Как найти фокусы гиперболы по формуле



3.4.3. Фокусы и эксцентриситет гиперболы

Ввиду неравенства , фокусы гиперболы лежат «внутри» её ветвей и только

там. Координаты фокусов определяются следующим образом:

Если гипербола задана каноническим уравнением , то РАССТОЯНИЕ от центра

симметрии  до каждого из фокусов рассчитывается по формуле:
, и, соответственно, фокусы имеют координаты .

Для нашей гиперболы , таким образом:  (см. рис. выше).

Если гиперболу переместить / повернуть, то фокусы, естественно, мигрируют вместе с ней и их координаты изменятся.

Эксцентриситетом гиперболы называют отношение .

Так как расстояние от центра до фокуса больше расстояния от центра до вершины: , то эксцентриситет гиперболы всегда больше «единицы»: .

Для нашего примера: .

По аналогии с эллипсом, зафиксируйте значение  и проведите самостоятельный анализ и проверку следующих фактов:

При увеличении эксцентриситета ветви гиперболы «распрямляются» к оси . В предельном случае  они стремятся занять положение двух прямых, проходящих через точки  параллельно оси ординат.

Если же значение эксцентриситета приближается к единице, то ветви гиперболы «сплющиваются» к оси .

3.4.4. Равносторонняя гипербола

3.4.2. Определение гиперболы

| Оглавление |



Автор: Aлeксaндр Eмeлин

  1. Гипербола и её форма.

    Начать изучение

  2. Фокусы, эксцентриситет и директрисы гиперболы.

    Начать изучение

  3. Точки гиперболы и их свойства.

    Начать изучение

  4. Уравнение касательной к гиперболе.

    Начать изучение

Гипербола и её форма.

Гиперболой мы назвали линию, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением
$$
frac{x^{2}}{a^{2}}-frac{y^{2}}{b^{2}}=1.label{ref9}
$$

Из этого уравнения видно, что для всех точек гиперболы (|x| geq a), то есть все точки гиперболы лежат вне вертикальной полосы ширины (2a) (рис. 8.6). Ось абсцисс канонической системы координат пересекает гиперболу в точках с координатами ((a, 0)) и ((-a, 0)), называемых вершинами гиперболы. Ось ординат не пересекает гиперболу. Таким образом, гипербола состоит из двух не связанных между собой частей. Они называются ее ветвями. Числа (a) и (b) называются соответственно вещественной и мнимой полуосями гиперболы.

гипербола

Рис. 8.6. Гипербола.

Утверждение.

Для гиперболы оси канонической системы координат являются осями симметрии, а начало канонической системы — центром симметрии.

Доказательство.

Доказательство аналогично доказательству соответствующего утверждения для эллипса.

Для исследования формы гиперболы найдем ее пересечение с произвольной прямой, проходящей через начало координат. Уравнение прямой возьмем в виде (y=kx), поскольку мы уже знаем, что прямая (x=0) не пересекает гиперболу. Абсциссы точек перечения находятся из уравнения
$$
frac{x^{2}}{a^{2}}-frac{k^{2}x^{2}}{b^{2}}=1.
$$
Поэтому, если (b^{2}-a^{2}k^{2} > 0), то
$$
x=pm frac{ab}{sqrt{b^{2}-a^{2}k^{2}}}.
$$
Это позволяет указать координаты точек пересечения ((ab/v, abk/v)) и ((-ab/v, -abk/v)), где обозначено (v=(b^{2}-a^{2}k^{2})^{1/2}). В силу симметрии достаточно проследить за движением первой из точек при изменении (k) (рис. 8.7).

пересечение прямой и гиперболы

Рис. 8.7. Пересечение прямой и гиперболы.

Числитель дроби (ab/v) постоянен, а знаменатель принимает наибольшее значение при (k=0). Следовательно, наименьшую абсциссу имеет вершина ((a, 0)). С ростом (k) знаменатель убывает, и (x) растет, стремясь к бесконечности, когда (k) приближается к числу (b/a). Прямая (y=bx/a) с угловым коэффициентом (b/a) не пересекает гиперболу, и прямые с большими угловыми коэффициентами ее тем более не пересекают. Любая прямая с меньшим положительным угловым коэффициентом пересекает гиперболу.

Если мы будем поворачивать прямую от горизонтального положения по часовой стрелке, то (k) будет убывать, (k^{2}) расти, и прямая будет пересекать гиперболу во все удаляющихся точках, пока не займет положения с угловым коэффициентом (-b/a).

