Как найти фокус параболы по точкам

Координаты фокуса параболы: как найти, формула

Содержание:

  • Формулировка параболы в алгебре и геометрии
  • Что такое фокус параболы, определение
  • Как найти фокус параболы

    • Уравнение расчета
    • Чему равны координаты фокуса
  • Абсцисса фокуса параболы
  • Примеры расчета фокусного расстояния в задачах

Формулировка параболы в алгебре и геометрии

Определение

Парабола — совокупность точек на плоскости, расположенных на одинаковом удалении от фокуса F и директрисы d, в которую точка F не входит.

Парабола

 

Парабола является коническим сечением, или коникой. Это значит, что она возникает при пересечении плоскости с поверхностью кругового конуса. Плоскость сечения при этом параллельна одной из касательных плоскостей конуса.

Парабола в конусе

 

Точка пересечения параболы с ее осью называется вершиной. Она считается началом системы координат, канонической для данной кривой.

Что такое фокус параболы, определение

Определение

Расстояние от точки фокуса до любой точки параболы равняется расстоянию от этой точки к директрисе.

Если в фокус поместить источник света, все исходящие из него световые лучи после отражения от нее пойдут по прямым, параллельным оси симметрии. И наоборот, все световые лучи, идущие параллельно оси, после отражения от «стенок» кривой соберутся в одной точке. Это оптическое свойство широко применяется в конструкциях прожекторов, фар, фонарей, телескопов-рефлекторов.

Как найти фокус параболы

Уравнение расчета

Каноническое уравнение:

(y^2;=;2px)

Парабола на оси

 

Если расположить параболу слева от оси ординат, уравнение примет вид:

(y^2;=;-;2px)

Парабола отрицательное уравнение

 

Параметр p — расстояние от фокуса до директрисы, которая определяется уравнением:

(х;=;-frac p2)

Чтобы узнать расстояние r от любой точки параболы до фокуса, равное ее расстоянию до директрисы, нужно воспользоваться формулой:

(r;=;frac p2;+;x)

В полярной системе координат с центром в фокусе и направлением вдоль оси фокальный параметр можно найти по формуле:

(p;=;rho;times;(1;+;cosleft(varthetaright)))

Чему равны координаты фокуса

Фокус будет иметь координаты ((frac p2;;0)).

Абсцисса фокуса параболы

Также фокус и параметр p можно искать через так называемую фокальную хорду (Р_1Р_2).

Хорда параболы

 

Эта прямая, проходящая через фокус и параллельная директрисе, пересекает параболу в двух точках. Половина длины фокальной хорды будет равна параметру p, являясь абсолютной величиной ординаты любой из точек (Р_1, Р_2).

Абсцисса каждой из этих точек будет равна абсциссе фокуса (frac p2).

Для ординаты y каждой из точек (Р_1, Р_2):

(y^{2;}=;2p;times;frac p2;=;p^2).

Примеры расчета фокусного расстояния в задачах

Пример 1

Определить координаты фокуса параболы (y^{2;}=;4х).

Решение

Находим параметр p:

4 = 2p

p = 2

Координаты (1; 0).

Пример 2

Определить координаты фокуса параболы (y^{2;}=;6х).

Решение

Находим параметр p:

6 = 2p

p = 3

Координаты (1,5; 0).

Насколько полезной была для вас статья?

Рейтинг: 2.02 (Голосов: 47)

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»

Текст с ошибкой:

Расскажите, что не так

Поиск по содержимому


Download Article


Download Article

If you’ve ever cooked food with a parabolic oven in science class or seen the Death Star’s laser in Star Wars, you have an idea of what the focal point (or focus) of a parabola is. But how do you calculate the focus mathematically? We’ve provided the formulas and equations you need to find the focus of any parabola, and added several helpful sample problems that you might see on your next algebra exam!

