Как найти фокус прямой второго порядка

Кривые второго порядка – определение и построение с примерами решения

Содержание:

Геометрической фигурой или просто фигурой на плоскости называется множество точек. Задать фигуру – значит указать, из каких точек плоскости она состоит. Одним из важных способов задания фигуры на плоскости является ее задание при помощи уравнений с двумя неизвестными. Произвольное уравнение с двумя неизвестными х и у записывается в виде

  1. Если точка М(а,Ь) принадлежит фигуре Ф, то координаты (а,Ь) являются решениями уравнения
  2. если пара чисел (c,d) является решением уравнения F(x,y) = 0, то точка N(c,d) принадлежит фигуре Ф.

Это определение в более компактной записи выглядит следующим образом. Уравнение называется уравнением фигуры, если , то есть (а, b) – решение уравнения F(x,y) = 0.

Из определения уравнения фигуры следует, что фигура Ф состоит только из тех точек плоскости, координаты которых являются решениями уравнения , т.е. уравнение фигуры задает эту фигуру.

Возможны два вида задач:

  1. дано уравнение и надо построить фигуру Ф, уравнением которой является ;
  2. дана фигура Ф и надо найти уравнение этой фигуры.

Первая задача сводится к построению графика уравнения и решается, чаще всего, методами математического анализа.

Для решения второй задачи, как следует из определения уравнения фигуры, достаточно:

  1. Задать фигуру геометрически, т.е. сформулировать условие, которому удовлетворяют только точки фигуры (довольно часто определение фигуры содержит такое условие);
  2. Записать в координатах условие, сформулированное в первом пункте.

Эллипс

Эллипсом называется линия, состоящая из всех точек плоскости, для каждой из которых сумма расстояний до двух данных точек , есть величина постоянная (большая, чем расстояние между ).

Точки называются фокусами эллипса. Обозначив расстояние между фокусами через 2с, а сумму расстояний от точек эллипса до фокусов через 2а, имеем с b. В этом случае а называется большой полуосью, a b – малой.

Если а =Ь, то уравнение (7.3) можно переписать в виде:

(7.5)

Это уравнение окружности с центром в начале координат. Эллипс (3) можно получить из окружности (4) сжатием плоскости к оси Ох. Пусть на плоскости выбрана прямоугольная система координат Оху. Тогда преобразование, переводящее произвольную точку М(х,у) в точку координаты которой задаются формулами будет окружность (4) переводить в эллипс, заданный соотношением

Число называется эксцентриситетом эллипса. Эксцентриситет характеризует форму эллипса: чем ближе к нулю, тем больше эллипс похож на окружность; при увеличении становится более вытянутым

Фокальными радиусами точки М эллипса называются отрезки прямых, соединяющие эту точку с фокусами . Их длины и задаются формулами Прямые называются директрисами эллипса. Директриса называется левой, а – правой. Так как для эллипса и, следовательно, левая директриса располагается левее левой вершины эллипса, а правая – правее правой вершины.

Директрисы обладают следующим свойством: отношение расстояния г любой точки эллипса от фокуса к ее расстоянию d до соответствующей директрисы есть величина постоянная, равная эксцентриситету, т.е.

Гипербола

Гиперболой называется линия, состоящая из всех точек плоскости, модуль разности расстояний от которых до двух данных точек есть величина постоянная (не равная нулю и меньшая, чем расстояние между ).

Точки называются фокусами гиперболы. Пусть по-прежнему расстояние между фокусами равно 2с. Модуль расстояний от точек гиперболы до фокусов обозначим через а. По условию, а 0) (рис. 9.7). Ось абсцисс проведём через фокус F перпендикулярно директрисе. Начало координат расположим посередине между фокусом и директрисой. Пусть А – произвольная точка плоскости с координатами (х, у) и пусть . Тогда точка А будет лежать на параболе, если r=d, где d- расстояние от точки А до директрисы. Фокус F имеет координаты .

Тогда А расстояние Подставив в формулу r=d, будем иметь. Возведя обе части равенства в квадрат, получим

или

(9.4.1)

Уравнение (9.4.1)- каноническое уравнение параболы. Уравнения также определяют параболы.

Легко показать, что уравнение , определяет параболу, ось симметрии которой перпендикулярна оси абсцисс; эта парабола будет восходящей, если а > 0 и нисходящей, если а О. Для этого выделим полный квадрат:

и сделаем параллельный перенос по формулам

В новых координатах преобразуемое уравнение примет вид: где р – положительное число, определяется равенством .

Пример:

Пусть заданы точка F и прямая у =-1 (рис. 9.8). Множество точек Р(х, y) для которых расстояние |PF| равно расстоянию, называется параболой. Прямая у = -1 называется директрисой параболы, а точка F – фокусом параболы. Чтобы выяснить, как располагаются точки Р, удовлетворяющие условию, запишем это равенство с помощью координат: , или после упрощения . Это уравнение геометрического места точек, образующих параболу (рис. 9.8).

Кривые второго порядка на плоскости

Кривой второго порядка называется фигура на плоскости, задаваемая в прямоугольной системе координат уравнением второй степени относительно переменных х и у:

где коэффициенты А, В и С не равны одновременно нулю

Любая кривая второго порядка на плоскости принадлежит к одному из типов: эллипс, гипербола, парабола, две пересекающиеся прямые, 2 параллельные прямые, прямая, точка, пустое множество.

Кривая второго порядка принадлежит эллиптическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют одинаковые знаки: АС>0.

Кривая второго порядка принадлежит гиперболическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют противоположные знаки: АС 2с. Точка М(х,у) принадлежит эллипсу тогда и только тогда, когда ее координаты удовлетворяют уравнению

которое называют каноническим уравнением эллипса.

Число а называют большей полуосью эллипса, число – мень-

шей полуосью эллипса, 2а и 2b – соответственно большей и меньшей осями эллипса. Точки называют вершинами эллипса, а – его фокусами (рис. 12).

Координатные оси являются осями симметрии эллипса, а начало координат – его центром симметрии. Центр симметрии эллипса называется центром эллипса.

Замечание. Каноническое уравнение эллипса можно рассматривать и в случае b>а. Оно определяет эллипс с большей полуосью b, фокусы которого лежат на оси Оу.

В случае а=b каноническое уравнение эллипса принимает вид и определяет окружность радиуса а с центром в начале координат.

Эксцентриситетом эллипса называется отношение фокусного расстояния к длине большей оси.

Так, в случае а>b эксцентриситет эллипса выражается формулой:

Эксцентриситет изменяется от нуля до единицы и характеризует форму эллипса. Для окружности Чем больше эксцентриситет, тем более вытянут эллипс.

Пример:

Показать, что уравнение

является уравнением эллипса. Найти его центр, полуоси, вершины, фокусы и эксцентриситет. Построить кривую.

Решение:

Дополняя члены, содержащие х и у соответственно, до полных квадратов, приведем данное уравнение к каноническому виду:

– каноническое уравнение эллипса с центром в точке большей полуосью а=3 и меньшей полуосью

Найдем эксцентриситет эллипса:

Для вычисления вершин и фокусов удобно пользовать новой прямоугольной системой координат, начало которой находится в точке а оси параллельны соответственно осям Ох, Оу и имеют те же направления (осуществили преобразование параллельного переноса). Тогда новые координаты точки будут равны ее старым координатам минус старые координаты нового начала, т.е.

В новой системе координат координаты вершин и фокусов гиперболы будут следующими:

Переходя к старым координатам, получим:

Построим график эллипса.

Задача решена.

Гиперболой называется множество всех точек плоскости, для которых модуль разности расстояний до двух данных точек, называемых фокусами, есть величина постоянная, меньшая расстояния между фокусами.

Так же, как и для эллипса, геометрическое свойство точек гиперболы выразим аналитически. Расстояние между фокусами назовем фокусным расстоянием и обозначим через 2с. Постоянную величину обозначим через 2а: 2а

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Кривые второго порядка

Кривая второго порядка – это некоторая линия на плоскости, которая в декартовой системе координат задается общим уравнением:

Имеем дело с уравнением второй степени, в котором коэффициенты при старших членах – при вторых степенях одновременно не нули.

или можно встретить следующую форму записи:

К кривым второго порядка относятся окружность, эллипс, гипербола и парабола.

Покажем на примере определение значений коэффициентов.

Рассмотрим кривую второго порядка:

Вычислим определитель из коэффициентов:

Если Δ = 0, кривая второго порядка параболического типа,

если Δ > 0, кривая второго порядка эллиптического типа,

если Δ F1 и F2 – фокусы.

с – фокальное расстояние,

Каноническое уравнение эллипса с центром симметрии в начале координат:

2а – большая ось эллипса, 2b – малая ось эллипса.

а – большая полуось эллипса, b – малая полуось эллипса.

Если a = b, то имеем окружность с радиусов R = a = b:

Если центр эллипса находится не в начале координат, а в некоторой точке C(x0;y0), оси эллипса параллельны осям координат, то каноническое уравнение эллипса имеет вид:

Эксцентриситет – число, равное отношению фокального расстояния к большей полуоси:

Эксцентриситет характеризует отклонение эллипса от окружности, т.е. чем эксцентриситет больше, тем эллипс более сплющен, вытянут.

Гипербола – множество точек на плоскости для каждой из которых абсолютная величина разности расстояний до двух данных точек F1 и F2 есть величина постоянная, меньшая расстояния между этими точками.

с – фокальное расстояние,

Расстояние от центра гиперболы до одного из фокусов называется фокальным расстоянием.

Каноническое уравнение гиперболы с центром симметрии в начале координат:

x – действительная ось, y – мнимая ось.

а – действительная полуось, b – мнимая полуось.

Если центр гиперболы находится в некоторой точке C(x0;y0), оси симметрии параллельны осям координат, то каноническое уравнение имеет вид:

Эксцентриситет гиперболы – число, равное отношению фокусного расстояния к действительной полуоси.

Чем эксцентриситет меньше, тем гипербола более вытянута, сплюшена вдоль оси Ох.

Директриса гиперболы – прямые, параллельные мнимой оси гиперболы и отстоящая от нее на расстоянии a/Ε.

f1 – правая директриса, f2 – левая директриса.

Порядок построения гиперболы :

1. Строим прямоугольник со сторонами 2a и 2b.

2. Провести асимптоты гиперболы – диагонали построенного прямоугольника.

3. Строим гиперболу с вершинами в точках А 1 (-а;0), А 2 (а;0).

Парабола – множество точек на плоскости для каждой из которых расстояние до данной точки F равно расстоянию до данной прямой f.

F – фокус параболы, f – директриса параболы.

Кривые второго порядка. Эллипс: формулы и задачи

Понятие о кривых второго порядка

Кривыми второго порядка на плоскости называются линии, определяемые уравнениями, в которых переменные координаты x и y содержатся во второй степени. К ним относятся эллипс, гипербола и парабола.

Общий вид уравнения кривой второго порядка следующий:

,

где A, B, C, D, E, F – числа и хотя бы один из коэффициентов A, B, C не равен нулю.

При решении задач с кривыми второго порядка чаще всего рассматриваются канонические уравнения эллипса, гиперболы и параболы. К ним легко перейти от общих уравнений, этому будет посвящён пример 1 задач с эллипсами.

Эллипс, заданный каноническим уравнением

Определение эллипса. Эллипсом называется множество всех точек плоскости, таких, для которых сумма расстояний до точек, называемых фокусами, есть величина постоянная и бОльшая, чем расстояние между фокусами.

Фокусы обозначены как и на рисунке ниже.

Каноническое уравнение эллипса имеет вид:

,

где a и b (a > b) – длины полуосей, т. е. половины длин отрезков, отсекаемых эллипсом на осях координат.

Прямая, проходящая через фокусы эллипса, является его осью симметрии. Другой осью симметрии эллипса является прямая, проходящая через середину отрезка перпендикулярно этому отрезку. Точка О пересечения этих прямых служит центром симметрии эллипса или просто центром эллипса.

Ось абсцисс эллипс пересекает в точках (a, О) и (- a, О), а ось ординат – в точках (b, О) и (- b, О). Эти четыре точки называются вершинами эллипса. Отрезок между вершинами эллипса на оси абсцисс называется его большой осью, а на оси ординат – малой осью. Их отрезки от вершины до центра эллипса называются полуосями.

Если a = b , то уравнение эллипса принимает вид . Это уравнение окружности радиуса a , а окружность – частный случай эллипса. Эллипс можно получить из окружности радиуса a , если сжать её в a/b раз вдоль оси Oy .

Пример 1. Проверить, является ли линия, заданная общим уравнением , эллипсом.

Решение. Производим преобразования общего уравнения. Применяем перенос свободного члена в правую часть, почленное деление уравнения на одно и то же число и сокращение дробей:

Ответ. Полученное в результате преобразований уравнение является каноническим уравнением эллипса. Следовательно, данная линия – эллипс.

Пример 2. Составить каноническое уравнение эллипса, если его полуоси соответственно равны 5 и 4.

Решение. Смотрим на формулу канонического уравения эллипса и подставляем: бОльшая полуось – это a = 5 , меньшая полуось – это b = 4 . Получаем каноническое уравнение эллипса:

.