К прямой (y=-bx/a) относится все, что было сказано о (y=bx/a): она не пересекает гиперболу и отделяет прямые, пересекающие ее, от не пересекающих. Из приведенных рассуждений вытекает, что гипербола имеет вид, изображенный на рис. 8.7.

Определение.

Прямые с уравнениями (y=bx/a) и (y=-bx/a) в канонической системе координат называются асимптотами гиперболы.

Запишем уравнения асимптот в виде (bx-ay=0) и (bx+ay=0). Расстояния от точки (M(x, y)) до асимптот равны соответственно
$$
h_{1}=frac{|bx-ay|}{sqrt{a^{2}+b^{2}}}, h_{2}=frac{|bx+ay|}{sqrt{a^{2}+b^{2}}}.nonumber
$$
Если точка (M) находится на гиперболе, то (b^{2}x^{2}-a^{2}y^{2}=a^{2}b^{2}), и
$$
h_{1}h_{2}=frac{|b^{2}x^{2}-a^{2}y^{2}|}{a^{2}+b^{2}}=frac{a^{2}b^{2}}{a^{2}+b^{2}}.nonumber
$$

Утверждение.

Произведение расстояний от точки гиперболы до асимптот постоянно и равно (a^{2}b^{2}/(a^{2}+b^{2})).

Отсюда следует важное свойство асимптот.

Свойство.

Если точка движется по гиперболе так, что ее абсцисса по абсолютной величине неограниченно возрастает, то расстояние от точки до одной из асимптот стремится к нулю.

Доказательство.

Действительно, хотя бы одно из расстояний (h_{1}) или (h_{2}) при этих условиях должно неограниченно возрастать, и, если бы предложение было неверно, произведение не было бы постоянно.


Фокусы, эксцентриситет и директрисы гиперболы.

Определение.

Введем число (c), положив
$$
c^{2}=a^{2}+b^{2}label{ref10}
$$
и (c > 0). Фокусами гиперболы называются точки (F_{1}) и (F_{2}) с координатами ((c, 0)) и ((-c, 0)) в канонической системе координат.

фокусы гиперболы

Рис. 8.8. Фокусы гиперболы.

Отношение (varepsilon=c/a), как и для эллипса, называется эксцентриситетом. У гиперболы (varepsilon > 1).

Утверждение 9.

Расстояния от произвольной точки (M(x, y)) на гиперболе до каждого из фокусов следующим образом зависят от ее абсциссы (x):
$$
r_{1}=|F_{1}M|=|a-varepsilon x|, r_{2}=|F_{2}M|=|a+varepsilon x|.label{ref11}
$$

расстояние от точки гиперболы до фокуса

Рис. 8.9. Расстояние от точки на гиперболе до ее фокусов.

Доказательство.

Доказательство этого утверждения почти дословно совпадает с доказательством аналогичного утверждения для эллипса.

Заметим, что равенства eqref{ref11} можно подробнее записать так:

  • для правой ветви гиперболы ((x geq a))
    $$
    r_{1}=varepsilon x-a, r_{2}=varepsilon x+a;nonumber
    $$
  • для левой ветви гиперболы ((x leq -a))
    $$
    r_{1}= a-varepsilon x, r_{2}=-varepsilon x-a;nonumber
    $$

Итак, для правой ветви (r_{2}-r_{1}=2a), а для левой ветви (r_{1}-r_{2}=2a). В обоих случаях
$$
|r_{2}-r_{1}|=2a.label{ref12}
$$

Директрисами гиперболы называются прямые, задаваемые в канонической системе координат уравнениями
$$
x=frac{a}{varepsilon}, x=-frac{a}{varepsilon}.label{ref13}
$$

Директрисы лежат ближе к центру, чем вершины, и, следовательно, не пересекают гиперболу. Директриса и фокус, лежащие по одну сторону от центра, считаются соответствующими друг другу.


Точки гиперболы и их свойства.

Утверждение 10.

Для того чтобы точка (M) лежала на гиперболе, необходимо и достаточно, чтобы разность ее расстояний до фокусов по абсолютной величине равнялась вещественной оси гиперболы (2a).

Доказательство.

Необходимость условия уже доказана. Для доказательства достаточности условия его нужно представить в виде
$$
sqrt{(x-c)^{2}+y^{2}}=pm 2a+sqrt{(x+c)^{2}+y^{2}}nonumber
$$
Дальнейшее отличается от доказательства соответствующего утверждения для эллипса только тем, что нужно воспользоваться равенством (c^{2}=a^{2}+b^{2}), а не (c^{2}=a^{2}-b^{2}).

