворяются вещества, имеющую небольшую молекулярную массу. Она почти всегда входит в состав органических веществ и в значительной степени изменяет их физические свойства. От способности воды растворять соединения зависит степень ее чистоты. Так как в ней обычно присутствуют многочисленные соли, чистой воды в природе не существует. Установлено, что у дистиллированной воды, полученной в процессе перегонки, электропроводность в 100 раз больше, чем у чистой. Последнюю синтезируют из очищенных кислорода и водорода в лабораторных условиях.

К физическим свойствам относятся механические (прочность, деформация, твердость, усталость и др.), термические (теплоемкость, теплопроводность, огнестойкость, термостойкость, термическое расширение и др.), оптические (цвет, блеск, прозрачность, лучепреломляемость и др.), акустические (тембр, высота звука, звуковое давление и др.), электрические, а также общие физические свойства (масса, плотность, пористость).

Механизм действия лазерного скальпеля основан на том, что энергия монохроматичного, когерентного светового пучка резко повышает температуру на соответствующем ограниченном участке тела и приводит к его мгновенному сгоранию и испарению. Тепловое воздействие на окружающие ткани при этом распространяется на очень небольшое расстояние, так как ширина сфокусированного пучка составляет 0,01 мм. Под влиянием лазерного излучения также происходит «взрывное» разрушение ткани от воздействия своеобразной ударной волны, образующейся при мгновенном переходе тканевой жидкости в газообразное состояние. Особенности биологического действия лазерного излучения зависят от ряда его характеристик: длины волны, длительности импульсов, структуры ткани, физических свойств ткани. Рассмотрим характеристики основных применяемых в хирургии лазеров.

Качественные характеристики древесины, которые проявляются при испытаниях, не связанных с изменением химического состава, называются физическими свойствами.

Таким образом, клеточный обмен в тканях осуществляется мембранными структурами на основе взаимосвязи между отдельными клеточными органеллами. Механизм передачи информации от одной органеллы к другой осуществляется как химическим (за счет изменений концентрации метаболитов, коферментов и т.д.), так и конформационным способом. В реализации последнего способа передачи информации важная роль принадлежит внутриклеточной воде, которая имеет преимущественно кристаллическое строение и обладает анизотропией физических свойств. Интегрируя обмен посредством мембран, клетка за счет кристаллических свойств внутриклеточной воды, способна поддерживать свою структуру. При разрыве внутримолекулярных связей по типу гомолиза образуются свободные радикалы и без дополнительной энергии организованных структур в тканях не происходит.

При оценке физических свойств воздушной среды существенное значение имеет радиоактивность.

Прочносвязанная вода – это вода, которая поглощается почвой из парообразного состояния. Способность почвы сорбировать пары воды из воздуха называется гигроскопичностью, а образуемая при этом влага – гигроскопической влагой (ГВ). Прочносвязанная вода обладает особыми физическими свойствами, приближаясь к твердым телам. Плотность ее достигает от 1,5 г/см3 до 1,8 г/см3, она не замерзает, неподвижна и не доступна растениям.

Дело в том, что межклеточная жидкость в идеально здоровом организме должна иметь особую кристаллическую структуру и естественную, заложенную природой память. При кипячении кластерная (имеется в виду пространственная организация молекул воды, благодаря которой при замерзании образуются кристаллы) структура воды разрушается, и вода переходит в разряд мертвых вод. Многие тонкие физиологические и целебные свойства такой воды теряются, остаются лишь грубые физические свойства. Для здоровых организмов применение мертвой воды почти безвредно. Однако в ослабленном организме прием такой воды может спровоцировать развитие болезней и нарушения обмена веществ. Поэтому кипяченая вода вредна всем, в том числе и здоровым людям.

Обрабатываются, в основном зональные почвы. Профиль почвы этого типа показан на рис. 7, где: 1 – гумусный слой, 2 – выщелоченная почва, 3 – глина, содержащая 3-х валентное железо, 4 – материковая порода в стадии разрушения. Физические характеристики каждого из таких горизонтов зависят от типа почвы. Из физических свойств наиболее важны: плотность, капиллярность, пористость, влажность, теплопроводность, поглощательная способность.