Things You Should Know

  1. Image titled Find Focus of Parabola Step 1

    1

    Parabola: A parabola can be defined as the graph of a quadratic equation—that is, the curved line you’ll get if you plot the equation on graph paper. Or, if you want to be more technical, it’s a curved line in which all coordinate points (x,y) along the line are equidistant from a specific focal point and a specific line called a directrix.[1]

    • In practical terms, it’s often easier to recognize parabolas in three dimensions. For example, think of large parabolic satellite dishes, or the clear plastic parabolic microphones you see on the sidelines of football games. Both of these direct waves (radio, sound, etc.) toward a single point—the focal point (or focus).
  2. Image titled Find Focus of Parabola Step 2

    2

    Vertex: The vertex is the “turning point” of a parabola—the point along the curve at which it changes direction. So, in a classic “U”-shaped parabola, the vertex is at the very bottom of the “U” shape. You need to know the (x,y) coordinates of the vertex in order to find the coordinates of the focus.[2]

    Advertisement

  3. Image titled Find Focus of Parabola Step 3

    3

    Axis of symmetry: The axis of symmetry is a line that runs through the vertex point and divides the parabola exactly in half. The parabola is a mirror image of itself on either side of the axis of symmetry.[3]

    • For our needs, it’s also important that the vertex is always exactly halfway between the focus and the directrix along the axis of symmetry.
  4. Image titled Find Focus of Parabola Step 4

    4

    Directrix: The directrix is a straight line that crosses the axis of symmetry and is perpendicular to it. The directrix is always outside of the parabola but closest to the vertex. For example, in a classic “U” parabola, adding the directrix line makes it look like you underlined the “U.”[4]

    • The distance between the vertex and the directrix (at the axis of symmetry) is always exactly the same as that between the vertex and the focus.
  5. Image titled Find Focus of Parabola Step 5

    5

    Focus: The focus is a point along the axis of symmetry, inside the parabola, that is equal in distance from the vertex as is the directrix. So, if the directrix is 2 units away from the vertex, the focus is also 2 units away (and, as a result, 4 units away from the directrix).[5]

    • If you draw a straight line from the focus to any point along the curve of the parabola, and then draw a straight line from that point to intersect at a right angle with the directrix, you’ll find that both of those lines are always equal in length.
  6. Advertisement

  1. Image titled Find Focus of Parabola Step 6

    1

    {displaystyle y=a(x-h^{2})+k} or {displaystyle x=a(y-k)^{2}+h}. You’ll use one of these “vertex form of a parabola” equations based on the type of parabola you’re dealing with. A “regular” parabola that opens upward or downward (like a right-side up or upside-down “U”) needs to be converted into the form of the first equation, while a “sideways” parabola that opens to the side (like a forwards or backwards “C”) must be converted to the second.[6]

  2. Image titled Find Focus of Parabola Step 7

    2

    {displaystyle (h,k+1/(4a))} or {displaystyle (h+1/(4a),k)}. Once you have determined (or have been given) the coordinates of the parabola’s vertex, you’ll use one of these formulas to determine the coordinates of the focus. Here’s how to know which to use:[7]

  3. Advertisement

  1. Image titled Find Focus of Parabola Step 8

    1

    Put the equation into the vertex form of a parabola. Because the x portion of the equation is squared, the correct vertex form is {displaystyle y=a(x-h)^{2}+k}, meaning this is a “regular” parabola (it opens either up or down).

  2. Image titled Find Focus of Parabola Step 9

    2

  3. Image titled Find Focus of Parabola Step 10

    3

    Solve for a to find the focus coordinates.

  4. Advertisement

  1. Image titled Find Focus of Parabola Step 11

    1

  2. Image titled Find Focus of Parabola Step 12

    2

  3. Image titled Find Focus of Parabola Step 13

    3

  4. Image titled Find Focus of Parabola Step 14

    4

  5. Advertisement

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Thanks for submitting a tip for review!

References

About This Article

Thanks to all authors for creating a page that has been read 3,488 times.

Did this article help you?

  1. Парабола, её форма, фокус и директриса.

    Начать изучение

  2. Свойства параболы.

    Начать изучение

  3. Уравнение касательной к параболе.

    Начать изучение

Парабола, её форма, фокус и директриса.

Определение.

Параболой называется линия, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением
$$
y^{2}=2pxlabel{ref15}
$$
при условии (p > 0).