Утверждение 11.

Для того чтобы точка лежала на гиперболе, необходимо и достаточно, чтобы отношение ее расстояния до фокуса к расстоянию до соответствующей директрисы равнялось эксцентриситету (varepsilon) (рис. 8.10).

эксцентриситет и фокусы гиперболы

Рис. 8.10.

Доказательство.

Доказательство повторяет доказательство предложения 4. Докажем, например, необходимость условия для фокуса (F_{2}(-c, 0)). Пусть (M'(x, y)) — точка гиперболы. Расстояние от (M’) до директрисы с уравнением (x=-a/varepsilon) по формуле (9) § 3 гл. II равно
$$
d’=left|x+frac{a}{varepsilon}right|=frac{1}{varepsilon}|varepsilon x+a|.nonumber
$$

Из формулы eqref{ref11} мы видим теперь, что (r’/d’=varepsilon).


Уравнение касательной к гиперболе.

Уравнение касательной к гиперболе в точке (M_{0}(x_{0}, y_{0})), лежащей на ней, выводится так же, как соответствующее уравнение касательной для эллипса. Оно имеет вид
$$
frac{xx_{0}}{a^{2}}-frac{yy_{0}}{b^{2}}=1.label{ref14}
$$

Утверждение 12.

Касательная к гиперболе в точке (M_{0}(x_{0}, y_{0})) есть биссектриса угла между отрезками, соединяющими эту точку с фокусами.

Доказательство.

Доказательство почти не отличается от доказательства соответствующего утверждения для эллипса.

Пусть гипербола задана каноническим уравнением x^2/a^2-y^2/b^2=1. У данной гиперболы центр совпадает с началом отчета точкой О. а и b -полуоси гиперболы. Расстояние между фокусами называется 2с. Оно находится по формуле с=корень(а^2+b^2). Тогда координаты фокусов гиперболы найдены. Так как по определению фокусы гиперболы F1(c,0) и F2(-c,0)

Знаете ответ?

Смотрите также:

Как решить: На рис. график функции у=f(x), отмечены т. –3, –2, –1, 1, 2, 3?

Как построить график функции?

Существуют ли пульты (ПДУ) для компьютера?

Согласны, что ” если жизнь излишне деловая,функция слабеет половая”?

Что делает функция «Удалить cookies конференции»?

Чем сейчас занимается прокуратура России?

Что такое функция “родительский контроль” в антивирусе, для чего она нужна?

Какие самые ненужные функции у мобильного телефона, чем люди не пользуются?

Для чего в телевизоре Samsung нужна функция All Share? Что она позволяет?

Только у меня не работает функция “Уведомления”?

У этого термина существуют и другие значения, см. Гипербола.

Сечения конусов плоскостью (с эксцентриситетом, большим единицы)

Гипе́рбола (др.-греч. ὑπερβολή, от ὑπερ — «верх» + βαλειν — «бросать») — геометрическое место точек M евклидовой плоскости, для которых абсолютное значение разности расстояний от M до двух выделенных точек F_{1} и F_{2} (называемых фокусами) постоянно. Точнее,

{bigl |}|F_{1}M|-|F_{2}M|{bigr |}=2a, причём |F_{1}F_{2}|>2a>0.

Наряду с эллипсом и параболой, гипербола является коническим сечением и квадрикой. Гипербола может быть определена как коническое сечение с эксцентриситетом, бо́льшим единицы.

История[править | править код]

Термин «гипербола» (греч. ὑπερβολή — избыток) был введён Аполлонием Пергским (ок. 262 год до н. э. — ок. 190 год до н. э.), поскольку задача о построении точки гиперболы сводится к задаче о приложении с избытком.

Определения[править | править код]

Гипербола может быть определена несколькими путями.

Коническое сечение[править | править код]

Три основных конических сечения

Гипербола может быть определена как множество точек, образуемое в результате сечения кругового конуса плоскостью, отсекающей обе части конуса. Другими результатами сечения конуса плоскостью являются парабола, эллипс, а также такие вырожденные случаи, как пересекающиеся и совпадающие прямые и точка, возникающие, когда секущая плоскость проходит через вершину конуса. В частности, пересекающиеся прямые можно считать вырожденной гиперболой, совпадающей со своими асимптотами.