Конструкция РЭС есть пригодная для повторения в производстве совокупность деталей и материалов с различными физическими свойствами, находящихся в определенной энергетической и пространственной связи, обеспечивающая выполнение заданных функций с необходимой точностью и надежностью под влиянием внешних и внутренних воздействий [11].

К физическим свойствам почвы относятся механический состав, относительная рыхлость структуры, водопроницаемость, аэрируемость, отсутствие света, малая амплитуда колебания температуры, незначительный объем почвенного воздуха.

Таллий по физическим свойствам близок к свинцу. В воде таллий образует растворимые химические соединения – гидроксид, нитрат, карбонат и др., а также малорастворимые в воде галогениды, сульфаты и хроматы таллия. Содержащие таллий химические вещества вызывают неврологические, кишечножелудочные расстройства и заболевания различных органов. Попадание таллия в продукты и воду может происходить в районах расположения медных, цинковых, кадмиевых рудников и предприятий металлургической промышленности, а также в процессе сжигания углеводородного топлива.

Ри c унок 1 – Структурная схема процесса измерения: И – измерения; ОИ – объект измерения; МИ – метод измерения; ПИ – принцип измерения; СИ – средство измерения; ИС – измерительный сигнал: ИИ – измерительная информация; Св – физическое свойство; В – физическая величина; ИВ – измеряемая величина

7. Гыйлметдинова, Г.З. Улучшение физических свойств натуральных подкладочных материалов за счет электрофизического воздействия / Г.З. Гыйлметдинова, Г.Р. Рахматуллина [и др.] // Кожевенно-обувная промышленность.– 2009. – № 3. – С. 26–27.

Гигиеническое значение физических свойств почвы заключается в первую очередь во влиянии на условия проживания. Так, вода из водоемких влажных почв может попадать в фундаменты жилых домов, общественных и промышленных зданий и служить причиной постоянной сырости подвалов, нижней части стен и разрушения фундамента. От температуры почвы зависит температурный режим первых этажей помещений и подвалов. Температура почвы, химический состав почвенного воздуха и водоемкость также определяют жизнедеятельность почвенных организмов и процессы самоочищения.

Гигиенические требования к чистоте питьевой воды централизованных систем водоснабжения определяются санитарными правилами и нормами СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водопользования». Основные требования к физическим свойствам питьевой воды:

Физи́ческие сво́йства вещества — свойства, которые проявляются веществом в процессах, при которых вещество остаётся химически неизменным. К ним относится способность плавиться, кипеть, деформироваться и тому подобные свойства[1].

Вещество остается самим собой, то есть химически неизменным, до тех пор, пока сохраняются неизменными состав и строение его молекул (для немолекулярных веществ — пока сохраняется его состав и характер связей между атомами). Различия в физических свойствах и других характеристиках веществ позволяют разделять состоящие из них смеси[1].

Физические свойства для одного и того же агрегатного состояния вещества могут быть разные. Например, механические, тепловые, электрические, оптические физические свойства зависят от выбранного направления в кристалле (см. анизотропия)[2].

См. также[править | править код]

  • Химические свойства
  • Физическая величина

Примечания[править | править код]

  1. 1 2 С. Т. Жуков Химия 8-9 класс, Глава 1. Основные представления и понятия химии. Дата обращения: 18 января 2010. Архивировано 9 мая 2007 года.
  2. Барсуков, В. И. Физика. Строение и физические свойства вещества : учебное пособие / В. И. Барсуков, О. С. Дмитриев. — Тамбов : Изд-во Тамб. гос. техн. ун-та, 2008. — 80 с. — 250 экз. — ISBN 978-5-8265-0768-1, Б261, УДК 535.338(0765), ББК В36я73-5

Физические свойства и величины.

Все объекты окружающего мира характеризуются
своими свойствами. В общем случае
свойств, которыми обладает данный объект
или явление – бесчисленное множество.
Но благодаря этим свойствам, мы можем
отличить один объект от другого или,
наоборот, сгруппировать их, т. е. отнести
к какому-то одному классу объектов.
Например, большой, теплый, тяжелый.
Свойство объекта проявляется только в
его взаимодействии с другими объектами.
Например, свойство упругости мяча
проявляется при его взаимодействии с
полом.