Точки и , обозначенные зелёным на большей оси, где

,

называются фокусами.

называется эксцентриситетом эллипса.

Отношение b/a характеризует “сплюснутость” эллипса. Чем меньше это отношение, тем сильнее эллипс вытянут вдоль большой оси. Однако степень вытянутости эллипса чаще принято выражать через эксцентриситет, формула которого приведена выше. Для разных эллипсов эксцентриситет меняется в пределах от 0 до 1, оставаясь всегда меньше единицы.

Пример 3. Составить каноническое уравнение эллипса, если расстояние между фокусами равно 8 и бОльшая ось равна 10.

Решение. Делаем несложные умозаключения:

– если бОльшая ось равна 10, то её половина, т. е. полуось a = 5 ,

– если расстояние между фокусами равно 8, то число c из координат фокусов равно 4.

Подставляем и вычисляем:

Результат – каноническое уравнение эллипса:

.

Пример 4. Составить каноническое уравнение эллипса, если его бОльшая ось равна 26 и эксцентриситет .

Решение. Как следует и из размера большей оси, и из уравнения эксцентриситета, бОльшая полуось эллипса a = 13 . Из уравнения эсцентриситета выражаем число c, нужное для вычисления длины меньшей полуоси:

.

Вычисляем квадрат длины меньшей полуоси:

Составляем каноническое уравнение эллипса:

Пример 5. Определить фокусы эллипса, заданного каноническим уравнением .

Решение. Следует найти число c, определяющее первые координаты фокусов эллипса:

.

Получаем фокусы эллипса:

Решить задачи на эллипс самостоятельно, а затем посмотреть решение

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) расстояние между фокусами 30, а большая ось 34

2) малая ось 24, а один из фокусов находится в точке (-5; 0)

3) эксцентриситет , а один из фокусов находится в точке (6; 0)

Продолжаем решать задачи на эллипс вместе

Если – произвольная точка эллипса (на чертеже обозначена зелёным в верхней правой части эллипса) и – расстояния до этой точки от фокусов , то формулы для расстояний – следующие:

.

Для каждой точки, принадлежащей эллипсу, сумма расстояний от фокусов есть величина постоянная, равная 2a.

Прямые, определяемые уравнениями

,

называются директрисами эллипса (на чертеже – красные линии по краям).

Из двух вышеприведённых уравнений следует, что для любой точки эллипса

,

где и – расстояния этой точки до директрис и .

Пример 7. Дан эллипс . Составить уравнение его директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет эллипса, т. е. . Все данные для этого есть. Вычисляем:

.

Получаем уравнение директрис эллипса:

Пример 8. Составить каноническое уравнение эллипса, если его фокусами являются точки , а директрисами являются прямые .

Решение. Смотрим в уравнение директрис, видим, что в нём можем заменить символ эксцентриситета формулой эксцентриситета как отношение первой координаты фокуса к длине большей полуоси. Так сможем вычислить квадрат длины большей полуоси. Получаем:

.

Теперь можем получить и квадрат длины меньшей полуоси:

Уравнение эллипса готово:

Пример 9. Проверить, находится ли точка на эллипсе . Если находится, найти расстояние от этой точки до фокусов эллипса.

Решение. Подставляем координаты точки x и y в уравнение эллипса, на выходе должно либо получиться равенство левой части уравнения единице (точка находится на эллипсе), либо не получиться это равенство (точка не находится на эллипсе). Получаем:

.

Получили единицу, следовательно, точка находится на эллипсе.

Приступаем к нахождению расстояния. Для этого нужно вычислить: число c, определяющее первые координаты фокусов, число e – эксцентриситет и числа “эр” с подстрочными индексами 1 и 2 – искомые расстояния. Получаем:

Проведём проверку: сумма расстояний от любой точки на эллипсе до фокусов должна быть равна 2a.

,

так как из исходного уравнения эллипса .

Одним из самых замечательных свойств эллипса является его оптическое свойство, состоящее в том, что прямые, соединяющие точку эллипса с его фокусами, пересекают касательную к эллипсу под разными углами. Это значит, что луч, пущенный из одного фокуса, после отраэения попадёт в другой. Это свойство лежит в основе аккустического эффекта, наблюдаемого в некоторых пещерах и искусственных сооружениях, своды которых имеют эллиптическую форму: если находиться в одном из фокусов, то речь человека, стоящего в другом фокусе, слышна так хорошо, как будто он находится рядом, хотя на самом деле расстояние велико.

[spoiler title=”источники:”]

http://matecos.ru/mat/matematika/krivye-vtorogo-poryadka.html

http://function-x.ru/curves_ellipse.html

[/spoiler]

В
аналитической геометрии на плоскости
подробно изучаются геометрические
свойства эллипса, гиперболы и параболы,
представляющих собой линии пересечения
кругового конуса с плоскостями, не
проходящими через его вершину. Эти линии
часто встречаются во многих задачах
естествознания и техники. Например,
движение материальной точки под
воздействием центрального поля силы
тяжести происходит по одной из этих
линий; в инженерном деле для конструирования
прожекторов, антенн и телескопов
пользуются важным оптическим свойством
параболы, заключающимся в том, что лучи
света, исходящие из определённой точки
(фокуса параболы), после отражения от
параболы образуют параллельный пучок.

Определение.
Кривой
второго порядка

называется геометрическое место точек
координатной плоскости, координаты
которых удовлетворяют алгебраическому
уравнению 2-й степени с двумя
неизвестными:
.

ОКРУЖНОСТЬ.

Определение.
Окружностью
называется геометрическое место точек
плоскости равноудаленных от одной
фиксированной точки плоскости, называемой
центром
окружности
.

Определение.
Расстояние от любой точки окружности
до ее центра называется радиусом
окружности
.

Теорема.
Окружность является кривой 2-го порядка
и ее уравнение имеет вид:
где
– координаты центра окружности,– радиус окружности.

Определение.
Если центр окружности находится в начале
координат, то такая система координат
называется канонической
для окружности, а уравнение
называется каноническим уравнением
окружности.

ЭЛЛИПС.

Определение.
Эллипсом
называется геометрическое место точек
плоскости, для которых сумма расстояний
до двух фиксированных точек плоскости,
называемых фокусами,
есть величина постоянная. Эту величину
принято обозначать через
.

Определение.
Расстояние между фокусами эллипса
называется фокусным
расстоянием
.
Фокусы эллипса принято обозначать
буквами
и,
расстояние между ними – через.
По определению эллипса.

Определение.
Расстояния от точки
,
лежащей на эллипсе, до фокусовиназываютсяфокальными
радиусами

точки
.

Замечание.
Из определения эллипса следует, что
точка
является точкой эллипса тогда и только
тогда, когда сумма её фокальных радиусов.

Определение.
Число
называетсябольшой
осью

эллипса, число
,
где,
называетсямалой
осью

эллипса. Числа
иназываются соответственнобольшой
и малой

полуосями
эллипса.

Определение.
Отношение фокусного расстояния эллипса
к его большой оси называется эксцентриситетом
эллипса, и обозначается буквой
или:

Определение.
Ось, на которой лежат фокусы эллипса,
называется фокальной
осью

эллипса.

В
канонической для эллипса системе
координат, оси координат являются
главными осями эллипса, а начало координат
является центром эллипса.

Определение.
Точки
эллипса, лежащие на его осях, называются
вершинами
эллипса.

Теорема.
(Каноническое уравнение эллипса.) Эллипс
является кривой 2-го порядка, и в
канонической для эллипса системе
координат его уравнение имеет вид:.

Теорема.
(Фокальные радиусы точки эллипса.) Пусть
в канонической для эллипса системе
координат точка
лежит на эллипсе. Тогда ее фокальные
радиусы равны:,,
где– большая полуось эллипса,
его эксцентриситет.

Определение.
В канонической для эллипса системе
координат прямые
называютсядиректрисами
эллипса.

Теорема.
(Свойство директрис эллипса.) Пусть
– произвольная точка эллипса,и– ее фокальные радиусы. Обозначим черези,
соответственно, расстояния от точкидо левой и правой директрисы эллипса.
Тогда.

Теорема.
(Зеркальное свойство эллипса.) Луч света,
выпущенный из одного фокуса эллипса
после отражения от зеркала эллипса
проходит через второй его фокус.

Теорема.
В канонической для эллипса системе
координат уравнение касательной к
эллипсу в точке
имеет вид:

ГИПЕРБОЛА

Определение.
Гиперболой
называется геометрическое место точек
плоскости, модуль разности расстояний
которых до двух фиксированных точек
плоскости, называемых фокусами, есть
величина постоянная.

Фокусы
гиперболы принято обозначать буквами
и.
Расстояния от точки,
лежащей на гиперболе, до фокусов
обозначаютсяи,
и называются еёфокальными
радиусами
.

Замечание.
Из определения гиперболы следует, что
точка М является точкой гиперболы тогда
и только тогда, когда модуль разности
её фокальных радиусов
есть величина постоянная для данной
гиперболы. Эту константу принято
обозначать через.

Определение.
Расстояние между фокусами гиперболы
называется фокусным
расстоянием
.

Фокусное
расстояние для данной гиперболы есть
величина постоянная и ее принято
обозначать через
:.

Замечание.
Так как сторона треугольника больше
модуля разности двух его других сторон,
то отсюда и из определения гиперболы
следует, что

Определение.
Число
называетсядействительной
осью

гиперболы, число
,
где,
называетсямнимой
осью

гиперболы. Числа
иназываются соответственнодействительной
и мнимой полуосями

гиперболы.

Определение.
Отношение фокусного расстояния гиперболы
к её действительной оси называется
эксцентриситетом
гиперболы, и обозначается буквой
или:

В
канонической для гиперболы системе
координат, оси координат являются
главными осями гиперболы, а начало
координат является центром гиперболы.

Теорема.
(Каноническое уравнение гиперболы.)
Гипербола является кривой 2-го порядка,
и в канонической для гиперболы системе
координат её уравнение имеет вид:
.

Определение.
Точки
гиперболы, лежащие на её действительной
оси, называются действительными
вершинами

гиперболы. Две точки плоскости
(в канонической для гиперболы системе
координат), лежащие на мнимой оси
гиперболы называютсямнимыми
вершинами

гиперболы.

Определение.
Две пары прямых, параллельных осям
гиперболы
высекают прямоугольник, который
называетсяосновным
прямоугольником

гиперболы.

Гипербола
состоит из двух кривых, называемых её
ветвями,
которые в канонической системе
координат описываются уравнениями

Теорема.
Прямые
являются асимптотами гиперболы.

Теорема.
(Фокальные радиусы точек гиперболы.)
Пусть в канонической для гиперболы
системе координат точка
лежит на гиперболе. Тогда ее фокальные
радиусы равны:|,,
где– действительная полуось гиперболы,– её эксцентриситет.

Определение.
В канонической для гиперболы системе
координат прямые
называютсядиректрисами
гиперболы.

Теорема.
(Свойство директрис гиперболы.) Пусть
– произвольная точка гиперболы,и– ее фокальные радиусы. Обозначим черези,
соответственно, расстояния от точкидо левой и правой директрисы гиперболы.
Тогда.


Теорема.
(Зеркальное свойство гиперболы.) Луч
света, выпущенный из одного фокуса
гиперболы после отражения от зеркала
гиперболы кажется наблюдателю идущим
из второго её фокуса.

Теорема.
В канонической для гиперболы системе
координат уравнение касательной к
гиперболе в точке
имеет вид:

ПАРАБОЛА

Определение.
Параболой
называется геометрическое место точек
плоскости, расстояние от которых до
фиксированной прямой, называемой
директрисой,
равно расстоянию до фиксированной
точки, называемой фокусом.

Определение.
Расстояние от произвольной точки
плоскости до фокуса параболы называетсяфокальным
радиусом точки

.

Обозначения:
– фокус параболы,– фокальный радиус точки,– расстояние от точкидо директрисы.

По
определению параболы, точка
является точкой параболы тогда и только
тогда, когда.

Определение.
Расстояние от фокуса параболы до ее
директрисы называется фокальным
параметром

параболы, и обозначается буквой
.

Замечание.
Из определений следует, что в канонической
для параболы системе координат фокус
имеет координаты
,
а директриса описывается уравнением.

Теорема.
(Каноническое уравнение параболы.)
Парабола является кривой 2-го порядка,
и в канонической для неё системе координат
её уравнение имеет вид:

Теорема.
В канонической для параболы системе
координат, фокальный радиус точки
параболы равен

Теорема.
(Зеркальное свойство параболы.) Луч
света, выпущенный из фокуса параболы
после отражения от зеркала параболы
проходит параллельно её фокальной оси.

Теорема.
В канонической для параболы системе
координат уравнение касательной к
параболе в точке
имеет вид:.

Определение.
Парабола
имеет одну ось симметрии, называемую
осью
параболы, с которой она пересекается в
единственной точке. Точка пересечения
параболы с осью называется ее вершиной.

Замечание.
Если координатная система выбрана так,
что ось абсцисс совмещена с осью параболы,
начало координат – с вершиной, но
парабола лежит в левой полуплоскости,
то ее уравнение будет иметь вид:

В
случае, когда начало координат находится
в вершине, а с осью совмещена ось ординат,
то парабола будет иметь уравнение:

,
если она лежит в верхней полуплоскости,
и


если в нижней полуплоскости.