Как геометрическое место точек[править | править код]

Через фокусы[править | править код]

Гипербола может быть определена как геометрическое место точек, абсолютная величина разности расстояний от которых до двух заданных точек, называемых фокусами, постоянна.

Для сравнения: кривая постоянной суммы расстояний от любой её точки до фокусов — эллипс, постоянного отношения — окружность Аполлония, постоянного произведения — овал Кассини.

Через директрису и фокус[править | править код]

Геометрическое место точек, для которых отношение расстояния до фокуса и до заданной прямой, называемой директрисой, постоянно и больше единицы, называется гиперболой. Заданная постоянная varepsilon >1 называется эксцентриситетом гиперболы.

Связанные определения[править | править код]

Асимптоты гиперболы (красные кривые), показанные голубым пунктиром, пересекаются в центре гиперболы, C. Два фокуса гиперболы обозначены как F1 и F2. Директрисы гиперболы обозначены линиями двойной толщины и обозначены D1 и D2. Эксцентриситет ε равен отношению расстояний точки P на гиперболе до фокуса и до соответствующей директрисы (показаны зелёным). Вершины гиперболы обозначены как ±a. Параметры гиперболы обозначают следующее:

a — расстояние от центра C до каждой из вершин
b — длина перпендикуляра к оси абсцисс, восставленного из каждой из вершин до пересечения с асимптотой
c — расстояние от центра C до любого из фокусов, F1 и F2,
θ — угол, образованный каждой из асимптот и осью, проведённой между вершинами

  • Гипербола состоит из двух отдельных кривых, которые называют ветвями.
  • Ближайшие друг к другу точки двух ветвей гиперболы называются вершинами.
  • Кратчайшее расстояние между двумя ветвями гиперболы называется большой осью гиперболы.
  • Середина большой оси называется центром гиперболы.
  • Расстояние от центра гиперболы до одной из вершин называется большой полуосью гиперболы.
    • Обычно обозначается a.
  • Расстояние от центра гиперболы до одного из фокусов называется фокальным расстоянием.
    • Обычно обозначается c.
  • Оба фокуса гиперболы лежат на продолжении большой оси на одинаковом расстоянии от центра гиперболы. Прямая, содержащая большую ось гиперболы, называется действительной, или поперечной, осью гиперболы.
  • Прямая, перпендикулярная действительной оси и проходящая через её центр, называется мнимой, или сопряжённой, осью гиперболы.
  • Отрезок между фокусом гиперболы и гиперболой, перпендикулярный её действительной оси, называется фокальным параметром.
  • Расстояние от фокуса до асимптоты гиперболы называется прицельным параметром.
    • Обычно обозначается b.
  • В задачах, связанных с движением тел по гиперболическим траекториям, расстояние от фокуса до ближайшей вершины гиперболы называется перицентрическим расстоянием
    • Обычно обозначается r_{p}.

Соотношения[править | править код]

Для характеристик гиперболы, определённых выше, существуют следующие соотношения

  • {displaystyle c^{2}=a^{2}+b^{2}}.
  • {displaystyle varepsilon =c/a}.
  • {displaystyle b^{2}=a^{2}left(varepsilon ^{2}-1right)}.
  • {displaystyle r_{p}=aleft(varepsilon -1right)}.
  • {displaystyle a={frac {p}{varepsilon ^{2}-1}}}.
  • {displaystyle b={frac {p}{sqrt {varepsilon ^{2}-1}}}}.
  • {displaystyle c={frac {pvarepsilon }{varepsilon ^{2}-1}}}.
  • p={frac  {b^{2}}{a}}.

Равнобочная гипербола[править | править код]

Гиперболу, у которой a=b, называют равнобочной, или равносторонней.
Равнобочная гипербола в некоторой прямоугольной системе координат описывается уравнением

xy=a^{2}/2,

при этом фокусы гиперболы располагаются в точках (aa) и (−a, −a).
Равнобочная гипербола является графиком обратной пропорциональности, задаваемой формулой

{displaystyle y={frac {k}{x}},quad kneq 0.}

Эксцентриситет такой гиперболы равен {sqrt {2}}.

Гипербола Киперта[править | править код]

Точка на гиперболе Киперта

Равнобочная гипербола как гипербола Киперта может быть определена через треугольники в трилинейных координатах[1] в виде геометрического места точек N (см. рис.):

Если три треугольника {displaystyle XBC}, {displaystyle YCA} и {displaystyle ZAB} построены на сторонах треугольника ABC, являются подобными, равнобедренными с основаниями на сторонах исходного треугольника, и одинаково расположенными (то есть все они построены либо с внешней стороны, либо с внутренней стороны), то прямые {displaystyle AX}, {displaystyle BY} и {displaystyle CZ} пересекаются в одной точке N.