Свойство – философская
категория, выражающая такую сторону
объекта (явление процесса), которая
обусловливает его различность или
общность с другими объектами (явлениями,
процессами) и обнаруживается в его
отношениях к ним. Свойство – категория
качественная. Для количественного
описания различных свойств процессов
и физических тел вводится понятие
величины.

Величина– это свойство чего-либо,
что может быть выделено среди других
свойств и оценено тем или иным способом,
в том числе и количественно. Величина
не существует сама по себе, она имеет
место лишь постольку, поскольку существует
объект со свойствами, выраженными данной
величиной.

Величины можно разделить на два вида:
реальныеиидеальные.

Идеальные величиныглавным
образом относятся к математике и являются
обобщением (моделью) конкретных реальных
понятий.

Реальные величиныделятся, в
свою очередь, на физическиеинефизические. Физическая
величина (ФВ) в общем случае может быть
определена как величина, свойственная
материальным объектам (процессам,
явлениям), изучаемым в естественных
(физика, химия) и технических науках. К
нефизическим следует отнести величины,
принадлежащие общественным (нефизическим)
наукам – философии, социологии, экономике
и т. д.

Физическая величина– одно из
свойств физического объекта, в качественном
отношении общее для многих физических
объектов, а в количественном –
индивидуальное для каждого из них.
Индивидуальность в количественном
отношении понимают в том смысле, что
свойство может быть для одного объекта
в определенное число раз больше или
меньше, чем для другого. Например,
физические объекты обладают массой –
это их общее свойство. Но каждое тело
имеет в количественном отношении свое
значение массы. Таким образом,физические
величины
– это измеренные свойства
физических объектов и процессов, с
помощью которых они могут быть изучены.

Физические величины целесообразно
разделить на измеряемые и оцениваемые.
Измеряемые ФВ могут быть выражены
количественно в виде определенного
числа установленных единиц измерения.
Возможность введения и использования
последних является важным отличительным
признаком измеряемых ФВ. Физические
величины, для которых по тем или иным
причинам не может быть введена единица
измерения, могут быть только оценены.
Величины оценивают при помощи шкал.

Шкала величины– упорядоченная
последовательность ее значений, принятая
по соглашению на основании результатов
точных измерений.

Нефизические величины, для которых
единица измерения в принципе не может
быть введена, могут быть только оценены.
Оценивание нефизических величин не
входит в задачи теоретической метрологии.

Единица физической величины [Q]– это ФВ фиксированного размера, которой
условно присвоено числовое значение,
равное единице, применяется для
количественного выражения однородных
ФВ.

Значение физической величины Q– это оценка ее размера в виде некоторого
числа принятых для нее единиц.

Числовое значение физической величины
q– отвлеченное
число, выражающее отношение значения
величины к соответствующей единице
данной ФВ.

Уравнение

Q=q[Q](1)

называют основным уравнением
измерения
.

Измерение– познавательный
процесс, заключающийся в сравнении
путем физического эксперимента данной
ФВ с известной ФВ, принятой за единицу
измерения.

В практической деятельности необходимо
проводить измерения различных величин,
характеризующих свойства тел, веществ,
явлений и процессов. Некоторые свойства
проявления (количественные или
качественные) любого свойства образуют
множества, отображения элементов которых
на упорядоченное множество чисел или
в более общем случае условных знаков
образуют шкалы измеренияэтих
свойств. Шкала измерений количественного
свойства является шкалой ФВ.

Шкала физической величины
это упорядоченная последовательность
значений ФВ, принятая по соглашению на
основании результатов точных измерений.

Различают пять основных типов шкал
измерений.

  1. Шкала наименований (шкала
    классификации).
    Шкалы такого вида
    не являются шкалами ФВ. Это самый простой
    тип шкал, основанный на приписывании
    качественным свойствам объектов чисел,
    играющих роль имен. В этих шкалах
    отнесение отражаемого свойства к тому
    или иному классу эквивалентности
    осуществляется с помощью органов чувств
    человека – это наиболее адекватный
    результат, выбранный большинством
    экспертов. Нумерация объектов по шкале
    наименований осуществляется по принципу:
    “не приписывай одну и ту же цифру разным
    объектам”. В этих шкалах отсутствуют
    понятия нуля, “больше” или “меньше”
    и единицы измерения. Примером шкал
    наименований являются широко
    распространенныеатласы цветов,
    предназначенные для идентификации
    цвета.