Полярная
система координат.

Определение.
Точка О называется полюсом,
а луч L
полярной
осью.

Задание
какой-либо системы координат на плоскости
состоит в том, чтобы каждой точке
плоскости поставить в соответствие
пару действительных чисел, определяющих
положение этой точки на плоскости. В
случае полярной системы координат роль
этих чисел играют расстояние точки от
полюса и угол между полярной осью и
радиус– вектором этой точки. Этот угол

называется полярным
углом
.

0

Можно
установить связь между полярной системой
координат и декартовой прямоугольной
системой, если поместить начало декартовой
прямоугольной системы в полюс, а полярную
ось направить вдоль положительного
направления оси
.

Тогда
координаты произвольной точки в двух
различных системах координат связываются
соотношениями:

x
= rcos
;
y = rsin
;
x
2
+ y
2
= r
2.

Взаимосвязь
полярных и декартовых координат
определяется формулами:
.

В
полярной системе координат уравнения
эллипса, параболы или правой ветви
гиперболы имеют вид:
,
причем, данное уравнение задает эллипс,
если;
параболу, если;
гиперболу, если.
Левая ветвь гиперболы задается уравнением.

Инварианты
кривых второго порядка.

Определение.
Инвариантами
уравнения линии второго порядка
называются следующие выражения:,,.

Определение.
Если инвариант
,
то линия называется линией эллиптического
типа, если,
то – гиперболического типа, если,
то – параболического типа.

Таблица
для определения типа кривой второго
порядка.

парабола

пара
параллельных прямых

эллипс

точка

гипербола

пара
пересекающихся прямых

Решение
типовых задач.

Задача
№1.

Составить
уравнение параболы, если даны её фокус
и директриса

Решение:

I
способ

Пусть
– произвольная точка параболы, тогда
(по определению параболы) расстояние
от точкидо фокусаF
равно её расстоянию
до директрисы.

Возведём
в квадрат обе части, получим искомое
уравнение:

II
способ

Сделаем
чертёж:

Очевидно,
осью симметрии параболы является
прямая y
= 2.

Вершина

параболы
находится на этой оси на одинаковом
расстоянии от фокуса и директрисы,
т.е. имеет координаты

Совершим
параллельный перенос системы
на вектор:

В
полученной системе координат
уравнение параболы имеет канонический
вид:

,
где
– расстояние между фокусом и директрисой,.
Тогда.
Из формул параллельного переноса
следует:.
Поэтому уравнение параболы примет вид:.

Ответ:
.

Задача
№2.

Найти
фокус и директрису параболы
.

Решение:
выразим из уравнения:
.

Сделаем
преобразование системы координат
:

.
Тогда

это преобразование есть параллельный
перенос.

Уравнение
параболы в системе
примет
вид:

Очевидно,
в новой системе координат
уравнение директрисы имеет вид:.
Фокусимеет координаты

Перейдём
к исходной системе координат: уравнение
директрисы:.

Фокус
F
имеет координаты:

Ответ:
.

Задача
№3.

Точка
лежит на гиперболе, фокус которойа соответствующая директриса задана
уравнением.
Составить уравнение этой гиперболы.

Решение:

Пусть– произвольная точка гиперболы. По
теореме об отношении расстояний
(отношение расстоянияr
от любой точки гиперболы до фокуса к
расстоянию d
от этой точки до соответствующей
директрисы есть величина постоянная,
равная эксцентриситету гиперболы):

,
;

,e
найдём, применив теорему для данной
точки

тогда
.

Сделав
соответствующие преобразования, получим
уравнение:.

Ответ:
.

Задача
№4.

Точка
лежит
на эллипсе, фокус которогоа соответствующая директриса задана
уравнением.
Составить уравнение этого эллипса.

Решение:

Решение
этой задачи аналогично предыдущей
задачи.

Пусть
– произвольная точка эллипса. По теореме
об отношении расстояний имеем:.

e
найдём по этой же теореме, используя
точку

Тогда
уравнение эллипса примет вид:
.

Ответ:
.

Задача
№5.

Из
фокуса параболы
опущен перпендикуляр на прямую, проходящую
через центр эллипсаи составляющую с осьюугол 135°. Составить уравнение этой прямой
и найти длину перпендикуляра.

Решение:

Найдём
координаты центра эллипса, для этого
преобразуем его уравнение:

;

.

Итак,
координаты
эллипсаПрямая
проходит через точку,
угловой коэффициент прямой,
поэтому уравнение прямой примет вид:,
т.е..

Найдём
фокус параболы
,
т.е.= 8, поэтому

Искомая
длина перпендикуляра – это расстояние
от фокуса до прямой,
поэтому.

Ответ:
,.

Задача
№6.

Даны
вершина параболы
и уравнение её директрисы.
Составить уравнение этой параболы.

Решение:

Найдём
фокус параболы, для этого опустим из
вершины
параболы перпендикуляр на директрису:

.
Эта прямая является осью симметрии
параболы.

Найдём
точку
,
пересечение оси симметрии параболы с
её директрисой:.

Фокус
параболы – это конец отрезка
с известными началоми серединойпоэтомуЗная фокус параболы и её директрису,
найдём её уравнение.

Ответ:
.

Задача
№7.

Определить,
при каких значениях
прямая:

1)
пересекает эллипс
;

2)
касается его;

3)
проходит вне этого эллипса.

Решение:

Решая
систему
,
получим уравнение.

  1. Чтобы
    прямая пересекала эллипс, нужно чтобы
    полученное квадратное уравнение
    относительно x
    имело два решения, для этого дискриминант
    D>0.

.
Откуда
.

  1. Чтобы
    прямая касалась эллипса, нужно чтобы
    ,
    т.е.

  2. Нет
    пересечений, если
    т.е.

Ответ:1)
при
пересекает эллипс;

2)
при
касается эллипса;

3)
при
проходит вне эллипса.

Задача
№8.

Провести
касательные к эллипсу
параллельно прямойи вычислить расстояние между ними.

Решение:

Если

точка касания, то уравнение касательной
к эллипсу имеет вид:.

Угловой
коэффициент
к
этой касательной равен:.

Но
касательная параллельна прямой
,
поэтомуПоэтому, чтобы найти точки касания,
решим систему:.

Оттуда
точка
имеет координатыиПоэтому, используя уравнение,
будем иметь уравнения касательных:и.

Расстояние
между касательными – это расстояние
от точки
до второй касательной:

.

Ответ:,,.

Задача
№9.

Написать
уравнение эллипса, для которого прямые
иесть
соответственно большая и малая оси, и
длины полуосей которого,.

Решение:

Найдём
центр
эллипса:

Обозначим
через
систему координат, началом которой
является точкаа
оси параллельны осями.

Через
обозначим систему координат с началом
в точкеи осями координат, совпадающими с
осями эллипса.

В
этой системе координат эллипс задаётся
каноническим уравнением:

Повернём
систему
на угол, равный -45º, тогда система совпадёт
с системой.
Формулы поворота:

или
.

А
уравнение эллипса примет вид:
.

Сделаем
второе преобразование: параллельно
перенесём систему
на вектор.

Формулы
параллельного переноса:
.

Уравнение
эллипса в системе

примет
вид:
.

Ответ:.

Задача
№10.

Не
приводя преобразование координат,
установить, какой геометрический образ
определяет уравнение, и найти величины
его полуосей:
.

Решение:

.

.

.

Итак,
уравнение определяет эллипс. Составим
характеристическое уравнение:

.

Тогда
преобразованное уравнение примет вид:
.

Откуда
каноническое уравнение примет вид:
.

Ответ:
эллипс,
,.

Задача
№11.

Не
приводя преобразования координат,
установить тип кривой и найти величины
её полуосей:
.

Решение:

Уравнение
определяет гиперболу. Т.к.
>0,
то действительной осью является ось.
Составим характеристическое уравнение:

.

Каноническое
уравнение гиперболы:
,
т.е..

Ответ:
гипербола,
,.

Задача
№12.

Не
приводя преобразования координат,
установить тип кривой и найти величины
её полуосей:.

Решение:

,
,– парабола,.
Каноническое уравнение:.

Ось
параболы определяется уравнением:
.

В
разбираемом случае имеем:
.
Вершину параболы находим как точку
пересечения линии с её осью из системы
уравнений:

или

или

или

.

Вершина
параболы
.
Единичный направляющий вектор оси
параболы в сторону вогнутости приопределяется уравнением и неравенством:.

В
рассматриваемом случае имеем:

Имеем:
;.

Ответ:
парабола,
;.

Задача
№13.

Не
приводя преобразования координат,
установить тип кривой и найти величины
её полуосей:.

Решение:

,
,– пересекающиеся прямые. Точка пересечения
находиться как центр линий:

Точка
пересечения
.
Направляющие векторы прямых находятся
как векторы асимптотических направлений:

Направляющие
векторы прямых:

Уравнения
прямых:

и
или

Ответ:
пересекающиеся прямые:

Задача
№14.

Не
приводя преобразования координат,
установить тип кривой и найти величины
её полуосей:

Решение:

,
,
пара прямых (действительных, мнимых или
совпадающих).

Чтобы
решить, какие это прямые, достаточно
найти точки пересечения данной линии
с осью
.

Имеем:
,x
= 0, или

действительные параллельные прямые.
Направляющие векторы прямых имеют
асимптотические направления и находятся
из уравнения:.

Направляющие
векторы прямых
.
Их угловой коэффициент.
Уравнения прямых:или.

Ответ:
параллельные прямые:
.

Задача
№15.

Установить,
какие линии определяются следующими
уравнениями:

1)
;

2)
.

Решение:
1)
.

ОДЗ:
;.

После
преобразований уравнение эллипса
принимает вид:
.

Итак,
координаты центра эллипса
полуосии.
Учитывая, что,
можно сказать, что искомой линией
является половина эллипса, расположенная
над прямой.

2)
.

ОДЗ:

Т.к.

Итак,
преобразуем уравнение:

Центр
эллипса
,

.

Ответ:
половина эллипса

,
расположенная

в
левой полуплоскости.

Задача
№16.

Определить,
какие линии определяются следующими
уравнениями:

Изобразить
линии на чертеже.

Решение:

1)

ОДЗ:
,.

Ответ:
часть гиперболы
,
расположенная в верхней полуплоскости.

Ответ:
ветвь гиперболы
,
расположенная в нижней полуплоскости.

.

Ответ:
Ветвь гиперболы

,
расположенная

в
левой полуплоскости.

Задача
№17.

Уравнение
кривой в полярной системе координат
имеет вид:
.
Найти уравнение кривой в декартовой
прямоугольной системе координат,
определит тип кривой, найти фокусы и
эксцентриситет. Схематично построить
кривую.

Решение.

Воспользуемся
связью декартовой прямоугольной и
полярной системы координат:
;

;
;

;
;

;
;

;
.

Получили
каноническое уравнение эллипса. Из
уравнения видно, что центр эллипса
сдвинут вдоль оси
навправо, большая полуосьa
равна
,
меньшая полуосьравна,
половина расстояния между фокусами
равно1/2.
Эксцентриситет равен.
Фокусыи

y

F1
F2

-1 0
½ 1 2

Образовательным
результатом после изучения данной темы
является сформированность компонент,
заявленных во введении, совокупности
компетенций (знать, уметь, владеть) на
двух уровнях: пороговый и продвинутый.
Пороговый уровень соответствует оценке
«удовлетворительно», продвинутый
уровень соответствует оценкам «хорошо»
или «отлично» в зависимости от результатов
защиты кейс-заданий.

Для
самостоятельной диагностики данных
компонент вам предлагаются следующие
задания.

Содержание:

Геометрической фигурой или просто фигурой на плоскости называется множество точек. Задать фигуру – значит указать, из каких точек плоскости она состоит. Одним из важных способов задания фигуры на плоскости является ее задание при помощи уравнений с двумя неизвестными. Произвольное уравнение с двумя неизвестными х и у записывается в виде Кривые второго порядка - определение и построение с примерами решения

  1. Если точка М(а,Ь) принадлежит фигуре Ф, то координаты (а,Ь) являются решениями уравнения Кривые второго порядка - определение и построение с примерами решения
  2. если пара чисел (c,d) является решением уравнения F(x,y) = 0, то точка N(c,d) принадлежит фигуре Ф.

Это определение в более компактной записи выглядит следующим образом. Уравнение Кривые второго порядка - определение и построение с примерами решения называется уравнением фигуры, если Кривые второго порядка - определение и построение с примерами решения, то есть (а, b) – решение уравнения F(x,y) = 0.

Из определения уравнения фигуры следует, что фигура Ф состоит только из тех точек плоскости, координаты которых являются решениями уравнения Кривые второго порядка - определение и построение с примерами решения, т.е. уравнение фигуры задает эту фигуру.

Возможны два вида задач:

  1. дано уравнение Кривые второго порядка - определение и построение с примерами решения и надо построить фигуру Ф, уравнением которой является Кривые второго порядка - определение и построение с примерами решения;
  2. дана фигура Ф и надо найти уравнение этой фигуры.