Из уравнения eqref{ref15} вытекает, что для всех точек параболы (x geq 0). Парабола проходит через начало канонической системы координат. Эта точка называется вершиной параболы.

Форма параболы известна из курса средней школы, где она встречается в качестве графика функции (y=ax^{2}). Отличие уравнений объясняется тем, что в канонической системе координат по сравнению с прежней оси координат поменялись местами, а коэффициенты связаны равенством (2p=a^{-1}).

Фокусом параболы называется точка (F) с координатами ((p/2, 0)) в канонической системе координат.

Директрисой параболы называется прямая с уравнением (x=-p/2) в канонической системе координат ((PQ) на рис. 8.11).

парабола

Рис. 8.11. Парабола.

Свойства параболы.

Утверждение.

Расстояние от точки (M(x, y)), лежащей на параболе, до фокуса равно
$$
r=x+frac{p}{2}.label{ref16}
$$

Доказательство.

Вычислим квадрат расстояния от точки (M(x, y)) до фокуса по координатам этих точек: (r^{2}=(x-p/2)^{2}+y^{2}) и подставим сюда (y^{2}) из канонического уравнения параболы. Мы получаем
$$
r^{2}=left(x-frac{p}{2}right)^{2}+2px=left(x+frac{p}{2}right)^{2}.nonumber
$$
Отсюда в силу (x geq 0) следует равенство eqref{ref16}.

Заметим, что расстояние от точки (M) до директрисы также равно
$$
d=x+frac{p}{2}.nonumber
$$

Следовательно, мы можем сделать следующий вывод.

Утверждение.

Для того чтобы точка (M) лежала на параболе, необходимо и достаточно, чтобы она была одинаково удалена от фокуса и от директрисы этой параболы.

Доказательство.

Докажем достаточность. Пусть точка (M(x, y)) одинаково удалена от фокуса и от директрисы параболы:
$$
sqrt{left(x-frac{p}{2}right)^{2}+y^{2}}=x+frac{p}{2}.nonumber
$$

Возводя это уравнение в квадрат и приводя в нем подобные члены, мы получаем из него уравнение параболы eqref{ref15}. Это заканчивает доказательство.

Параболе приписывается эксцентриситет (varepsilon=1). В силу этого соглашения формула
$$
frac{r}{d}=varepsilonnonumber
$$
верна и для эллипса, и для гиперболы, и для параболы.


Уравнение касательной к параболе.

Выведем уравнение касательной к параболе в точке (M_{0}(x_{0}, y_{0})), лежащей на ней. Пусть (y_{0} neq 0). Через точку (M_{0}) проходит график функции (y=f(x)), целиком лежащий на параболе. (Это (y=sqrt{2px}) или же (y=-sqrt{2px}), смотря по знаку (y_{0}).) Для функции (f(x)) выполнено тождество ((f(x))^{2}=2px), дифференцируя которое имеем (2f(x)f'(x)=2p). Подставляя (x=x_{0}) и (f(x_{0})=y_{0}), находим (f'(x_{0})=p/y_{0}) Теперь мы можем написать уравнение касательной к параболе
$$
y-y_{0}=frac{p}{y_{0}}(x-x_{0}).nonumber
$$
Упростим его. Для этого раскроем скобки и вспомним, что (y_{0}^{2}=2px_{0}). Теперь уравнение касательной принимает окончательный вид
$$
yy_{0}=p(x+x_{0}).label{ref17}
$$

Заметим, что для вершины параболы, которую мы исключили, положив (y_{0} neq 0), уравнение eqref{ref17} превращается в уравнение (x=0), то есть в уравнение касательной в вершине. Поэтому уравнение eqref{ref17} справедливо для любой точки на параболе.

Утверждение.

Касательная к параболе в точке (M_{0}) есть биссектриса угла, смежного с углом между отрезком, который соединяет (M_{0}) с фокусом, и лучом., выходящим из этой точки в направлении оси параболы (рис. 8.12).

Доказательство.

касательная к параболе
Рис. 8.12. Касательная к параболе.

