Как найти формулу длины интервала к

    1. Длина интервала на числовой прямой

Пусть
точки
иимеют координатына числовой оси. Тогда длина интервала
(отрезка) с концамиивычисляется по формуле

Пример. Расстояние от точкидо точкиравно.

  1. Расширенная область действительных чисел

Присоединим
к

два элемента —и,
полагая, что для всех

Для
всех положительных
будем считать, что

а
для отрицательных

Полагаем
также

Таким
образом, неопределенными остаются
операции:

Вещественные
числа вместе с
образуютрасширенную числовую прямую.
Можно убедиться, что основные
арифметические правила (ассоциативность,
коммутативность, дистрибутивность)
остаются верными и для расширенной
системы чисел, при условии определенности
всех входящих операций.

19

Соседние файлы в папке LEKTsII

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • Авторы
  • Файлы
  • Литература


Дацковская М.А.

1

Колеснёв А.С.

1

Агишева Д.К.

1

Зотова С.А.

1


1 Волжский политехнический институт (филиал) Волгоградского государственного технического университета

1. Агишева Д.К., Зотова С.А., Матвеева Т.А., Светличная В.Б. Математическая статистика: учебное пособие // Успехи современного естествознания. – 2010. – № 2. – С. 122-123.

2. Булашкова М.Г., Ломакина А.Н., Чаузова Е.А., Зотова С.А. Роль математики в современном мире // Успехи современного естествознания. – 2012. – № 4. – С. 45-45.

Если признак является непрерывным или число различных значений в выборке велико, вычислять частоту каждого из них не имеет большого смысла. В этом случае составляют интервальный вариационный ряд. Весь промежуток измерения значений выборки, от минимального до максимального, разбивают на частичные интервалы (чаще одинаковой длины), т. е. производится группировка.

Число интервалов следует брать не очень большим, чтобы после группировки ряд не был громоздким, и не очень малым, чтобы не потерять особенности распределения признака.

Число интервалов может быть определено по формуле Стерджеса

missing image file,

где missing image filelg n, значение k подбирается целым. Однако такой способ определения числа интервалов является лишь рекомендуемым, но не является обязательным.

Длина интервала находится по формуле

missing image file.

За начало первого частичного интервала, как правило (но не обязательно), выбирается точка

missing image file.

В первую строку таблицы интервального ряда вписывают частичные промежутки missing image file, missing image file, …, missing image file, имеющие одинаковую длину h, при этом весь интервал missing image file должен полностью покрывать все имеющиеся значения признака, т. е. missing image file, missing image file.

Во второй строке вписывают количество наблюдений missing image file (missing image file), попавших в каждый интервал.

Рассмотрим пример составления интервального вариационного ряда.

В таблице 1 приведена выборка результатов измерения роста 105 студентов (юношей). Измерения проводились с точностью до 1 см.

Требуется составить интервальный вариационный ряд.

Очевидно, что рост юношей есть случайная непрерывная величина. Найдём количество интервалов при

missing image file: missing image file.

Т. к. missing image file, missing image file, то длина частичного интервала находится по формуле:

missing image file.

Примем missing image file.

Исходные данные разбиваем на 8 интервалов: missing image file, missing image file, missing image file, (167;173], missing image file, missing image file, missing image file, missing image file.

Подсчитав число студентов missing image file, попавших в каждый из полученных промежутков, получим интервальный вариационный ряд (табл. 2). Здесь

missing image file.

Таблица 1

155

170

185

180

188

152

173

178

178

168

185

172

170

183

175

173

170

183

175

180

175

193

178

183

180

197

178

181

187

168

174

179

184

183

178

180

178

163

166

178

175

182

190

167

170

178

183

170

178

181

173

168

185

175

170

155

169

186

179

189

156

174

179

179

169

186

174

171

184

175

193

178

184

180

196

175

181

188

168

179

178

183

184

178

181

177

163

166

178

175

183

190

167

170

178

183

170

178

182

173

168

186

176

171

188

Таблица 2

Рост, missing image file

149-155

155-161

161-167

167-173

173-179

179-185

185-191

191-197

Частота, missing image file

3

1

6

22

33

26

10

4


Библиографическая ссылка

Дацковская М.А., Колеснёв А.С., Агишева Д.К., Зотова С.А. ИНТЕРВАЛЬНЫЙ ВАРИАЦИОННЫЙ РЯД // Международный студенческий научный вестник. – 2015. – № 3-4.
;

URL: https://eduherald.ru/ru/article/view?id=14154 (дата обращения: 15.05.2023).


Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

Варианты для выполнения работы

I. Установление закономерностей, которым подчинены массовые случайные явления, основано на изучении методами теории вероятностей статистических данных — результатов наблюдений.

Почти все встречающиеся в жизни величины (урожайность сельскохозяйственных растений, продуктивности скота, производительность труда и заработная плата рабочих, объем производства продукции и т.д.) принимают неодинаковые значения у различных членов совокупности. Поэтому возникает необходимость в изучении их изменяемости. Это изучение начинается с проведения соответствующих наблюдений, обследований.

В результате наблюдений получают сведения о численной величине изучаемого признака у каждого члена данной совокупности.

Пример. Имеются данные о размере прибыли 100 коммерческих банков. Прибыль, млн. рублей.

30,2 51,9 43,1 58,9 34,1 55,2 47,9 43,7 53,2 34,9
47,8 65,7 37,8 68,6 48,4 67,5 27,3 66,1 52,0 55,6
54,1 26,9 53,6 42,5 59,3 44,8 52,8 42,3 55,9 48,1
44,5 69,8 47,3 35,6 70,1 39,5 70,3 33,7 51,8 56,1
28,4  48,7 41,9 58,1 20,4 56,3 46,5 41,8 59,5 38,1
41,4 70,4 31,4 52,5 45,2 52,3 40,2 60,4 27,6 57,4
29,3 53,8 46,3 40,1 50,3 48,9 35,8 61,7 49,2 45,8
45,3 71,5 35,1 57,8 28,1 57,6 49,6 45,5 36,2 63,2
61,9 25,1 65,1 49,7 62,1 46,1 39,9 62,4 50,1 33,1
33,3 49,8 39,8 45,9 37,3 78,0 64,9 28,8 62,5 58,7

                 
Из данной таблицы видно, что интересующий нас признак (прибыль банков) меняется от одного члена совокупности к другому, варьирует. Варьирование есть изменяемость признака у отдельных членов совокупности.

Вариационным рядом называется последовательность вариант, записанных в возрастающем порядке и соответствующих им частот.

Число, показывающее, сколько раз повторяется в данной совокупности каждое значение признака, называется частотой.

Составим ранжированный вариационный ряд (выпишем варианты в порядке возрастания):

20,4 25,1 26,9 27,3 27,6 28,1 28,4 28,8 29,3 30,2
31,4 33,1 33,3 33,7 34,1 34,9 35,1 35,6 35,8 36,2
37,3 37,8 38,1 39,5 39,8 39,9 40,1 40,2 41,4 41,8
41,9 42,3 42,5 43,1 43,7 44,5 44,8 45,2 45,3 45,5
45,8 45,9 46,1 46,3 46,5 47,3 47,8 47,9 48,1 48,4
48,7 48,9 49,2 49,6 49,7 49,8 50,1 50,3 51,8 51,9
52,0 52,3 52,5 52,8 53,2 53,6 53,8 54,1 55,2 55,6
55,9 56,1 56,3 57,4 57,6 57,8 58,1 58,7 58,9 59,3
59,5 60,4 61,7 61,9 62,1 62,4 62,5 63,2 64,9 65,1
65,7 66,1 67,5 68,6 69,8 70,1 70,3 70,4 71,5 78,0

 В нашем случае каждое значение признака (варианта вариационного ряда) повторилось только один раз, т.е. значение частоты для всех вариант равно единице. Перейдем к интервальному вариационному ряду, так как интересующий нас признак принимает дробные, практически не повторяющиеся значения.

Для этого необходимо определить число интервалов (классов) и длину интервала (классного промежутка), после чего произвести разноску, т.е. подсчитать для каждого интервала число вариант, попавших в него.