Первая задача сводится к построению графика уравнения Кривые второго порядка - определение и построение с примерами решения и решается, чаще всего, методами математического анализа.

Для решения второй задачи, как следует из определения уравнения фигуры, достаточно:

  1. Задать фигуру геометрически, т.е. сформулировать условие, которому удовлетворяют только точки фигуры (довольно часто определение фигуры содержит такое условие);
  2. Записать в координатах условие, сформулированное в первом пункте.

Эллипс

Эллипсом называется линия, состоящая из всех точек плоскости, для каждой из которых сумма расстояний до двух данных точек Кривые второго порядка - определение и построение с примерами решения, есть величина постоянная (большая, чем расстояние между Кривые второго порядка - определение и построение с примерами решения).

Точки Кривые второго порядка - определение и построение с примерами решения называются фокусами эллипса. Обозначив расстояние между фокусами через 2с, а сумму расстояний от точек эллипса до фокусов через 2а, имеем с<а. Если это условие не выполнено, то рассматриваемое множество точек либо отрезок прямой, заключенной между фокусами, либо не содержит ни одной точки.

Из определения эллипса вытекает следующий метод его построения: если концы нерастяжимой нити длины 2а закрепить в точках Кривые второго порядка - определение и построение с примерами решения и натянуть нить острием карандаша, то при движении острия будет вычерчиваться эллипс с фокусами Кривые второго порядка - определение и построение с примерами решения и с суммой расстояний от произвольной точки эллипса до фокусов, равной 2 а (Рис. 7.1).

Кривые второго порядка - определение и построение с примерами решения

Составим уравнение эллипса. Для этой цели расположим декартову прямоугольную систему координат таким образом, чтобы ось Ох походила через фокусы Кривые второго порядка - определение и построение с примерами решения положительное направление оси – от Кривые второго порядка - определение и построение с примерами решения, начало координат выберем в середине отрезка Кривые второго порядка - определение и построение с примерами решения. Тогда координаты точек Кривые второго порядка - определение и построение с примерами решения будут соответственно (-с,0) и (с,0).

Пусть М(х,у) – произвольная точка эллипса, тогда: Кривые второго порядка - определение и построение с примерами решения

Кривые второго порядка - определение и построение с примерами решения

Подставляя сюда значения Кривые второго порядка - определение и построение с примерами решенияимеем:

Кривые второго порядка - определение и построение с примерами решения (7.1)

Уравнение (1) и есть уравнение эллипса. Преобразуя, упростим

его:

Кривые второго порядка - определение и построение с примерами решения

Возведя обе части уравнения в квадрат и приведя подобные члены, получим: Кривые второго порядка - определение и построение с примерами решения

Возведем еще раз обе части в квадрат и приведем подобные члены. Получаем Кривые второго порядка - определение и построение с примерами решения или

Кривые второго порядка - определение и построение с примерами решения (7.2)

Положительную величину Кривые второго порядка - определение и построение с примерами решения обозначим черезКривые второго порядка - определение и построение с примерами решения. Тогда уравнение (7.2) примет вид:

Кривые второго порядка - определение и построение с примерами решения (7.3)

Оно называется каноническим уравнение эллипса.

Координаты точек эллипса ограничены неравенствамиКривые второго порядка - определение и построение с примерами решения. Значит, эллипс ограниченная фигура, не выходящая за пределы прямоугольника со сторонами 2а и 2b •

Кривые второго порядка - определение и построение с примерами решения

Заметим, что в уравнение (7.3) входят лишь четные степени х и у. Поэтому, если точка M(х,у) принадлежит эллипсу, то и точки Кривые второго порядка - определение и построение с примерами решения также ему принадлежат. А это означает, что эллипс – линия симметричная относительно координатных осей Ох и Оу.

Поэтому для исследования формы эллипса достаточно рассмотреть его в первой координатной четверти, а в остальных четвертях его строение определяется по симметрии. Для первой четверти, из уравнения (7.3) имеем:

Кривые второго порядка - определение и построение с примерами решения (7.4)

При возрастании x от 0 до а, у монотонно убывает от а до 0. График функции изображен на Рис. 7.4.

Кривые второго порядка - определение и построение с примерами решения Рис. 7.4

Достроив остальные четверти эллипса по симметрии, получим весь эллипс (Рис. 7.5). Кривые второго порядка - определение и построение с примерами решения

Рис. 7.5. Оси симметрии эллипса (оси Ох и Оу) называются просто его осями, а центр симметрии – точка О – центром эллипса. Точки Кривые второго порядка - определение и построение с примерами решения пересечения эллипса с осями координат называются вершинами эллипса. Отрезки Кривые второго порядка - определение и построение с примерами решения, а также их длины а и Ь называются полуосями эллипса. В случае, когда фокусы эллипса находятся на оси Ох (как в нашем случае), из равенства Кривые второго порядка - определение и построение с примерами решения следует, что a>b. В этом случае а называется большой полуосью, a b – малой.

Если а =Ь, то уравнение (7.3) можно переписать в виде:

Кривые второго порядка - определение и построение с примерами решения (7.5)

Это уравнение окружности с центром в начале координат. Эллипс (3) можно получить из окружности (4) сжатием плоскости к оси Ох. Пусть на плоскости выбрана прямоугольная система координат Оху. Тогда преобразование, переводящее произвольную точку М(х,у) в точку Кривые второго порядка - определение и построение с примерами решения координаты которой задаются формулами Кривые второго порядка - определение и построение с примерами решения будет окружность (4) переводить в эллипс, заданный соотношением Кривые второго порядка - определение и построение с примерами решения

Число Кривые второго порядка - определение и построение с примерами решения называется эксцентриситетом эллипса. Эксцентриситет Кривые второго порядка - определение и построение с примерами решения характеризует форму эллипса: чем ближе к нулю, тем больше эллипс похож на окружность; при увеличении Кривые второго порядка - определение и построение с примерами решения становится более вытянутым

Кривые второго порядка - определение и построение с примерами решения

Фокальными радиусами точки М эллипса называются отрезки прямых, соединяющие эту точку с фокусами Кривые второго порядка - определение и построение с примерами решения. Их длины Кривые второго порядка - определение и построение с примерами решения и Кривые второго порядка - определение и построение с примерами решениязадаются формуламиКривые второго порядка - определение и построение с примерами решения Прямые Кривые второго порядка - определение и построение с примерами решения называются директрисами эллипса. Директриса Кривые второго порядка - определение и построение с примерами решения называется левой, а Кривые второго порядка - определение и построение с примерами решения – правой. Так как для эллипса Кривые второго порядка - определение и построение с примерами решенияи, следовательно, левая директриса располагается левее левой вершины эллипса, а правая – правее правой вершины.

Директрисы обладают следующим свойством: отношение расстояния г любой точки эллипса от фокуса к ее расстоянию d до соответствующей директрисы есть величина постоянная, равная эксцентриситету, т.е. Кривые второго порядка - определение и построение с примерами решения

Гипербола

Гиперболой называется линия, состоящая из всех точек плоскости, модуль разности расстояний от которых до двух данных точек Кривые второго порядка - определение и построение с примерами решения есть величина постоянная (не равная нулю и меньшая, чем расстояние между Кривые второго порядка - определение и построение с примерами решения).

Точки Кривые второго порядка - определение и построение с примерами решения называются фокусами гиперболы. Пусть по-прежнему расстояние между фокусами равно 2с. Модуль расстояний от точек гиперболы до фокусов Кривые второго порядка - определение и построение с примерами решения обозначим через а. По условию, а <с.

Выбрав декартову систему координат, как в случае эллипса, и используя определение гиперболы, составляем ее уравнение: Кривые второго порядка - определение и построение с примерами решения (7.6) где ху – координаты произвольной точки гиперболы,Кривые второго порядка - определение и построение с примерами решения

Уравнение (7.6) называется каноническим уравнением гиперболы.

Из уравнения (7.6) видно, что Кривые второго порядка - определение и построение с примерами решения. Это означает, что вся гипербола располагается вне полосы, ограниченной прямыми х = -а и х = а.

Так как в уравнение входят только четные степени x и у, то гипербола симметрична относительно каждой из координатных осей и начала координат. Поэтому достаточно построить эту кривую в первой четверти: в остальных четвертях гипербола строится по симметрии. Из уравнения (7.6) для первой четверти, имеем:

Кривые второго порядка - определение и построение с примерами решения

График этой функции от точки A(а,0) уходит неограниченно вправо и вверх (Рис. 7.7), и как угодно близко подходит к прямой:

Кривые второго порядка - определение и построение с примерами решения

Поэтому говорят, что гипербола асимптоматически приближается к прямой (7.7), и эту прямую называют асимптотой гиперболы. Из симметрии гиперболы следует, что у нее две асимптоты

Кривые второго порядка - определение и построение с примерами решения

Построим гиперболу. Сначала строим, так называемый, основной прямоугольник гиперболы, центр которой совпадает с началом координат, а стороны равны 2а и 2Ь параллельны осям координат. Прямые, на которых расположены диагонали этого прямоугольника, являются асимптотами гиперболы. Сделаем рисунок гиперболы (Рис. 7.8).

Кривые второго порядка - определение и построение с примерами решения

Гипербола состоит из двух отдельных ветвей. Центр симметрии гиперболы называется ее центром, оси симметрии называются осями гиперболы. Точки Кривые второго порядка - определение и построение с примерами решения, пересечения гиперболы с осью Ох называются вершинами гиперболы. Величины а и Ь называются полуосями гиперболы. Если а=Ь, то гипербола называется равносторонней.

Эксцентриситетом гиперболы называется числоКривые второго порядка - определение и построение с примерами решения. Для любой гиперболы Кривые второго порядка - определение и построение с примерами решения. Эксцентриситет характеризует форму гиперболы: чем меньше, тем больше вытягивается гипербола вдоль оси Ох. На рисунке 7.9 изображены гиперболы с различными значениями £.

Кривые второго порядка - определение и построение с примерами решения

Фокальными радиусами точки гиперболы называются отрезки прямых, соединяющие эту точку с фокусамиКривые второго порядка - определение и построение с примерами решения. Их длины Кривые второго порядка - определение и построение с примерами решенияи Кривые второго порядка - определение и построение с примерами решения задаются формулами:

Для правой – ветви Кривые второго порядка - определение и построение с примерами решения,

Для левой – ветви Кривые второго порядка - определение и построение с примерами решения

Прямые Кривые второго порядка - определение и построение с примерами решенияназываются директрисами гиперболы. Как и в случае эллипса, точки гиперболы характеризуются соотношением Кривые второго порядка - определение и построение с примерами решения

Парабола

Параболой называется линия, состоящая из всех точек плоскости, равноудаленных от данной точки F (фокуса) и данной прямой Кривые второго порядка - определение и построение с примерами решения (директрисы).

Для вывода канонического уравнения параболы ось Ох проводят через фокус F перпендикулярно директрисе Кривые второго порядка - определение и построение с примерами решения в направлении от директрисы к фокусу; начало координат берут в середине отрезка между фокусом F и точкой D пересечения оси Ох с директрисой Кривые второго порядка - определение и построение с примерами решения. Если обозначить через р расстояние фокуса от директрисы, то Кривые второго порядка - определение и построение с примерами решения и уравнение директрисы будет иметь видКривые второго порядка - определение и построение с примерами решения

В выбранной системе координат уравнение параболы имеет вид:

Кривые второго порядка - определение и построение с примерами решения (7.8)

Это уравнение называется каноническим уравнением параболы. Из уравнения (7.8) видно, что л: может принимать только неотрицательные значения. Значит, на рисунке вся парабола располагается справа от оси Оу. Так как уравнение (7.8) содержит у только в четной степени, то парабола симметрична относительно оси Ох и поэтому достаточно рассмотреть ее форму в первой четверти. В этой четверти Кривые второго порядка - определение и построение с примерами решения.

При неограниченном возрастании x неограниченно растет и у. Парабола, выходя из начала координат, уходит неограниченно вправо и вверх, четвертой четверти парабола строится по симметрии. Сделаем рисунок параболы (Рис. 7.10). Кривые второго порядка - определение и построение с примерами решения

Ось симметрии параболы называется ее осью. Точка пересечения с ее осью называется вершиной параболы.

Исследование на плоскости уравнения второй степени

Рассмотрим уравнение:

Кривые второго порядка - определение и построение с примерами решения (7.9)

где среди коэффициентов А, В, С есть отличные от нуля, т.е. (7.9) – уравнение второй степени относительно х и у.

Возьмем на плоскости две прямоугольные системы координат: Оху, которую будем называть старой, и новую, полученную из Оху поворотом ее вокруг начала координат на угол Кривые второго порядка - определение и построение с примерами решения

Старые координаты х, у выражаются через новые координаты Кривые второго порядка - определение и построение с примерами решенияпо формулам:

Кривые второго порядка - определение и построение с примерами решения (7.10)

Подставив выражения для х и у в уравнение (8), получим: Кривые второго порядка - определение и построение с примерами решения (7.11)

Это уравнение в системе координат Кривые второго порядка - определение и построение с примерами решения задает ту же линию, что и уравнение (7. 9) в системе Оху.