Если общий угол при основании равен theta , то вершины трёх треугольников имеют следующие трилинейные координаты:

{displaystyle X{big (}-sin theta :sin(C+theta ):sin(B+theta ){big )},}
{displaystyle Y{big (}sin(C+theta ):-sin theta :sin(A+theta ){big )},}
{displaystyle Z{big (}sin(B+theta ):sin(A+theta ):-sin theta {big )}.}

Уравнения[править | править код]

Декартовы координаты[править | править код]

Гипербола задаётся уравнением второй степени в декартовых координатах (x, y) на плоскости:

A_{{xx}}x^{{2}}+2A_{{xy}}xy+A_{{yy}}y^{{2}}+2B_{{x}}x+2B_{{y}}y+C,=,0,

где коэффициенты Axx, Axy, Ayy, Bx, By, и C удовлетворяют следующему соотношению

{displaystyle D={begin{vmatrix}A_{xx}&A_{xy}\A_{xy}&A_{yy}end{vmatrix}}<0}

и

Delta :={begin{vmatrix}A_{{xx}}&A_{{xy}}&B_{{x}}\A_{{xy}}&A_{{yy}}&B_{{y}}\B_{{x}}&B_{{y}}&Cend{vmatrix}}not =0.

Канонический вид[править | править код]

Перемещением центра гиперболы в начало координат и вращением её относительно центра уравнение гиперболы можно привести к каноническому виду:

{frac  {{x}^{{2}}}{a^{{2}}}}-{frac  {{y}^{{2}}}{b^{{2}}}}=1,

где a — действительная полуось гиперболы; b — мнимая полуось гиперболы[2]. В этом случае эксцентриситет равен

{displaystyle varepsilon ={frac {c}{a}}={sqrt {1+{frac {b^{2}}{a^{2}}}}}.}

Полярные координаты[править | править код]

Гипербола в полярных координатах

Если полюс находится в фокусе гиперболы, а вершина гиперболы лежит на продолжении полярной оси, то

r={frac  {p}{1-varepsilon cos varphi }}

Если полюс находится в фокусе гиперболы, а полярная ось параллельна одной из асимптот, то

{frac  {1}{r}}={frac  {a}{b^{2}}}left(1-cos theta right)+{frac  {1}{b}}sin theta

Уравнения в параметрической форме[править | править код]

Подобно тому, как эллипс может быть представлен уравнениями в параметрической форме, в которые входят тригонометрические функции, гипербола в прямоугольной системе координат, центр которой совпадает с её центром, а ось абсцисс проходит через фокусы, может быть представлена уравнениями в параметрической форме, в которые входят гиперболические функции[3].

{displaystyle {begin{cases}x=pm aoperatorname {ch} t,\y=boperatorname {sh} t,end{cases}}quad -infty <t<+infty .}

В первом уравнении знак «+» соответствует правой ветви гиперболы, а «−» — её левой ветви.

Свойства[править | править код]

  • Оптическое свойство. Свет от источника, находящегося в одном из фокусов гиперболы, отражается второй ветвью гиперболы таким образом, что продолжения отраженных лучей пересекаются во втором фокусе.
  • Для любой точки, лежащей на гиперболе, отношение расстояний от этой точки до фокуса к расстоянию от этой же точки до директрисы есть величина постоянная.
  • Гипербола обладает зеркальной симметрией относительно действительной и мнимой осей, а также вращательной симметрией при повороте на угол 180° вокруг центра гиперболы.
  • Каждая гипербола имеет сопряжённую гиперболу, для которой действительная и мнимая оси меняются местами, но асимптоты остаются прежними. Сопряжённая гипербола не является результатом поворота начальной гиперболы на угол 90°; гиперболы различаются формой при a neq b.
  • Отрезок касательной в каждой точке гиперболы, заключенный между двумя асимптотами гиперболы, делится точкой касания пополам и отсекает от двух асимптот треугольник постоянной площади.