  2. Шкала порядка (шкала рангов).В
    шкалах порядка существует или не
    существует нуль, но принципиально
    нельзя ввести единицы измерения. Эти
    шкалы являются монотонно возрастающими
    или убывающими, что позволяет установить
    отношение больше/меньше между величинами.
    К таким шкалам, например, относится
    шкала Мооса для определения твердости
    минералов, которая содержит 10 опорных
    (реперных) минералов с различными
    условными числами твердости: тальк –
    1; гипс – 2; кальций – 3; флюорит – 4;
    апатит – 5; ортоклаз – 6; кварц – 7; топаз
    – 8; корунд – 9; алмаз – 10. Отнесение
    минерала к той или иной градации
    твердости осуществляется на основании
    эксперимента, который состоит в том,
    что испытуемый материал царапается
    опорным. Если после царапанья испытуемого
    минерала кварцем (7) на нем остается
    след, а после ортоклаза (6) не остается,
    то твердость испытуемого материала
    составляет более 6, но менее 7. Более
    точного ответа в этом случае дать
    невозможно. В условных шкалах одинаковым
    интервалам между размерами данной
    величины не соответствуют одинаковые
    размерности чисел, отображающих размеры.
    Определение значения величин при помощи
    шкал порядка нельзя считать измерением,
    так как на этих шкалах не могут быть
    введены единицы измерения. Операцию
    по приписыванию числа требуемой величине
    следует считать оцениванием. Оценивание
    по шкалам порядка является неоднозначным
    и весьма условным.

  3. Шкала интервалов (шкала разностей).Шкала интервалов состоит из одинаковых
    интервалов, имеет единицу измерения и
    произвольно выбранное начало – нулевую
    точку. К таким шкалам относится
    летоисчисление по различным календарям,
    в которых за начало отсчета принято
    либо сотворение мира, либо Рождество
    Христово и т. д. Температурные шкалы
    Цельсия, Фаренгейта и Реомюра также
    являются шкалами интервалов.

Шкала интервалов величины Qможно представить в виде уравнения:

Q=Q0+q[Q],

где q– числовое значение
величины;Q0– начало
отсчета шкалы; [Q] – единица
рассматриваемой величины.

Такая шкала полностью определяется
значением начала отсчета Q0шкалы и единицы данной величины [Q].
Задать шкалу можно двумя путями. При
первом пути выбираются два значенияQ0иQ1величины, которые
относительно просто реализованы
физически. Эти значения называютсяопорными точками, илиосновными
реперами
, а интервал (Q1-Q0)
основным интервалом. ТочкаQ0
принимается за начало отсчета, а
величина:

за единицу измерения.

  1. Шкала отношений. Их примерами
    являются шкала массы, термодинамической
    температуры. В шкалах отношений
    существует однозначный естественный
    критерий нулевого количественного
    проявления свойства и единица измерений.
    Шкалы отношений – самые совершенные.
    Они описываются уравнением:

Q=q[Q],

где Q– ФВ, для которой
строится шкала; [Q] – ее
единица измерения;q–
числовое значение ФВ.

  1. Абсолютные шкалы. Под абсолютными
    понимают шкалы, обладающие всеми
    признаками шкал отношений, но дополнительно
    имеющие естественное однозначное
    определение единицы измерения и не
    зависящие от принятой системы единиц
    измерения. Такие шкалы соответствуют
    относительным величинам: коэффициенту
    усиления, ослабления и др.

Шкалы наименований и порядка называют
неметрическими(концептуальными),
а шкалы интервалов и отношений –метрическими(материальными).

Соседние файлы в папке Лекции по метрологии

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

У любого из материалов имеются физические, механические, теплофизические, прочностные, химические, гидрофизические и многие другие свойства. Но в этой статье мы конкретно разберем именно первые – физические свойства материала. Дадим определение, перечислим конкретно, что под ними скрывается, а также подробно охарактеризуем каждое из свойств.