Если в уравнении (7.9) Кривые второго порядка - определение и построение с примерами решения, то за счет выбора угла а в (7.10) можно добиться того, что В’ = 0. Для этого угол а надо взять таким, чтобы Кривые второго порядка - определение и построение с примерами решения. Поэтому будем считать В’= 0, тогда уравнение (7.11) примет вид:

Кривые второго порядка - определение и построение с примерами решения (7.12)

Преобразуя это уравнение и применяя параллельный перенос координатных осей, придем к уравнению:

Кривые второго порядка - определение и построение с примерами решения (7.13)

В зависимости от знаков коэффициентов уравнения (7.13) рассмотрим следующие случаи:

Рассматривая далее методично все случаи, придем к выводу: уравнение вида (7.9) задает одну из следующих фигур: эллипс, гиперболу, параболу, пару пересекающихся прямых, пару параллельных прямых, прямую, точку или пустое множество.

Кривые второго порядка в высшей математике

Выяснение взаимосвязей между различными показателями экономического характера часто приводит к форме этих связей в виде гиперболы и параболы. В этой лекции приведём краткие сведения обо всех кривых второго порядка.

Окружность

Определение 9.1. Окружностью называется геометрическое место точек, равноудаленных от данной точки – центра окружности.

Если точка Кривые второго порядка - определение и построение с примерами решения – центр (рис.9.1), N(x,y) – произвольная точка окружности и R – её радиус, то согласно определения можно записать

Кривые второго порядка - определение и построение с примерами решения

или

Кривые второго порядка - определение и построение с примерами решения

Найдём условия, при которых общее уравнение второй степени с двумя переменными

Кривые второго порядка - определение и построение с примерами решения

определяет окружность. Раскрыв скобки в (9.1.1), получим

Кривые второго порядка - определение и построение с примерами решения

Кривые второго порядка - определение и построение с примерами решения

Сравнивая (9.1.2) и (9.1.3), находим условия А = С, В = О,

Кривые второго порядка - определение и построение с примерами решения, при выполнении которых общее уравнение (9.1.2) определяет окружность.

Эллипс

Определение 9.2. Эллипсом называется геометрическое место точек, для которых сумма расстояний от двух фиксированных точек плоскости, называемых фокусами, есть постоянная величина, большая, чем расстояние между фокусами.

Пусть на плоскости хОу (рис. 9.2) дан эллипс с фокусами Кривые второго порядка - определение и построение с примерами решения иКривые второго порядка - определение и построение с примерами решения. Пусть начало координат лежит на середине отрезка Кривые второго порядка - определение и построение с примерами решения. Выведем уравнение эллипса.

Если точка А – произвольная точка эллипса с координатами (х, у), то

Кривые второго порядка - определение и построение с примерами решения (9.2.1)

где Кривые второго порядка - определение и построение с примерами решения– постоянная сумма. Так как Кривые второго порядка - определение и построение с примерами решения

расположены симметрично относительно начала координат, то они имеют координаты (с,0) и (-с,0) соответственно. Воспользовавшись формулой для вычисления расстояния между двумя точками, находим Кривые второго порядка - определение и построение с примерами решения. Подставив значения Кривые второго порядка - определение и построение с примерами решения

и Кривые второго порядка - определение и построение с примерами решения в (9.2.1), получаем уравнение Кривые второго порядка - определение и построение с примерами решенияКривые второго порядка - определение и построение с примерами решения

Обе части этого уравнения возведем в квад-Упростив и обозначивКривые второго порядка - определение и построение с примерами решения

получимКривые второго порядка - определение и построение с примерами решения. Разделим обе части уравнения на правую часть

Кривые второго порядка - определение и построение с примерами решения

Кривые второго порядка - определение и построение с примерами решения

Кривые второго порядка - определение и построение с примерами решения

Уравнение (9.2.2) называется каноническим уравнением эллипса, где а – большая полуось, b – малая полуось.

Это уравнение второго порядка, следовательно, эллипс есть линия второго порядка. Для определения формы эллипса служит его эксцентриситет Кривые второго порядка - определение и построение с примерами решения, т.е. отношение расстояния между фокусами этого эллипса к длине его большей полуоси. Так как сКривые второго порядка - определение и построение с примерами решенияа, то эксцентриситет каждого эллипса меньше единицы. Поскольку

Кривые второго порядка - определение и построение с примерами решения , то подставив значение Кривые второго порядка - определение и построение с примерами решения в равенствоКривые второго порядка - определение и построение с примерами решения, получим Кривые второго порядка - определение и построение с примерами решения

Следовательно, эксцентриситет определяется отношение осей эллипса; а отношение осей определяется эксцентриситетом. Чем ближе эксцентриситет к единице, тем меньше Кривые второго порядка - определение и построение с примерами решения, тем меньше, следовательно, отношение Кривые второго порядка - определение и построение с примерами решения. Это значит, что эллипс вытянут вдоль оси Ох. В случае Ь=а иКривые второго порядка - определение и построение с примерами решения получаем окружность.

Две прямые, перпендикулярные к большей оси эллипса и расположенные симметрично относительно центра на расстоянии Кривые второго порядка - определение и построение с примерами решения от него, называются директрисами эллипса. Уравнения директрис

Кривые второго порядка - определение и построение с примерами решения

Пример:

Исследовать, какая линия определяется уравнениемКривые второго порядка - определение и построение с примерами решения

Решение:

Сгруппируем члены, содержащие одну и туже переменную, получимКривые второго порядка - определение и построение с примерами решения

Из второй скобки вынесем коэффициент при Кривые второго порядка - определение и построение с примерами решения , после чего предыдущее уравнение примет вид

Кривые второго порядка - определение и построение с примерами решения

В каждой из скобок выделим полный квадрат

Кривые второго порядка - определение и построение с примерами решения

или Кривые второго порядка - определение и построение с примерами решения

Произведём замену: Кривые второго порядка - определение и построение с примерами решения. Исследуемое уравнение принимает вид: Кривые второго порядка - определение и построение с примерами решения.

Разделив обе части этого уравнения на Кривые второго порядка - определение и построение с примерами решения, получим канонический вид данного уравнения:Кривые второго порядка - определение и построение с примерами решения

Заданное уравнение определяет эллипс с полуосями Кривые второго порядка - определение и построение с примерами решения, центр которого находится в точке Кривые второго порядка - определение и построение с примерами решения

Выбираем на плоскости произвольным образом прямоугольную систему координат хОу. С помощью параллельного переноса переносим оси координат в новое начало в точку Кривые второго порядка - определение и построение с примерами решения. В новой системе координат строим основной прямоугольник со сторонами Кривые второго порядка - определение и построение с примерами решения, стороны которого параллельны новым осям координат, а центр находится в точке Кривые второго порядка - определение и построение с примерами решения. Вписываем в него эллипс.

Кривые второго порядка - определение и построение с примерами решения

Гипербола

Определение 9.3.1. Гиперболой называется геометрическое место точек, для которых разность расстояний от двух фиксированных точек плоскости, называемых фокусами, есть постоянная величина, меньшая, чем расстояние между фокусами и отличная от нуля (указанная разность берется по абсолютному значению). Кривые второго порядка - определение и построение с примерами решения

Пусть М- произвольная точка гиперболы с фокусами Кривые второго порядка - определение и построение с примерами решения (рис. 9.4). Отрезки Кривые второго порядка - определение и построение с примерами решения называются фокальными радиусами точки М и обозначаются Кривые второго порядка - определение и построение с примерами решенияПо определению гиперболы Кривые второго порядка - определение и построение с примерами решения . Так как Кривые второго порядка - определение и построение с примерами решения и т.к. Кривые второго порядка - определение и построение с примерами решения расположены симметрично относительно начала координат, то, применяя формулу для вычисления расстояния между двумя точками, находим Кривые второго порядка - определение и построение с примерами решения . Заменяя Кривые второго порядка - определение и построение с примерами решения в равенстве Кривые второго порядка - определение и построение с примерами решения найденными выражениями, получаем:

Кривые второго порядка - определение и построение с примерами решения.

Возведя в квадрат обе части этого уравнения и обозначая Кривые второго порядка - определение и построение с примерами решенияКривые второго порядка - определение и построение с примерами решения, получим: Кривые второго порядка - определение и построение с примерами решения или, разделив все члены уравнения на правую часть, приводим его к виду:

Кривые второго порядка - определение и построение с примерами решения

Уравнение (9.3.1)- это каноническое уравнение гиперболы, линии второго порядка.

Прямоугольник со сторонами 2а и 2b, расположенный симметрично относительно осей гиперболы и касающийся ее в вершинах, называется основным прямоугольником. Его диагонали совпадают с асимптотами гиперболы Кривые второго порядка - определение и построение с примерами решения. Поэтому, если требуется построить гиперболу с полуосями а и b, то следует, прежде всего, построить ее основной прямоугольник, затем асимптоты.

Уравнение видаКривые второго порядка - определение и построение с примерами решения определяет гиперболу, вершины которой расположены на оси Оу (Рис. 9.5).

Кривые второго порядка - определение и построение с примерами решения

Форму гиперболы характеризует её эксцентриситет Кривые второго порядка - определение и построение с примерами решения, т.е. отношение расстояния между фокусами этой гиперболы к расстоянию между её вершинами. Поскольку Кривые второго порядка - определение и построение с примерами решения, то подставив в формулу Кривые второго порядка - определение и построение с примерами решенияполучимКривые второго порядка - определение и построение с примерами решенияоткудаКривые второго порядка - определение и построение с примерами решения. Следовательно, эксцентриситет oредсляется отношением Кривые второго порядка - определение и построение с примерами решения, а отношение Кривые второго порядка - определение и построение с примерами решения– эксцентриситетом. Следовательно, эксцентриситет характеризует форму гиперболы. Чем меньше эксцентриситет, тем меньше отношение Кривые второго порядка - определение и построение с примерами решения, а это значит, что основной прямоугольник вытянут в направлении оси, соединяющей вершины.

Прямые, заданные уравнениями Кривые второго порядка - определение и построение с примерами решения называются директрисами гиперболы.

Пример:

Составить уравнение геометрического места точек, отношение расстояний которых от данной точки А(4, 0) и от данной прямой х=1 равно 2.

Решение:

В системе координат хОу построим точку А(4, 0) и прямую х = 1. Пусть М(х, у) – произвольная точка искомого геометрического места точек. Опустим перпендикуляр MB на данную прямую х = 1 и определим координаты точки В. Так как точка В лежит на заданной прямой, то её абсцисса равна 1. Ордината точки В равна ординате точки М. Следовательно, B(1, у) (рис. 9.6).По условию задачи Кривые второго порядка - определение и построение с примерами решения .Подставив значения расстоянийКривые второго порядка - определение и построение с примерами решения, которые находим по формуле расстояния между двумя точками, получим:

Кривые второго порядка - определение и построение с примерами решения

Возводя в квадрат левую и правую части равенства и последовательно преобразовывая, находим уравнение:

Кривые второго порядка - определение и построение с примерами решения

Полученное уравнение определяет гиперболу, у которой действительная полуось -а = 2, а мнимая Кривые второго порядка - определение и построение с примерами решения.

Определим фокусы гиперболы. Для гиперболы выполняется равенство Кривые второго порядка - определение и построение с примерами решения . Следовательно, Кривые второго порядка - определение и построение с примерами решенияКривые второго порядка - определение и построение с примерами решения – фокусы гиперболы. Как видно, заданная точка

А(4, 0) является правым фокусом гиперболы.

Эксцентриситет полученной гиперболы равен Кривые второго порядка - определение и построение с примерами решения

Подставив значения а и b в уравнения асимптот Кривые второго порядка - определение и построение с примерами решения иКривые второго порядка - определение и построение с примерами решения

у =—получим уравнения асимптот гиперболы:Кривые второго порядка - определение и построение с примерами решенияи Кривые второго порядка - определение и построение с примерами решения.

Для построения гиперболы строим основной прямоугольник с полуосями Кривые второго порядка - определение и построение с примерами решения , затеем асимптоты Кривые второго порядка - определение и построение с примерами решения иКривые второго порядка - определение и построение с примерами решения а далее строим и саму гиперболу (рис.9.6). Кривые второго порядка - определение и построение с примерами решения

  • Заказать решение задач по высшей математике

Парабола

Определение 9.4.1. Параболой называется геометрическое место точек, для каждой из которых, расстояние до некоторой фиксированной точки плоскости, называемой фокусом, равно расстоянию до некоторой фиксированной прямой, называемой директрисой,(директриса не проходит через фокус).

Обозначим фокус параболы – F, расстояние от фокуса до директрисы – р(р > 0) (рис. 9.7). Ось абсцисс проведём через фокус F перпендикулярно директрисе. Начало координат расположим посередине между фокусом и директрисой. Пусть А – произвольная точка плоскости с координатами (х, у) и пусть Кривые второго порядка - определение и построение с примерами решения. Тогда точка А будет лежать на параболе, если r=d, где d- расстояние от точки А до директрисы. Фокус F имеет координаты Кривые второго порядка - определение и построение с примерами решения.