Асимптоты[править | править код]

Две сопряжённые гиперболы (голубая и зелёная) обладают совпадающими асимптотами (красные). Эти гиперболы единичные и равнобочные, так как a = b = 1

Уравнения асимптот для гиперболы, заданной в каноническом виде

{frac  {x^{2}}{a^{2}}}-{frac  {y^{2}}{b^{2}}}=1

выводятся следующим образом. Пусть {displaystyle x,y>0}. Предположим, что асимптота существует и имеет вид {displaystyle y=kx+l}. Тогда

{displaystyle k=lim _{xto +infty }{frac {f(x)}{x}}=lim _{xto +infty }{frac {{frac {b}{a}}{sqrt {x^{2}-a^{2}}}}{x}}=lim _{xto +infty }{frac {b}{a}}left({frac {sqrt {x^{2}-a^{2}}}{x}}right)=lim _{xto +infty }{frac {b}{a}}left({sqrt {1-{frac {a^{2}}{x^{2}}}}}right)={frac {b}{a}},}
{displaystyle l=lim _{xto +infty }left(f(x)-kxright)=lim _{xto +infty }{frac {b}{a}}left({sqrt {x^{2}-a^{2}}}-xright)=lim _{xto +infty }{frac {b}{a}}cdot {frac {a^{2}}{{sqrt {x^{2}-a^{2}}}+x}}=0.}

Таким образом, уравнения двух асимптот имеют вид:

{displaystyle y=pm {frac {b}{a}}x}

или

{displaystyle {frac {x}{a}}pm {frac {y}{b}}=0.}

Диаметры и хорды[править | править код]

Диаметром гиперболы, как и всякого конического сечения, является прямая, проходящая через середины параллельных хорд. Каждому направлению параллельных хорд соответствует свой сопряжённый диаметр. Все диаметры гиперболы проходят через её центр. Диаметр, соответствующий хордам, параллельным мнимой оси, есть действительная ось; диаметр соответствующий хордам, параллельным действительной оси, есть мнимая ось.

Угловой коэффициент k параллельных хорд и угловой коэффициент k_{1} соответствующего диаметра связан соотношением

{displaystyle kcdot k_{1}=varepsilon ^{2}-1={frac {b^{2}}{a^{2}}}.}

Если диаметр a делит пополам хорды, параллельные диаметру b, то диаметр b делит пополам хорды, параллельные диаметру a. Такие диаметры называются взаимно сопряжёнными. Главными диаметрами называются взаимно сопряжённые и взаимно перпендикулярные диаметры. У гиперболы есть только одна пара главных диаметров — действительная и мнимая оси.

Определение центра гиперболы

Касательная и нормаль[править | править код]

Поскольку гипербола является гладкой кривой, в каждой её точке (x0, y0) можно провести касательную и нормаль. Уравнение касательной к гиперболе, заданной каноническим уравнением, имеет вид:

{frac  {xx_{0}}{a^{2}}}-{frac  {yy_{0}}{b^{2}}}=1,

или, что то же самое,

y=y_{0}+{frac  {b^{2}x_{0}}{a^{2}y_{0}}}left(x-x_{0}right).
Вывод уравнения касательной

Уравнение касательной произвольной плоской линии имеет вид

y-y_{0}=y'left(x_{0},y_{0}right)cdot left(x-x_{0}right)

Каноническое уравнение гиперболы можно представить в виде пары функций

y=pm {sqrt  {{frac  {b^{2}}{a^{2}}}x^{2}-b^{2}}}.

Тогда производная этих функций имеет вид

y'=pm {frac  {{frac  {b^{2}}{a^{2}}}x}{{sqrt  {{frac  {b^{2}}{a^{2}}}x^{2}-b^{2}}}}}={frac  {b^{2}}{a^{2}}}{frac  {x}{y}}.

Подставив это уравнение в общее уравнение касательной, получим

y-y_{0}={frac  {b^{2}}{a^{2}}}{frac  {x_{0}}{y_{0}}}left(x-x_{0}right)
{frac  {xx_{0}}{a^{2}}}-{frac  {yy_{0}}{b^{2}}}={frac  {x_{0}^{2}}{a^{2}}}-{frac  {y_{0}^{2}}{b^{2}}}=1

Уравнение нормали к гиперболе имеет вид:

y=y_{0}-{frac  {a^{2}}{b^{2}}}{frac  {y_{0}}{x_{0}}}left(x-x_{0}right).
Вывод уравнения нормали

Уравнение нормали произвольной плоской линии имеет вид

y-y_{0}={frac  {1}{y'left(x_{0},y_{0}right)}}left(x_{0}-xright).

Каноническое уравнение гиперболы можно представить в виде пары функций

y=pm {sqrt  {{frac  {b^{2}}{a^{2}}}x^{2}-b^{2}}}.