Определение

Физические свойства материала – все свойства, которые присущи веществам без химического воздействия на них.

Любой материал остается неизменным (самим собой) при одном условии – до тех пор, пока неизменен его состав, а также строение его молекул. Если вещество немолекулярное – пока сохраняется одинаковым его состав и связь между атомами. А уже различия в физических свойствах и иных характеристиках материала помогают разделять смеси, состоящие из него.

Важно знать и то, что физические свойства материала могут быть различными для различных его агрегатных материалов. Скажем, тепловые, электрические, механические, физические, оптические свойства вещества зависят от избранного направления в кристалле.

исследование физических свойств материалов

Наполнение термина

Физические свойства вещества включают такие как:

  • Вязкость.
  • Температура плавления.
  • Плотность.
  • Температура кипения.
  • Теплопроводность.
  • Цвет.
  • Консистенция.
  • Проницаемость диэлектрическая.
  • Абсорбция.
  • Теплоемкость.
  • Эмиссия.
  • Радиоактивность.
  • Индуктивность.
  • Текучесть.
  • Электропроводность.

А физические свойства материала представлены в основном следующим:

  • Плотность.
  • Пустотность.
  • Пористость.
  • Гигроскопичность.
  • Водопроницаемость.
  • Влагоотдача.
  • Водопоглощение.
  • Воздухостойкость.
  • Морозостойкость.
  • Термическое сопротивление.
  • Теплопроводность.
  • Огнестойкость.
  • Огнеупорность.
  • Радиационная стойкость.
  • Химическая стойкость.
  • Долговечность.

И физические, и химические, и технологические свойства материалов одинаково важны. Но мы разберем подробнее первую категорию. Представим характеристику самых важных физических свойств конструкционных материалов.

физические свойства материалов плотность

Плотность

Одно из важнейших свойств в материаловедении. Плотность разделяется на три категории:

  • Истинная. Масса единицы объема материала, признанного абсолютно плотным.
  • Средняя. Это уже масса единицы объема при естественном состоянии материала (с порами и пустотами). Таким образом, средняя плотность изделий из одного и того же материала может быть разной – в зависимости от пустотности и пористости.
  • Насыпная. Используется для сыпучих материалов – это песок, щебень, цемент. Так называется отношение массы порошкообразных и зернистых материалов к ко всему занимаемому ими объему (включается в расчеты и пространство между частицами).

Плотность материала влияет на его технологические характеристики – прочность, теплопроводность. Она будет прямо зависеть от пористости и влажности. С увеличением влажности, соответственно, плотность будет повышаться. Это и характерный показатель для определения экономичности материала.

физические механические и технологические свойства материалов

Пористость

Среди физических, технологических и механических свойств материалов не последнее место занимает и пористость. Это степень заполнения объема изделия порами.

В данном контексте поры – это мельчайшие ячейки, заполненные водой или воздухом. Они могут быть крупными и мелкими, открытыми и закрытыми. Если мелкие поры, к примеру, заполнены воздухом, это повышает теплоизоляционные свойства материала. Величина пористости помогает судить и о других важных характеристиках – долговечности, прочности, водопоглощении, плотности.

Открытые поры сообщаются как с окружающей средой, так и между собой, могут искусственно заполняться водой при погружении материала в жидкость. Обычно чередуются с закрытыми. В звукопоглощающих материалах, к примеру, искусственно создается открытая пористость и перфорация – для более интенсивного поглощения звуковой энергии.

Закрытые поры по распределению и размеру характеризуется следующим:

  • Интегральная кривая распределения объема пор в единице объема по их радиусам.
  • Дифференциальная кривая распределения по радиусам объема пор.

физические механические и технологические свойства материалов

Пустотность

Продолжаем рассматривать физические свойства материалов (плотность, морозостойкость и прочие). Следующее здесь – пустотность. Так именуется количество пустот, которые образуются между отдельными зернами рыхлого, рассыпчатого материала. Это щебень, песок и проч.

Водопроницаемость

Водопроницаемостью называется способность материала отдавать жидкость при его высушивании и поглощать воду при увлажнении.

Во время исследования физических свойств материалов нужно обратить внимание на то, что насыщение водой может проходить двумя путями: при воздействии вещества в жидком состоянии или при воздействии только его пара.