Кривые второго порядка - определение и построение с примерами решения

Тогда Кривые второго порядка - определение и построение с примерами решения А расстояние Кривые второго порядка - определение и построение с примерами решения Подставив в формулу r=d, будем иметьКривые второго порядка - определение и построение с примерами решения. Возведя обе части равенства в квадрат, получимКривые второго порядка - определение и построение с примерами решения

Кривые второго порядка - определение и построение с примерами решения или

Кривые второго порядка - определение и построение с примерами решения(9.4.1)

Уравнение (9.4.1)- каноническое уравнение параболы. Уравнения Кривые второго порядка - определение и построение с примерами решениятакже определяют параболы.

Легко показать, что уравнение Кривые второго порядка - определение и построение с примерами решения, определяет параболу, ось симметрии которой перпендикулярна оси абсцисс; эта парабола будет восходящей, если а > 0 и нисходящей, если а Кривые второго порядка - определение и построение с примерами решения О. Для этого выделим полный квадрат:

Кривые второго порядка - определение и построение с примерами решения

и сделаем параллельный перенос по формуламКривые второго порядка - определение и построение с примерами решенияКривые второго порядка - определение и построение с примерами решения

В новых координатах преобразуемое уравнение примет вид: Кривые второго порядка - определение и построение с примерами решения где р – положительное число, определяется равенствомКривые второго порядка - определение и построение с примерами решения .

Пример:

Пусть заданы точка F и прямая у =-1 (рис. 9.8). Множество точек Р(х, y) для которых расстояние |PF| равно расстояниюКривые второго порядка - определение и построение с примерами решения, называется параболой. Прямая у = -1 называется директрисой параболы, а точка F – фокусом параболы. Чтобы выяснить, как располагаются точки Р, удовлетворяющие условиюКривые второго порядка - определение и построение с примерами решения, запишем это равенство с помощью координат: Кривые второго порядка - определение и построение с примерами решенияКривые второго порядка - определение и построение с примерами решения , или после упрощения Кривые второго порядка - определение и построение с примерами решения. Это уравнение геометрического места точек, образующих параболу (рис. 9.8).

Кривые второго порядка - определение и построение с примерами решения

Кривые второго порядка на плоскости

Кривой второго порядка называется фигура на плоскости, задаваемая в прямоугольной системе координат уравнением второй степени относительно переменных х и у:

Кривые второго порядка - определение и построение с примерами решения

где коэффициенты А, В и С не равны одновременно нулю Кривые второго порядка - определение и построение с примерами решения

Любая кривая второго порядка на плоскости принадлежит к одному из типов: эллипс, гипербола, парабола, две пересекающиеся прямые, 2 параллельные прямые, прямая, точка, пустое множество.

Кривая второго порядка принадлежит эллиптическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют одинаковые знаки: АС>0.

Кривая второго порядка принадлежит гиперболическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют противоположные знаки: АС<0.

Кривая второго порядка принадлежит параболическому типу, если коэффициент В равен нулю: В=0 и только один из коэффициентов А и С не равен нулю: АС=0 и Кривые второго порядка - определение и построение с примерами решения

Рассмотрим канонические (простейшие) уравнения эллипса, гиперболы и параболы.

Эллипсом называется множество всех точек плоскости, для которых сумма расстояний до двух данных точек, называемых фокусами, есть величина постоянная, большая расстояния между фокусами.

Геометрическое свойство точек эллипса выразим аналитически. Расстояние между фокусами назовем фокусным расстоянием и обозначим через 2с. Постоянную величину, о которой идет речь в определении эллипса, обозначим через 2а: 2а>2с. Точка М(х,у) принадлежит эллипсу тогда и только тогда, когда ее координаты удовлетворяют уравнению

Кривые второго порядка - определение и построение с примерами решения которое называют каноническим уравнением эллипса.

Число а называют большей полуосью эллипса, число Кривые второго порядка - определение и построение с примерами решения– мень-

шей полуосью эллипса, 2а и 2b – соответственно большей и меньшей осями эллипса. Точки Кривые второго порядка - определение и построение с примерами решения называют вершинами эллипса, а Кривые второго порядка - определение и построение с примерами решения – его фокусами (рис. 12).

Кривые второго порядка - определение и построение с примерами решения

Координатные оси являются осями симметрии эллипса, а начало координат – его центром симметрии. Центр симметрии эллипса называется центром эллипса.

Замечание. Каноническое уравнение эллипса можно рассматривать и в случае b>а. Оно определяет эллипс с большей полуосью b, фокусы которого лежат на оси Оу.

В случае а=b каноническое уравнение эллипса принимает вид Кривые второго порядка - определение и построение с примерами решения и определяет окружность радиуса а с центром в начале координат.

Эксцентриситетом эллипса называется отношение фокусного расстояния к длине большей оси.

Так, в случае а>b эксцентриситет эллипса выражается формулой:

Кривые второго порядка - определение и построение с примерами решения

Эксцентриситет изменяется от нуля до единицы Кривые второго порядка - определение и построение с примерами решения и характеризует форму эллипса. Для окружности Кривые второго порядка - определение и построение с примерами решения Чем больше эксцентриситет, тем более вытянут эллипс.

Пример:

Показать, что уравнение

Кривые второго порядка - определение и построение с примерами решения

является уравнением эллипса. Найти его центр, полуоси, вершины, фокусы и эксцентриситет. Построить кривую.

Решение:

Дополняя члены, содержащие х и у соответственно, до полных квадратов, приведем данное уравнение к каноническому виду:

Кривые второго порядка - определение и построение с примерами решения

Кривые второго порядка - определение и построение с примерами решения – каноническое уравнение эллипса с центром в точкеКривые второго порядка - определение и построение с примерами решения большей полуосью а=3 и меньшей полуосью Кривые второго порядка - определение и построение с примерами решения

Найдем эксцентриситет эллипса:

Кривые второго порядка - определение и построение с примерами решения

Для вычисления вершин и фокусов удобно пользовать новой прямоугольной системой координат, начало которой находится в точке Кривые второго порядка - определение и построение с примерами решения а оси Кривые второго порядка - определение и построение с примерами решения параллельны соответственно осям Ох, Оу и имеют те же направления (осуществили преобразование параллельного переноса). Тогда новые координаты точки будут равны ее старым координатам минус старые координаты нового начала, т.е. Кривые второго порядка - определение и построение с примерами решения

В новой системе координат координаты Кривые второго порядка - определение и построение с примерами решения вершин и фокусов гиперболы будут следующими:

Кривые второго порядка - определение и построение с примерами решения

Переходя к старым координатам, получим:

Кривые второго порядка - определение и построение с примерами решения

Построим график эллипса.

Кривые второго порядка - определение и построение с примерами решения Задача решена.

Гиперболой называется множество всех точек плоскости, для которых модуль разности расстояний до двух данных точек, называемых фокусами, есть величина постоянная, меньшая расстояния между фокусами.

Так же, как и для эллипса, геометрическое свойство точек гиперболы выразим аналитически. Расстояние между фокусами назовем фокусным расстоянием и обозначим через 2с. Постоянную величину обозначим через 2а: 2а<2с. Точка М(х,у) принадлежит гиперболе тогда и только тогда, когда ее координаты удовлетворяют уравнению

Кривые второго порядка - определение и построение с примерами решения которое называют каноническим уравнением гиперболы.

Число а называют действительной полуосью гиперболы, число

Кривые второго порядка - определение и построение с примерами решения – мнимой полуосью гиперболы, 2а и 2b – соответственно действительной и мнимой осями гиперболы. Точки Кривые второго порядка - определение и построение с примерами решения называют вершинами гиперболы, Кривые второго порядка - определение и построение с примерами решения – ее фокусами (рис. 13).Кривые второго порядка - определение и построение с примерами решения

Координатные оси являются осями симметрии гиперболы, а начало координат – ее центром симметрии. Центр симметрии гиперболы называется центром гиперболы.

Точки гиперболы по мере удаления от начала координат неограниченно (асимптотически) приближаются к прямым у=±kх (где Кривые второго порядка - определение и построение с примерами решения), которые называются асимптотами гиперболы.

Эксцентриситетом гиперболы называется отношение фокусного расстояния к длине действительной оси:Кривые второго порядка - определение и построение с примерами решения

Эксцентриситет гиперболы изменяется от единицы до бесконечности Кривые второго порядка - определение и построение с примерами решения и характеризует форму гиперболы. Чем меньше эксцентриситет гиперболы, тем ее ветви более сжаты к оси Ох.

Замечание. Каноническое уравнение Кривые второго порядка - определение и построение с примерами решения определяет сопряженную гиперболу с действительной полуосью b, вершинами в точках Кривые второго порядка - определение и построение с примерами решения и фокусами на оси Оу.

Пример:

Составить каноническое уравнение гиперболы с центром в начале координат, если ее действительная полуось равна трем, а эксцентриситет -четырем третьим.

Решение:

Каноническое уравнение гиперболы имеет вид

Кривые второго порядка - определение и построение с примерами решения По условию задачи нам известно: а=3,Кривые второго порядка - определение и построение с примерами решения Найдем мнимую полуось.

Кривые второго порядка - определение и построение с примерами решения

Следовательно, уравнение искомой гиперболы:

Кривые второго порядка - определение и построение с примерами решения Задача решена.

Параболой называется множество всех точек плоскости, каждая из которых находится на одинаковом расстоянии от данной точки, называемой фокусом параболы, и от данной прямой, называемой директрисой и не проходящей через фокус.

Расстояние между фокусом и директрисой обозначим р. Для того чтобы точка М(х,у) принадлежала параболе, необходимо и достаточно, чтобы ее координаты удовлетворяли уравнению Кривые второго порядка - определение и построение с примерами решения которое называется каноническим уравнением параболы.

Точка O(0,0) называется вершиной параболы, число р – параметром параболы, Кривые второго порядка - определение и построение с примерами решения – директрисой пир,болы, а Кривые второго порядка - определение и построение с примерами решения– ее фокусом. Прямая у=0 является осью симметрии параболы, ветви которой направлены вправо. Центра симметрии у параболы нет (рис. 14). Кривые второго порядка - определение и построение с примерами решения

Если поменять ролями оси Ох и Оу, то каноническое уравнение параболы примет вид Кривые второго порядка - определение и построение с примерами решения (уравнение параболы с вертикальной осью, уравнением директрисы Кривые второго порядка - определение и построение с примерами решения фокусом Кривые второго порядка - определение и построение с примерами решения ветви направлены вверх).

Замечание. Канонические уравнения параболы можно рассматривать и в случае, когда ветви направлены влево или вниз:

Пример:

Составить уравнение параболы с вершиной в начале координат, симметричной относительно оси Оу и отсекающей на биссектрисе первого координатного угла отрезок длиной Кривые второго порядка - определение и построение с примерами решения

Решение:

Каноническое уравнение параболы с вершиной в начале координат, симметричной относительно оси Оу и ветвями, направленными вверх, имеет вид:

Кривые второго порядка - определение и построение с примерами решения

Уравнение биссектрисы первого координатного угла у=х. Найдем точки пересечения параболы с биссектрисой. Для этого решим систему уравнений

Кривые второго порядка - определение и построение с примерами решения

Следовательно, точка М(2р,2р) будет принадлежать параболе. С другой стороны, парабола отсекает на биссектрисе отрезок длиной Кривые второго порядка - определение и построение с примерами решения который является гипотенузой равнобедренного прямоугольного треугольника с катетами 2р. Кривые второго порядка - определение и построение с примерами решения

По теореме Пифагора

Кривые второго порядка - определение и построение с примерами решения

Тогда искомое уравнение параболы

Кривые второго порядка - определение и построение с примерами решения

Уравнение директрисы параболы: у=-1, координаты ее фокуса F(0,1).

Кривые второго порядка - определение и построение с примерами решения

Задача решена.

  • Евклидово пространство
  • Матрица – виды, операции и действия с примерами
  • Линейный оператор – свойства и определение
  • Многочлен – виды, определение с примерами
  • Числовые множества
  • Вектор – определение и основные понятия
  • Прямая – понятие, виды и её свойства
  • Плоскость – определение, виды и правила

Кривая второго порядка — геометрическое место точек плоскости, прямоугольные координаты которых удовлетворяют уравнению вида

{displaystyle a_{11}x^{2}+2a_{12}xy+a_{22}y^{2}+2a_{13}x+2a_{23}y+a_{33}=0,}

в котором по крайней мере один из коэффициентов a_{11},~a_{12},~a_{22} отличен от нуля.
Таким образом кривая второго порядка является частным случаем алгебраической кривой.

История[править | править код]

Впервые кривые второго порядка изучались Менехмом, учеником Евдокса[1][2]. Его работа заключалась в следующем: если взять две пересекающиеся прямые и вращать их вокруг биссектрисы образованного ими угла, то получится конусная поверхность. Если же пересечь эту поверхность плоскостью, то в сечении получаются различные геометрические фигуры, а именно эллипс, окружность, парабола, гипербола и несколько вырожденных фигур (см. ниже).

Однако эти научные знания нашли применение лишь в XVII веке, когда стало известно, что планеты движутся по эллиптическим траекториям, а пушечный снаряд летит по параболической. Ещё позже стало известно, что если придать телу первую космическую скорость, то оно будет двигаться по окружности вокруг Земли, при увеличении этой скорости — по эллипсу, при достижении второй космической скорости — по параболе, а при скорости, большей второй космической, — по гиперболе.