Тогда производная этих функций имеет вид

y'=pm {frac  {{frac  {b^{2}}{a^{2}}}x}{{sqrt  {{frac  {b^{2}}{a^{2}}}x^{2}-b^{2}}}}}={frac  {b^{2}}{a^{2}}}{frac  {x}{y}}.

Подставив это уравнение в общее уравнение нормали, получим

y-y_{0}=-{frac  {a^{2}}{b^{2}}}{frac  {y_{0}}{x_{0}}}left(x-x_{0}right).

Кривизна и эволюта[править | править код]

Синим цветом показана гипербола. Зелёным цветом — эволюта правой ветви этой гиперболы (эволюта левой ветви вне рисунка. Красным цветом показан круг, соответствующий кривизне гиперболы в её вершине)

Кривизна гиперболы в каждой её точке (x, y) определяется из выражения:

K={frac  {ab}{left({frac  {a^{2}}{b^{2}}}y^{2}+{frac  {b^{2}}{a^{2}}}x^{2}right)^{{3/2}}}}.

Соответственно, радиус кривизны имеет вид:

R={frac  1K}={frac  {left({frac  {a^{2}}{b^{2}}}y^{2}+{frac  {b^{2}}{a^{2}}}x^{2}right)^{{3/2}}}{ab}}.

В частности, в точке (a, 0) радиус кривизны равен

Rleft(a,0right)={frac  {b^{2}}{a}}=p.
Вывод формулы для радиуса кривизны

Формула для радиуса кривизны плоской линии, заданной параметически, имеет вид:

R_{c}={frac  {left(x'^{2} +y'^{2}right)^{{3/2}}}{left|x'y''-x''y'right|}}.

Воспользуемся параметрическим представлением гиперболы:

{begin{cases}x=acdot {mathrm  {ch}},(t)\y=bcdot {mathrm  {sh}},(t)end{cases}}

Тогда, первая производная x и y по t имеет вид

{begin{cases}x'=acdot {mathrm  {sh}},(t)={frac  {a}{b}}y\y'=bcdot {mathrm  {ch}},(t)={frac  {b}{a}}xend{cases}},

а вторая производная –

{begin{cases}x''=acdot {mathrm  {ch}},(t)=x\y''=bcdot {mathrm  {sh}},(t)=yend{cases}}

Подставляя эти значения в формулу для кривизны получаем:

R_{c}={frac  {left({frac  {a^{2}}{b^{2}}}y^{2} +{frac  {b^{2}}{a^{2}}}x^{2}right)^{{3/2}}}{left|a{frac  {y^{2}}{b}}-b{frac  {x^{2}}{a}}right|}}={frac  {left({frac  {a^{2}}{b^{2}}}y^{2} +{frac  {b^{2}}{a^{2}}}x^{2}right)^{{3/2}}}{ableft|{frac  {y^{2}}{b}}-{frac  {x^{2}}{a}}right|}}={frac  {left({frac  {a^{2}}{b^{2}}}y^{2} +{frac  {b^{2}}{a^{2}}}x^{2}right)^{{3/2}}}{ab}}.

Координаты центров кривизны задаются парой уравнений:

{begin{cases}x_{c}={frac  {x^{3}}{a^{2}}}left(1+{frac  {b^{2}}{a^{2}}}right)\y_{c}=-{frac  {y^{3}}{b^{2}}}left(1+{frac  {a^{2}}{b^{2}}}right)end{cases}}

Подставив в последнюю систему уравнений вместо x и y их значения из параметрического представления гиперболы, получим пару уравнений, задающих новую кривую, состоящую из центров кривизны гиперболы. Эта кривая называется эволютой гиперболы.

{begin{cases}x=pm a,{mathrm  {ch}}^{3},tleft(1+{frac  {b^{2}}{a^{2}}}right)\y=b,{mathrm  {sh}}^{3},tleft(1+{frac  {a^{2}}{b^{2}}}right)end{cases}}

Эллиптическая система координат

Обобщение[править | править код]

Гипербола есть синусоидальная спираль при {displaystyle n=-2}.

Применение[править | править код]

  • Семейство конфокальных (софокусных) гипербол вместе с семейством софокусных эллипсов образуют двумерную эллиптическую систему координат.
  • Другие ортогональные двумерные координатные системы, построенные с помощью гипербол, могут быть получены с помощью других конформных преобразований. Например, преобразование w = z² отображает декартовы координаты в два семейства ортогональных гипербол.
  • Инверсией гиперболы с центром, лежащим в её собственном центре, в фокусе или на вершине можно получить соответственно лемнискату Бернулли, улитку Паскаля или строфоиду.