Рассмотрим касательную в точке (M_{0}(x_{0}, y_{0})). Из уравнения eqref{ref17} получаем ее направляющий вектор (boldsymbol{v}(y_{0}, p)). Значит, ((boldsymbol{v}, boldsymbol{e}_{1})=y_{0}) и (cos varphi_{1}=y_{0}/boldsymbol{v}). Вектор (overrightarrow{FM_{0}}) имеет компоненты (x_{0}=p/2) и (y_{0}), а потому
$$
(overrightarrow{FM_{0}}, boldsymbol{v})=x_{0}y_{0}-frac{p}{2}y_{0}+py_{0}=y_{0}(x_{0}+frac{p}{2}).nonumber
$$
Но (|overrightarrow{FM_{0}}|=x_{0}+p/2). Следовательно, (cos varphi_{2}=y_{0}/|boldsymbol{v}|). Утверждение доказано.

Заметим, что (|FN|=|FM_{0}|) (см. рис. 8.12).

Как найти фокус на параболе

В алгебре парабола — прежде всего график квадратного трехчлена. Однако существует и геометрическое определение параболы, как совокупности всех точек, расстояние которых от некоторой данной точки (фокуса параболы) равно расстоянию до данной прямой (директрисы параболы). Если парабола задана уравнением, то нужно уметь вычислить координаты ее фокуса.

Как найти фокус на параболе

Инструкция

Идя от обратного, предположим, что парабола задана геометрически, то есть известны ее фокус и директриса. Для простоты расчетов установим систему координат так, чтобы директриса была параллельна оси ординат, фокус лежал на оси абсцисс, а сама ось ординат проходила точно посередине между фокусом и директрисой. Тогда вершина параболы будет совпадать с началом координат.Иными словами, если расстояние между фокусом и директрисой обозначить p, то координаты фокуса будут равны (p/2, 0), а уравнение директрисы — x = -p/2.

Расстояние от любой точки (x, y) до точки фокуса будет равно, по формуле расстояния между точками, √(x – p/2)^2 + y^2). Расстояние от этой же точки до директрисы, соответственно, будет равняться x + p/2.

Приравнивая друг другу эти два расстояния, вы получите уравнение: √(x – p/2)^2 + y^2) = x + p/2.Возводя обе части уравнения в квадрат и раскрывая скобки, вы получите: x^2 – px + (p^2)/4 + y^2 = x^2 + px + (p^2)/4.Упростив выражение, вы придете к окончательной формулировке уравнения параболы: y^2 = 2px.

Из этого видно, что если уравнение параболы можно привести к виду y^2 = kx, то координаты ее фокуса будут равны (k/4, 0). Поменяв переменные местами, вы придете к алгебраическому уравнению параболы y = (1/k)*x^2. Координаты фокуса этой параболы равны (0, k/4).

Парабола, служащая графиком квадратного трехчлена, обычно задается уравнением y = Ax^2 + Bx + C, где A, B, и C — константы. Ось такой параболы параллельна оси ординат.Производная квадратичной функции, заданной трехчленом Ax^2 + Bx + C, равна 2Ax + B. Она обращается в ноль при x = -B/2A. Таким образом, координаты вершины параболы равны (-B/2A, – B^2/(4A) + C).

Такая парабола полностью эквивалентна параболе, заданной уравнением y = Ax^2, сдвинутой путем параллельного переноса на -B/2A по оси абсцисс и на -B^2/(4A) + C по оси ординат. Это легко проверить заменой координат. Следовательно, если вершина параболы, заданной квадратичной функцией, находится в точке (x, y), то фокус этой параболы находится в точке (x, y + 1/(4A).

Подставляя в эту формулу вычисленные на предыдущем шаге значения координат вершины параболы и упрощая выражения, вы окончательно получите:x = – B/2A,
y = – (B^2 – 1)/4A + C.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Парабола — это график функции описанный определённой формулой. Чтобы построить параболу нужно следовать формуле, определениям и уравнениям.

Парабола

Парабола – это множество точек плоскости, которые равноотделённые  от заданной точки, что называется фокусом и заданной прямой под названием директриса.