Отсюда выходят и два других важных свойства – это гигроскопичность и водопоглощение.

физические свойства конструкционных материалов

Гигроскопичность

Как определяется данное физическое свойство материалов в материаловедении? Гигроскопичность – способность поглощать водяные пары и удерживать их внутри себя как следствие капиллярной конденсации. Напрямую зависит от относительной влажности и температуры воздуха, размера, разновидности и количества пор вещества, его природы.

Если материал активно притягивает своей поверхностью молекулы воды, то он называется гидрофильным. Если материал, напротив, отталкивает их от себя, то он носит имя гидрофобного. Помимо этого, отдельные гидрофильные материалы отлично растворяются в воде, в то время как гидрофобные стойко сопротивляются воздействию водных сред.

Водопоглощение

Если рассказывать кратко о физических свойствах строительных материалов, то нельзя не упомянуть о водопоглощении – способности удерживать и впитывать жидкость. Свойство характеризуется объемом воды, впитываемым сухим материалом при его полном погружении в воду. Выражается в процентах от массы (материала).

Водопоглощение будет меньше истинной пористости изделия, так как определенное количество пор в нем остается закрытыми. Поэтому оно будет изменяться от их количества, объема, степени открытости. На величину будет влиять и природа материала, его гидрофильность.

В результате насыщения материала водой остальные его физические свойства порой значительно изменяются: возрастает теплопроводность и плотность, увеличивается объем (характерно для глины, древесины), понижается прочность из-за нарушения связей между отдельными частицами.

физические химические и технологические свойства материалов

Влагоотдача

Это способность материала отдавать влагу в окружающую среду. Находясь на воздухе, сырье и изделия сохраняют свою влажность только в определенных условиях – при относительной равновесной влажности воздуха. Если показатель ниже этой величины, то материал начинает отдавать влагу в атмосферу, высушиваться.

Скорость этого процесса зависит от нескольких факторов: от разности между влажностью самого материала и влажностью воздуха (чем она больше, тем интенсивнее высушивание), от свойств самого материала – его пористости, природы, гидрофобности. Так, сырье с крупными порами, гидрофобное будет легче отдать жидкость, нежели материал гидрофильный, с мелкими порами.

Воздухостойкость

Воздухостойкостью называется способность материала в течение длительного времени выдерживать многократное систематическое высушивание и увлажнение без потерь своей механической плотности, а также без значительных деформаций.

Какие-то материалы при периодическом увлажнении начинают разбухать, какие-то – дают усадку, какие-то – слишком коробятся. Древесина, например, подвергается знакопеременным деформациям. Цемент при частом увлажнении-высыхании склонен разрушаться, осыпаться.

Водопроницаемость

Это физическое свойство – способность материалов пропускать через себя жидкость под давлением. Характеризуется объемом воды ,которая за 1 час проходит через 1 кв. м материала под давлением в 1 МПа.

Важно отметить, что встречаются и полностью водонепроницаемые материалы. Это сталь, битум, стекло, основные разновидности пластмасс.

физические свойства материала

Морозостойкость

Важное физическое свойство в российских реалиях. Так зовется способность материала, насыщенного водой, выдерживать многократные попеременные замораживания и оттаивания без значительного уменьшения прочности, появления видимых признаков разрушения.

Разрушение при этом процессе нередко из-за того, что при замораживании вода увеличивается в своем объеме примерно на 9 %. При этом наибольшее ее расширение при переходе в лед наблюдается при отметке -4 °С. При заполнении пор материала водой, ее расширении и и замерзании, поровые стенки испытывают значительные повреждения, которые и ведут к разрушению материала.

Соответственно, морозостойкость будет определять степень насыщения пор водой, его плотность. Морозостойкими считаются именно плотные материалы. Из пористых в эту категорию можно отнести только те, которые отличаются большим присутствие закрытым пор. Или чьи поры вода заполняет не более чем на 90 %.

Физические свойства способны представить важные способности материалов. Некоторые из них мы уже подробно разобрали в статье. Это способность выдерживать холод, многократные наполнения водой и высушивания, удерживать, впитывать, отдавать жидкость и другие важные характеристики.

Добавить комментарий