  • Гиперболы можно видеть на многих солнечных часах. В течение любого дня года Солнце описывает окружность на небесной сфере, и его лучи, падающие на верхушку гномона солнечных часов, описывают конус света. Линия пересечения этого конуса с плоскостью горизонтальных или вертикальных солнечных часов является коническим сечением. На наиболее населённых широтах и в большую часть года это коническое сечение является гиперболой. На солнечных часах часто показаны линии, описываемые тенью от верхушки гномона в течение дня для нескольких дней года (например, дней летнего и зимнего солнцестояний), таким образом, на них часто можно видеть определённые гиперболы, вид которых различен для различных дней года и различных широт.

Гиперболы, соответствующие на плоскости траекториям первых межзвёздных объектов — 1I/Оумуамуа (зелёная линия) и 2I/Borisov (синия линия)

  • АМС, преодолевая притяжение основного влияющего на неё тела и далеко улетая от него, при отсутствии возмущений, должна двигаться по гиперболической траектории или параболической траектории, поскольку в таком случае теоретически возможно удаление до бесконечности от данного тела[4]. В частности, гиперболическими относительно Солнца являются траектории АМС «Вояджер-1» и АМС «Вояджер-2», с эксцентриситетом 3,7 и 6,3 и большой полуосью 480,9 млн км и 601,1 млн км соответственно[5][6]. Гиперболическая траектория небесного тела в Солнечной системе может указывать на его межзвёздное происхождение. В конце 2010-х годов были открыты первый межзвёздный астероид и первая межзвёздная комета[7], их траектории — гиперболические. Однако известные ранее кометы с гиперболической траекторией небольшого эксцентриситета только собираются стать межзвёздными: испытав во время своей «жизни» в Солнечной системе возмущение от такой планеты, как Юпитер, они ложатся на межзвёздный курс[8].

См. также[править | править код]

  • Гиперболоид
  • Гиперболы, описанные около треугольника
  • Каустика
  • Конические сечения
  • Кривая второго порядка
  • Окружность
  • Парабола
  • Эллипс
  • Кривая постоянной суммы расстояний между двумя точками — эллипс,
  • Кривая постоянной разности расстояний между двумя точками — гипербола,
  • Кривая постоянного отношения — окружность Аполлония,
  • Кривая постоянного произведения — овал Кассини.
  • Сглаженный восьмиугольник § Построение

Примечания[править | править код]

  1. Eddy, R. H. and Fritsch, R. The Conics of Ludwig Kiepert: A Comprehensive Lesson in the Geometry of the Triangle. Math. Mag. 67, pp. 188—205, 1994.
  2. Шнейдер В.Е. Краткий курс высшей математики. — Рипол Классик. — ISBN 9785458255349.
  3. Погорелов А. В. Геометрия. — М.: Наука, 1983. — С. 15—16. — 288 с.
  4. Сихарулидзе Ю. Г. Баллистика летательных аппаратов. — М.: Наука, 1982. — С. 162—163. — 5750 экз.
  5. Voyager – Hyperbolic Orbital Elements. НАСА. Дата обращения: 29 октября 2019. Архивировано 6 мая 2021 года.
  6. Ulivi P., Harland D. M. Robotic Exploration of the Solar System. Part I: The Golden Age 1957-1982. — Springer, Praxis, 2007. — P. 441. — ISBN 978-0-387-49326-8. Содержит эксцентриситет орбиты АМС «Вояджер-2» относительно Солнца после пролёта Нептуна.
  7. Naming of New Interstellar Visitor: 2I/Borisov. МАС (24 сентября 2019). Дата обращения: 24 сентября 2019. Архивировано 23 апреля 2020 года.
  8. Carl Sagan, Ann Druyan. Comet. — New York: Ballantine Books, 1997. — P. 104. — ISBN 0-345-41222-2.

Литература[править | править код]

  • Бронштейн И. Гипербола // Квант. — 1975. — № 3.
  • Граве Д. А. Гиперболы // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Математическая энциклопедия (в 5 томах). М.: Советская энциклопедия, 1982.
  • Маркушевич А. И. Замечательные кривые // Популярные лекции по математике. — Гостехиздат, 1952. — Вып. 4. Архивировано 14 сентября 2008 года.

Добавить комментарий