Чтобы получить каноническое уравнение параболы, расположим директрису перпендикулярно оси OX, а фокус F на оси OX так, чтобы начало координат O(0, 0) помещался на одинаковом расстоянии от них (см. рис. 1). Обозначим через p расстояние от фокуса к директрисе, тогда у фокуса будут координаты {x} = {pover{2}}, y = 0, F({pover{2}}, 0).

Для произвольной точки M (x, y) параболы расстояний FM = r, а расстояние к директрисе MN = d. По определению d = r из рис. 1 видим, что d = {x} + {pover{2}}, а {r} = sqrt{x - {pover{2}}^2} + y^2 и поэтому:

Парабола

Рис. 1

sqrt{(x - {pover{2}})^2 + y^2} = x + {pover{2}}to{x}^2 - 2 * {pover2}}x + {p^2over{4}} + y^2 = x^2 + 2 * {pover{2}}x + {p^2over{4}}

y^2 = 2px

(1)

– каноническое уравнение параболы.

Нужна помощь в написании работы?

Мы – биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Заказать работу

Что такое вершина параболы

Вершина параболы – это парабола, которая проходит через точки O (0, 0). Если точка M_{1}(x , y) принадлежит параболе, то и M_{2}(x , -y) тоже принадлежит параболе, так как из:

y^2 = 2pxto{(-y)^2 = 2px}.

Значит, парабола симметрична относительно оси OX, её график достаточно построить в первой четверти, где из канонического уравнения параболы получается, что:

y = sqrt{2px}

Чтобы найти вершину параболы, необходимо знать формулу: ax^2 + bx + c = 0.

Давайте посмотрим, как данная формула действует, допустим дано уравнение:

y^2 = x^2 + 9x + 18

Тогда:

a = 1, b = 9, c = 18.  Чтобы найти величины a, b и c, в квадратном уравнении коэффициент при x^2 = a, при x = b, постоянная (коэффициент без переменной) = c. Если взять тот же пример, y^2 = x^2 + 9x + 18, получается, что:

x = {-bover{2a}}, x = {-9over{2 * 1}}, x = {-9over{2}}.

Форма и характеристики параболы

Исследуем за каноническим уравнением форму и расположение параболы:

1. В уравнении y^2 = 2px переменная входит в парной степени откуда получается, что парабола симметрична относительно оси OX.  Ось OX – это ось, которая симметрична параболе.

2. Так как p > 0, тогда xgeq{0}, откуда получается, что парабола расположена справа от оси Oy.

3. При x = 0 мы имеем y = 0, то есть парабола проходит через начало координат. Точка O(0, 0) – это вершина параболы.

4. При увеличении значений переменной x модуль y тоже возрастает. Изобразим параболу на рисунке:

Возрастание параболы

Рис. 2

5. В полярной системе координат, у канонического уравнения параболы такой вид:

{r} = {pover{1 - cosvarphi}}

6. Уравнение y^2 = - 2px, x^2 = 2py, x^2 = -2py (p > 0), тоже описывают параболы:

Парабола

Рис. 3

Оптическое свойство параболы

У параболы “оптическое” свойство, если: в фокусе параболы поместить источник света, тогда отбитые от параболы лучи будут параллельными оси OX. Это свойство учитывают при изготовлении прожекторов, зеркальных телескопов, теле- и радио антенн.

При положительном p уравнении:

y = - 2px

описывают параболу симметричную относительно OX с вершиной в точке O(0, 0), ветви которой направлены влево (рис. 3 (а)).

Аналогично изложенному, уравнение x^2 = 2py и x^2 = -2py описывают параболы с вершиной в точке O(0, 0) симметрично относительно OY, ветви которой направлены соответственно вверх и вниз (см. рис. 3 (б) и (в)). Если например, уравнение x^2 = 2py решить относительно y

y = {1over{2p}}x^2  и обозначить {1over{2p}} = a, тогда получим известное со школьного курса уравнение параболы y = ax^2. Теперь её фокусное расстояние {pover{2}} = {1over{4a}}.

Примеры решения

Задача

Найти координаты фокуса и составить уравнение директрисы параболы y^2 = 6x.