Инварианты[править | править код]

Вид кривой зависит от четырёх инвариантов:

  • инварианты относительно поворота и сдвига системы координат:
  • инвариант относительно поворота системы координат (полуинвариант):[источник не указан 3579 дней]

Иногда встречающееся выражение «инвариант кривой» является неточным. Если умножить уравнение на ненулевое число k, то получится уравнение, задающее ту же самую кривую. При этом значения инвариантов изменятся. {displaystyle Delta '=Delta k^{3},D'=Dk^{2}} и т.д.

Классификация кривых второго порядка относительно значений инвариантов[править | править код]

Кривая Уравнение Инварианты
Эллипс {frac {x^{2}}{a^{2}}}+{frac {y^{2}}{b^{2}}}=1 {displaystyle I_{2}neq 0} {displaystyle I_{2}>0} {displaystyle I_{1}I_{3}<0}
Точка (пара мнимых пересекающихся прямых) frac{x^2}{a^2}+frac{y^2}{b^2}=0 {displaystyle I_{3}=0}
Мнимый эллипс {displaystyle {frac {x^{2}}{a^{2}}}+{frac {y^{2}}{b^{2}}}=-1} {displaystyle I_{1}I_{3}>0}
Гипербола {displaystyle {frac {x^{2}}{a^{2}}}-{frac {y^{2}}{b^{2}}}=1} {displaystyle I_{2}<0} {displaystyle I_{3}neq 0}
Пара пересекающихся прямых frac{x^2}{a^2}-frac{y^2}{b^2}=0 {displaystyle I_{3}=0}
Парабола {displaystyle y^{2}=2px} {displaystyle I_{2}=0} {displaystyle I_{3}neq 0}
Пара параллельных прямых {displaystyle x^{2}-d^{2}=0} {displaystyle I_{3}=0} K_{1}<0
Прямая x^2=0 {displaystyle K_{1}=0}
Пара мнимых параллельных прямых {displaystyle x^{2}+d^{2}=0} K_{1}>0

Невырожденные кривые[править | править код]

Кривая второго порядка называется невырожденной, если Deltane0. Могут возникать следующие варианты:

Вырожденные кривые[править | править код]

Кривая второго порядка называется вырожденной, если Delta=0. Могут возникать следующие варианты:

Характеристическая квадратичная форма и характеристическое уравнение[править | править код]

Многие важные свойства кривых второго порядка могут быть изучены при помощи характеристической квадратичной формы, соответствующей уравнению кривой

F_0(x,,y) = a_{11}x^2 + 2a_{12}xy + a_{22}y^2.

Так, например, невырожденная кривая left(Deltane0right) оказывается вещественным эллипсом, мнимым эллипсом, гиперболой или параболой в зависимости от того, будет ли F_0(x,,y) положительно определённой, отрицательно определённой, неопределённой или полуопределённой квадратичной формой, что устанавливается по корням характеристического уравнения:

begin{vmatrix} a_{11} - lambda & a_{12} \ a_{12} & a_{22} - lambda end{vmatrix} = 0

или

lambda^2 - Ilambda + D = 0.

Корни этого уравнения являются собственными значениями вещественной симметричной матрицы

begin{pmatrix} a_{11} & a_{12} \ a_{12} & a_{22} end{pmatrix}

и, как следствие этого, всегда вещественны[3].

Диаметры и центр кривой второго порядка[править | править код]

Диаметром кривой второго порядка называется геометрическое место середин параллельных хорд этой кривой. Полученный таким образом диаметр называется сопряжённым этим хордам или их направлению. Диаметр, сопряжённый хордам, образующим угол theta с положительным направлением оси Ox, определяется уравнением:

left(a_{11}x + a_{12}y +a_{13}right) costheta + left(a_{12}x + a_{22}y +a_{23}right) sintheta = 0.

Если выполняется условие Dne0, то все диаметры кривой пересекаются в одной точке — центре, а сама кривая называется центральной. В противном случае (D=0) все диаметры кривой либо параллельны, либо совпадают.

Координаты центра left(x_0,;y_0right) определяются системой уравнений:

begin{cases} a_{11}x_0 + a_{12}y_0 + a_{13} = 0 \ a_{12}x_0 + a_{22}y_0 + a_{23} = 0 end{cases}

Решая эту систему относительно x_{0} и y_0, получим:

begin{align}
x_0 = - frac{1}{D} begin{vmatrix} a_{13} & a_{12} \ a_{23} & a_{22} end{vmatrix} = frac{a_{12}a_{23} - a_{13}a_{22}}{D} \
y_0 = - frac{1}{D} begin{vmatrix} a_{11} & a_{13} \ a_{12} & a_{23} end{vmatrix} = frac{a_{13}a_{12} - a_{11}a_{23}}{D}
end{align};;;(Dne0).

Если кривая центральная, то перенос начала координат в её центр приводит уравнение к виду

a_{11} bar x^2 + 2a_{12} bar x bar y + a_{22} bar y^2 + frac{Delta}{D} = 0,;;;bar x = x - x_0,;;;bar y = y - y_0,

где bar x,;bar y — координаты относительно новой системы.

Главные оси и вершины кривой второго порядка[править | править код]

Главной осью кривой второго порядка называется её диаметр, перпендикулярный к сопряжённым с ним хордам. Этот диаметр является осью симметрии кривой. Каждая центральная кривая left(Dne0right) либо имеет две взаимно перпендикулярные оси, либо все диаметры являются главными осями. В последнем случае кривая является окружностью. Нецентральные кривые left(D=0right) имеют лишь одну главную ось. Точки пересечения главной оси с самой кривой называются её вершинами.

Направляющие косинусы нормалей к главным осям удовлетворяют уравнениям

begin{cases} left(a_{11} - lambdaright) cos theta + a_{12} sin theta = 0 \ a_{12} cos theta + left(a_{22} - lambdaright) sin theta = 0 end{cases},

где lambda  — отличный от нуля корень характеристического уравнения. Направления главных осей и сопряжённых им хорд называются главными направлениями кривой. Угол между положительным направлением оси Ox и каждым из двух главных направлений определяется формулой

operatorname{tg}2phi = operatorname{tg}2theta = frac{2a_{12}}{a_{11}-a_{22}}.

Из всех видов кривых второго порядка только окружность имеет неопределённые главные направления.

Уравнения[править | править код]

Общее уравнение в матричном виде[править | править код]

Общее уравнение кривой можно записать в матричном виде

{displaystyle {begin{pmatrix}x&y&1end{pmatrix}}{begin{pmatrix}a_{11}&a_{12}&a_{13}\a_{12}&a_{22}&a_{23}\a_{13}&a_{23}&a_{33}end{pmatrix}}{begin{pmatrix}x\y\1end{pmatrix}}=0} или {displaystyle x^{T}Ax=0}

Канонический вид[править | править код]

Вводом новой системы координат можно привести уравнения кривых второго порядка к стандартному каноническому виду (см. таблицу выше). Параметры канонических уравнений весьма просто выражаются через инварианты Delta,;D,;I исходного уравнения кривой и корни характеристического уравнения lambda_1 geqslant lambda_2 (см. выше раздел «Характеристическая квадратичная форма и характеристическое уравнение»).

Замечание. При переходе к канонической форме уравнения может понадобиться умножить уравнение на число, не равное нулю. Поэтому численные значения инвариантов канонического уравнения могут отличаться от значений инвариантов для исходного уравнения. Неизменными остаются знаки величин {displaystyle Delta cdot I;} и D.

Для центральной кривой в каноническом виде её центр left(x_0,;y_0right) находится в начале координат.

Через эксцентриситет[править | править код]

Каноническое уравнение любой невырожденной кривой второго порядка при помощи подходящего преобразования начала координат может быть приведено к виду

y^2=2px-(1-varepsilon^2)x^2  (p>0).

В этом случае кривая проходит через начало новой системы координат, а ось Ox является осью симметрии кривой. Данное уравнение выражает тот факт, что невырожденная кривая второго порядка является геометрическим местом точек, отношение расстояний которых varepsilon geqslant 0 (эксцентриситет) от данной точки (фокуса) и от данной прямой (директрисы) постоянно. Кроме того, при varepsilon = 0 кривая является окружностью, при varepsilon < 1 — эллипсом, при varepsilon = 1 — параболой, при varepsilon > 1 — гиперболой.

Уравнение директрисы кривой выражается уравнением x = - frac{p}{varepsilon left( 1 + varepsilon right)}, а координаты фокуса x=frac{p}{1+varepsilon}, ;; y = 0. Директриса перпендикулярна оси симметрии, проходящей через фокус и вершину кривой (фокальная ось). Расстояние между фокусом и директрисой равно frac{p}{varepsilon}.

Если кривая второго порядка центральная (эллипс или гипербола), то прямая

x = frac{p}{1 - varepsilon^2} = a

является осью симметрии и, следовательно, кривая имеет два фокуса и две директрисы.

Параметр p называется фокальным параметром и равен половине длины хорды, проходящей через фокус и перпендикулярной к фокальной оси (фокальная хорда).

Полярные координаты[править | править код]

Если взять в качестве полюса полярной системы координат left(rho,phiright) фокус невырожденной кривой второго порядка, а в качестве полярной оси — её ось симметрии, то в полярных координатах rho , phi уравнение кривой будет иметь вид

rho=frac{p}{1 + varepsilon cos phi}.

Кривая, заданная своими пятью точками[править | править код]

Кривая второго порядка вполне определяется пятью своими точками, если никакие четыре из них не лежат на одной прямой. Уравнение кривой, проходящей через точки left( x_1, y_1 right), left( x_2, y_2 right), left( x_3, y_3 right), left( x_4, y_4 right) и left( x_5, y_5 right):

begin{vmatrix} x^2 & xy & y^2 & x & y & 1 \ x_1^2 & x_1y_1 & y_1^2 & x_1 & y_1 & 1 \ x_2^2 & x_2y_2 & y_2^2 & x_2 & y_2 & 1 \ x_3^2 & x_3y_3 & y_3^2 & x_3 & y_3 & 1 \ x_4^2 & x_4y_4 & y_4^2 & x_4 & y_4 & 1 \ x_5^2 & x_5y_5 & y_5^2 & x_5 & y_5 & 1 end{vmatrix} = 0.

Кривая, заданная пятью точками вырождается в том и только в том случае, когда три из заданных точек лежат на одной прямой.

Касательные и нормали[править | править код]

Уравнение касательной к кривой второго порядка f(x,y) в её точке left(x_1, y_1right) имеет вид:

left(a_{11}x_1+a_{12}y_1+a_{13}right) x + left(a_{12}x_1+a_{22}y_1+a_{23}right) y + left(a_{13}x_{1}+a_{23}y_{1}+a_{33}right) = 0.

Уравнение нормали к кривой второго порядка в точке left(x_1, y_1right) имеет вид

{frac  {x-x_{{1}}}{a_{{11}}x_{{1}}+a_{{12}}y_{{1}}+a_{{13}}}}={frac  {y-y_{{1}}}{a_{{12}}x_{{1}}+a_{{22}}y_{{1}}+a_{{23}}}}.

Полюсы и поляры[править | править код]

Уравнение

left(a_{11}x_1+a_{12}y_1+a_{13}right) x + left(a_{12}x_1+a_{22}y_1+a_{23}right) y + left(a_{13}x_{1}+a_{23}y_{1}+a_{33}right) = 0

помимо касательной определяет прямую, называемую полярой точки left(x_1, y_1right) относительно кривой второго порядка, независимо от того, лежит ли эта точка на кривой или нет. При этом точка left(x_1, y_1right) называется полюсом этой прямой. Поляра точки кривой есть её касательная в этой точке.

Теоремы о полюсах и полярах:[источник не указан 3579 дней]

  1. Если прямая, проведённая через полюс P, пересекает поляру в точке Q, а кривую второго порядка — в точках R_{1} и R_2, то точки P и Q гармонически разделяют отрезок R_1R_2, то есть выполняется условие
    frac{R_1P}{PR_2}=-frac{R_1Q}{QR_2}.
  2. Если точка лежит на некоторой прямой, то её поляра проходит через полюс этой прямой. Если прямая проходит через некоторую точку, то её полюс лежит на поляре этой точки.
  3. Диаметр кривой второго порядка есть поляра бесконечно удалённой точки, через которую проходят сопряжённые ему хорды, а центр кривой есть полюс бесконечно удалённой прямой.
  4. Фокус кривой есть центр пучка, обладающего тем свойством, что полюс любой его прямой принадлежит перпендикулярной к ней прямой этого пучка. Директриса есть поляра фокуса.

Из этих утверждений, в частности, следует, что:

  1. если через точку можно провести две касательные к кривой, то поляра этой точки проходит через точки касания;
  2. касательные к кривой в концах диаметра параллельны сопряжённым ему хордам;
  3. точка пересечения касательных к кривой в концах любой её хорды, проходящей через фокус, лежит на директрисе;
  4. каждая хорда, проходящая через фокус, перпендикулярна к прямой, проведённой через её фокус и точку пересечения касательных в концах хорды.

Теоремы, связанные с кривыми второго порядка[править | править код]

  • Теорема Паскаля: точки пересечения противоположных сторон шестиугольника, вписанного в кривую второго порядка, лежат на одной прямой.
  • Теорема Брианшона: диагонали, проходящие через противоположные вершины шестиугольника, описанного около кривой второго порядка, пересекаются в одной точке.

См. также[править | править код]

  • Коническое сечение
  • Квадрика
  • Поверхности второго порядка
  • Кривая третьего порядка
  • Плоская кривая четвёртой степени

Ссылки[править | править код]

  • Общее уравнение кривой второго порядка Архивная копия от 30 января 2020 на Wayback Machine
  • Кривые второго порядка
  • Кривые второго порядка: гипербола, парабола

Литература[править | править код]

  • Александров А.Д., Нецветаев Н.Ю. Глава II (Кривые второго порядка) // Геометрия. — М.: Наука, 1990. — С. 32—57.
  • Акопян А.В., Заславский А.А. Геометрические свойства кривых второго порядка. — М.: МНЦМО, 2007.
  • Прасолов В.В., Тихомиров В.М. Геометрия. — М.: МНЦМО, 2007.
  • Корн Г., Корн Т. Кривые второго порядка (конические сечения) // Справочник по математике. — 4-е издание. — М.: Наука, 1978. — С. 64—69.

Примечания[править | править код]

  1. Розенфельд Б. А. Аполлоний Пергский Архивная копия от 12 ноября 2015 на Wayback Machine. — М.: МЦНМО, 2004. — С. 32.
  2. Джон Дж. О’Коннор и Эдмунд Ф. Робертсон. Menaechmus (англ.) — биография в архиве MacTutor.
  3. Корн Г., Корн Т. 2.4-5. Характеристическая квадратичная форма и характеристическое уравнение // Справочник по математике. — 4-е издание. — М.: Наука, 1978. — С. 64.

Кривые линии второго порядка

Общее уравнение кривых второго порядка имеет вид: Кривые линии второго порядка задачи с решением,

где Кривые линии второго порядка задачи с решением.

К кривым линиям второго порядка относятся: окружность, эллипс, гипербола и парабола.

Окружность

Окружностью называется множество точек плоскости, равноудаленных от одной и той же точки — центра окружности.

Утверждение. Окружность является кривой второго порядка и ее каноническое уравнение имеет вид:

Кривые линии второго порядка задачи с решением

где Кривые линии второго порядка задачи с решением и Кривые линии второго порядка задачи с решением — координаты центра окружности; Кривые линии второго порядка задачи с решением — радиус окружности.

Доказательство. Рассмотрим окружность с заданными параметрами в системе координат на плоскости. Возьмем произвольную точку этой окружности Кривые линии второго порядка задачи с решением.

Кривые линии второго порядка задачи с решением

По формуле расстояния между двумя точками имеем:

Кривые линии второго порядка задачи с решением

Возведем обе части уравнения в квадрат и получим

Кривые линии второго порядка задачи с решением — уравнение окружности.

Задача №24.

Показать, что уравнение Кривые линии второго порядка задачи с решением является окружностью. Найти ее центр и радиус.

Решение:

Заданное уравнение приведем к виду Кривые линии второго порядка задачи с решением.

Сгруппируем члены, содержащие только Кривые линии второго порядка задачи с решением и только Кривые линии второго порядка задачи с решением следующим образом:

Кривые линии второго порядка задачи с решением

Допишем теперь до квадрата разности и суммы:

Кривые линии второго порядка задачи с решением

Кривая является окружностью с центром Кривые линии второго порядка задачи с решением(2; -1) и радиусом Кривые линии второго порядка задачи с решением.

Эллипс

Эллипсом называется множество точек плоскости, сумма расстояний каждой из которых от двух данных точек, называемых фокусами, есть величина постоянная равная Кривые линии второго порядка задачи с решением.

Кривые линии второго порядка задачи с решением

Утверждение. Эллипс является кривой второго порядка, и каноническое уравнение эллипса имеет вид:

Кривые линии второго порядка задачи с решением

где Кривые линии второго порядка задачи с решением и Кривые линии второго порядка задачи с решением — полуоси эллипса.

Доказательство. Пусть Кривые линии второго порядка задачи с решением и Кривые линии второго порядка задачи с решением — некоторые фиксированные точки плоскости, являющиеся фокусами эллипса и пусть точка Кривые линии второго порядка задачи с решением — произвольная точка данного эллипса. Расположим систему координат так, чтобы ось Кривые линии второго порядка задачи с решением проходила через точки Кривые линии второго порядка задачи с решением и Кривые линии второго порядка задачи с решением, а начало координат делило бы отрезок Кривые линии второго порядка задачи с решением пополам.

Предположим, что расстояние между фокусами равно Кривые линии второго порядка задачи с решением, тогда Кривые линии второго порядка задачи с решением и пусть Кривые линии второго порядка задачи с решением. Из определения эллипса имеем Кривые линии второго порядка задачи с решением. Но по формуле расстояния между двумя точками

Кривые линии второго порядка задачи с решением

Получаем:

Кривые линии второго порядка задачи с решением

Кривые линии второго порядка задачи с решением

или

Кривые линии второго порядка задачи с решением

Если Кривые линии второго порядка задачи с решением, то Кривые линии второго порядка задачи с решением

Если Кривые линии второго порядка задачи с решением, то Кривые линии второго порядка задачи с решением

Число Кривые линии второго порядка задачи с решением называется большой полуосью эллипса, число Кривые линии второго порядка задачи с решением — малой полуосью эллипса, Кривые линии второго порядка задачи с решением — фокусы. Между Кривые линии второго порядка задачи с решением, Кривые линии второго порядка задачи с решением и Кривые линии второго порядка задачи с решением существует соотношение Кривые линии второго порядка задачи с решением.

Эксцентриситетом эллипса называется отношение Кривые линии второго порядка задачи с решением. Ясно, что Кривые линии второго порядка задачи с решением. Если Кривые линии второго порядка задачи с решением, то форма эллипса будет стремиться к форме отрезка Кривые линии второго порядка задачи с решением. Если Кривые линии второго порядка задачи с решением, то форма эллипса будет стремиться к форме окружности.

Если Кривые линии второго порядка задачи с решением, то эллипс вытянут вдоль оси Кривые линии второго порядка задачи с решением, большой полуосью будет Кривые линии второго порядка задачи с решением, а малой — Кривые линии второго порядка задачи с решением, фокусы лежат на оси Кривые линии второго порядка задачи с решением и Кривые линии второго порядка задачи с решением.

Задача №25.

Найти координаты фокусов эллипса и его эксцентриситет, если известно уравнение эллипса:

Кривые линии второго порядка задачи с решением

Решение:

Уравнение имеет канонический вид и Кривые линии второго порядка задачи с решением.

Найдем Кривые линии второго порядка задачи с решением. Кривые линии второго порядка задачи с решением или Кривые линии второго порядка задачи с решением, значит

Кривые линии второго порядка задачи с решением

Задача №26.

Показать, что уравнение Кривые линии второго порядка задачи с решением является уравнением эллипса. Найти оси, фокусы и эксцентриситет этого эллипса.

Решение:

Приведем уравнение к каноническому виду:

Кривые линии второго порядка задачи с решением

Кривые линии второго порядка задачи с решением — каноническое уравнение данного эллипса.

Кривые линии второго порядка задачи с решением — большая полуось; Кривые линии второго порядка задачи с решением — малая полуось. Найдем координаты фокусов. Так как Кривые линии второго порядка задачи с решением, то

Кривые линии второго порядка задачи с решением

Эксцентриситет Кривые линии второго порядка задачи с решением

Гипербола

Гиперболой называется множество точек плоскости, абсолютное значение разности расстояний которых от двух точек, называемых фокусами, есть величина постоянная.

Кривые линии второго порядка задачи с решением

или

Кривые линии второго порядка задачи с решением

Кривые линии второго порядка задачи с решением

Утверждение. Гипербола является кривой второго порядка, и ее каноническое уравнение имеет вид: Кривые линии второго порядка задачи с решением. Число Кривые линии второго порядка задачи с решением называется действительной полуосью, число Кривые линии второго порядка задачи с решением называется мнимой полуосью и Кривые линии второго порядка задачи с решением.

Доказательство. Пусть Кривые линии второго порядка задачи с решением — произвольная точка гиперболы. Пусть Кривые линии второго порядка задачи с решением и Кривые линии второго порядка задачи с решением. Очевидно, что Кривые линии второго порядка задачи с решением. По формуле расстояний между двумя точками получим:

Кривые линии второго порядка задачи с решением

Положим Кривые линии второго порядка задачи с решением. Подставим предыдущие равенства в (*).

Кривые линии второго порядка задачи с решением

Если Кривые линии второго порядка задачи с решением, то Кривые линии второго порядка задачи с решением и Кривые линии второго порядка задачи с решением — точки пересечения гиперболы с осью Кривые линии второго порядка задачи с решением. Очевидно, что точек пересечения с осью Кривые линии второго порядка задачи с решением нет.

Эксцентриситетом гиперболы называют отношение Кривые линии второго порядка задачи с решением. Эта величина характеризует форму гиперболы. Гипербола имеет две асимптоты Кривые линии второго порядка задачи с решением.

Задача №27.

Составить каноническое уравнение гиперболы, если Кривые линии второго порядка задачи с решением.

Решение:

Так как Кривые линии второго порядка задачи с решением, то Кривые линии второго порядка задачи с решением. Кривые линии второго порядка задачи с решением можем найти из соотношения Кривые линии второго порядка задачи с решением. Для этого найдем Кривые линии второго порядка задачи с решением из равенства Кривые линии второго порядка задачи с решением.
Кривые линии второго порядка задачи с решением, значит Кривые линии второго порядка задачи с решением — уравнение данной гиперболы.

Задача №28.

Показать, что уравнение Кривые линии второго порядка задачи с решением является уравнением гиперболы. Найти оси, фокусы, эксцентриситет и уравнения асимптот.

Решение:

Приведем уравнение к каноническому виду:

Кривые линии второго порядка задачи с решением или Кривые линии второго порядка задачи с решением.

Кривые линии второго порядка задачи с решением — каноническое уравнение данной гиперболы.

Кривые линии второго порядка задачи с решением — действительная полуось; Кривые линии второго порядка задачи с решением — мнимая полуось.

Найдем координаты фокуса. Кривые линии второго порядка задачи с решением или Кривые линии второго порядка задачи с решением.

Значит Кривые линии второго порядка задачи с решением — фокусы гиперболы.

Эксцентриситет Кривые линии второго порядка задачи с решением

Асимптоты имеют следующие уравнения: Кривые линии второго порядка задачи с решением

Парабола

Параболой называется множество точек плоскости, каждая из которой одинаково удалена от данной точки Кривые линии второго порядка задачи с решением, называемой фокусом, и от данной прямой, не проходящей через данную точку и называемой директрисой.

Утверждение. Парабола является кривой второго порядка и ее каноническое уравнение имеет вид: Кривые линии второго порядка задачи с решением, где Кривые линии второго порядка задачи с решением — расстояние от фокуса до директрисы.

Доказательство. Построим систему координат так, чтобы ось Кривые линии второго порядка задачи с решением проходила через точку Кривые линии второго порядка задачи с решением перпендикулярно директрисе Кривые линии второго порядка задачи с решением, а начало координат делило расстояние от фокуса до директрисы пополам.

Кривые линии второго порядка задачи с решением

Предположим расстояние Кривые линии второго порядка задачи с решением, тогда точка Кривые линии второго порядка задачи с решением имеет координаты Кривые линии второго порядка задачи с решением, а уравнение директрисы Кривые линии второго порядка задачи с решением. Пусть точка Кривые линии второго порядка задачи с решением принадлежит параболе, а точка Кривые линии второго порядка задачи с решением — ее проекция на директрису, тогда по определению расстояние Кривые линии второго порядка задачи с решением. Но Кривые линии второго порядка задачи с решением и Кривые линии второго порядка задачи с решением. Таким образом,

Кривые линии второго порядка задачи с решением

Кривые линии второго порядка задачи с решением — каноническое уравнение параболы.

Если Кривые линии второго порядка задачи с решением, то Кривые линии второго порядка задачи с решением, таким образом, парабола проходит через начало координат. Функция симметрична относительно оси Кривые линии второго порядка задачи с решением.

Кривые линии второго порядка задачи с решением

Если Кривые линии второго порядка задачи с решением, то ветви параболы направлены вправо, если Кривые линии второго порядка задачи с решением, то — влево.

Задача №29.

Найти координаты фокуса и уравнение директрисы следующей параболы Кривые линии второго порядка задачи с решением.

Решение:

Запишем уравнение следующим образом:

Кривые линии второго порядка задачи с решением, следовательно, Кривые линии второго порядка задачи с решением.

Кривые линии второго порядка задачи с решением — уравнение директрисы.

Координаты фокуса: Кривые линии второго порядка задачи с решением.

Этот материал взят со страницы кратких лекций с решением задач по высшей математике:

Решение задач по высшей математике

Возможно эти страницы вам будут полезны:

Добавить комментарий