Решение

Сравнивая каноническое уравнение y^2 = 2px и данное y^2 = 6x, получим 2p = 6to{p = 3, {pover{2}} = {3over{2}}, тогдаF ({3over{2}}, 0). Так как уравнение директрисы x = -{pover{2}}, тогда в данном случае x = -{3over{2}}.

Ответ

координаты фокуса: F ({3over{2}}, 0), а уравнение директрисы параболы: x = -{3over{2}}.

Задача

Составить каноническое уравнение параболы:

а) с фокусом в точке F(2, 0);

б) с фокусом в точке F(0, -6).

Решение

а). Так как фокус F(2, 0) на положительной полуоси OX, тогда парабола симметрична относительно OX с вершиной в точке O(0, 0) и {pover{2}} = 2, поэтому p = 4 и согласно формуле (1) y^2 = 8x.

б). Фокус F(0, -6) лежит на отрицательной полуоси OY с вершиной в точке O(0, 0), ветви направлены вниз, каноническое уравнение следует искать в виде x^2 = -2py. Фокусное расстояние параболы |OF| = {pover{2}} = 6to{p} = 12 и уравнение запишется x^2 = -24y.

Ответ

а) каноническое уравнение параболы с фокусом в точке F(2, 0):  y^2 = 8x;

б) каноническое уравнение с фокусом в точке F(0, -6): x^2 = -24y.

Задача

Показать путём выделения полного квадрата, что уравнение 4x^2 - 12x + y + 6 = 0 – это уравнение параболы. Привести его к каноническому виду. Найти вершину, фокус, ось и директрису этой параболы.

Решение

Выделим относительно переменной x полный квадрат

(4x^2 - 12x) + y + 6 = 0to{4(x^2 - 3x)} + y + 6 = 0to{4((x^2 - 2 * {3over{2}}x + {9over{4}}) - {9over{4}}) + y + 6 = 0}to{4((x - {3over{2}}})^2 - 9 + y + 6 = 0to{y - 3 = -4(x - {3over{2}})^2}to{(x - {3over{2}})^2} = -{1over{4}}(y - 3).

Обозначим y_{1} = y - 3, x_{1} = x - {3over{2}}.  Тогда в результате параллельного переноса координатных осей в новое начало, то есть в точку O_{1}({3over{2}}, 3), получим каноническое уравнение параболы {x_{1}^2} = -{1over{4}}y_{1}.

Ветви этой параболы направлены вниз симметрично относительно оси O_{1}Y_{1}, 2p = {1over{4}}to{p} = {1over{8}}, {pover{2}} = -{1over{16}} – фокусное расстояние. В новой системе координат фокус находится в точке F(0, -{1over{16}}), уравнение директрисы в новой системе y_{1} = {1over{16}}.

Повернёмся к старым координатам при помощи замены y_{1} = y - 3, x_{1} = x - {3over{2}}. Уравнение оси в новой системе x_{1} = 0, а в старой x - {3over{2}} = 0to {2x - 3 = 0} – уравнение оси параболы.

Уравнение директрисы в новой системе координат y_{1} = {1over{16}}, а в старой y - 3 = {1over{16}}to{y - {49over{16}}} = 0to{16y - 49} = 0.

В новой системе X_{1}O_{1}Y_{1} для фокуса F(0, -{1over{16}}) x_{1} = 0, y_{1} = -{1over{16}}, а в старой системе x_{F} - {3over{2}} = 0to{x_{F}} = {3over{2}}, y_{F} - 3 = -{1over{16}}to{y_{F} = -{1over{16}} + 3to{y_{F}} = {47over{16}}, то есть F({3over{2}}, {47over{16}}).

Ответ

Каноническое уравнение параболы – {x_{1}^2} = -{1over{4}}y_{1};

вершина – ветви параболы направлены вниз;

O_{1}Y_{1}, 2p = {1over{4}}to{p} = {1over{8}}, p_{2} = -{1over{16}} – фокусное расстояние, а фокус находится в точке F(0, -{1over{16}});

уравнение оси x_{1} = 0;

уравнение директрисы y_{1} = {1over{16}}.

Добавить комментарий