Количество классов устанавливают в зависимости от степени точности, с которой ведется обработка, и количества объектов в выборке. Считается удобным при объеме выборки (n) в пределах от 30 до 60 вариант распределять их на 6-7 классов, при n от 60 до 100 вариант — на 7-8 классов, при n от 100 и более вариант — на 9-17 классов.

Нужное количество групп также может быть ориентировочно вычислено по формуле Стерджесса:

    [k=1+3,322lgn]

где k — число групп (классов, интервалов) ряда распределения; n — объем выборки.

Можно также использовать выражение:

    [k=sqrt{n}.]

При nle 70 они дают примерно одинаковые результаты.

В рассматриваемом примере о размере прибыли коммерческих банков, n=100. Применяя формулу Стерджесса, получим:

    [k=1+3,322lg100=1+3,322cdot 2=7,644approx 8.]

Однако sqrt{100}=10. Таким образом, число интервалов может быть равно 8, 9, 10 и т.д.

Нахождение нужного количества групп и их размеров часто бывает взаимообусловлено. Для того, чтобы как-то определиться с числом интервалов, найдем размах вариации — разность между наибольшей и наименьшей вариантой:

    [R=x_{max}-x_{min}]

где R — размах вариации,

x_{max} — наибольшее значение варьирующего признака,

x_{min} — наименьшее значение варьирующего признака.

Найдем размах вариации для рассматриваемой задачи:

    [R=78,0-20,4=57,6]

Для того, чтобы найти длину интервала (величину классового промежутка) необходимо разделить размах вариации на число классов и полученную величину округлить таким образом, чтобы было удобно производить сначала разноску, а затем и различные вычисления. Рекомендую округлять до единиц, до которых округлены варианты в исходной таблице, в нашем случае до десятых.

    [happrox frac{R}{k}]

Согласно формуле получаем

    [happrox frac{57,6}{8}=7,2]

Теперь необходимо определиться с началом первого интервала. Для этого можно использовать формулу:

    [x_1approx x_{min}-frac{h}{2}]

    [x_1approx 20,4-frac{7,2}{2}=16,8.]

Замечание. За начало первого интервала можно принять некоторое значение, несколько меньшее x_{min} или само значение x_{min}. Далее в табличном виде я покажу оба варианта.

Прибавив к началу первого интервала (нижней границе) шаг, получим верхнюю границу первого интервала и одновременно нижнюю границу второго интервала. Выполняя последовательно указанные действия, будем находить границы последующих интервалов до тех пор, пока не будет получено или перекрыто x_{max}.

Таким образом, верхняя граница одного интервала одновременно является нижней границей другого интервала. Чтобы не возникало сомнений, в какой интервал отнести варианту, попавшую на границу, условимся относить ее к верхнему интервалу.

Составим теперь рабочую таблицу для построения интервального вариационного ряда и произведем подсчет частот вариант, попавших в тот или иной интервал.

Как и обещал покажу две таблицы построения ряда:

1. Отсчет ведем от x_{min}, т.е. нижняя граница первого интервала совпадает с x_{min}.

Группы банков по размеру прибыли

(границы интервалов)

Количество банков, принадлежащих данной группе

(частоты, n_i)

Накопленные частоты,

S_i

20,4 — 27,6 4 4
27,6 — 34,8 11 15
34,8 — 42 16 31
42 — 49,2 21 52
49,2 — 56,4 21 73
56,4 — 63,6 15 88
63,6 — 70,8 10 98
70,8 — 78 2 100

2. Начало первого интервала определяем с помощью формулы: x_1approx x_{min}-frac{h}{2}.

Группы банков по размеру прибыли

(границы интервалов)

Количество банков, принадлежащих данной группе

(частоты, n_i)

Накопленные частоты,

S_i

16,8 — 24 1 1
24 — 31,2 9 10
31,2 — 38,4 13 23
38,4 — 45,6 17 40
45,6 — 52,8 23 63
52,8 — 60 18 81
60 — 67,2 11 92
67,2 — 74,4 7 99
74,4 — 81,6 1 100

Как мы видим в 1-м случае у нас получилось восемь интервалов, что полностью совпадает с результатом, который нам дала формула Стерджесса. Во втором случае у нас получилось девять интервалов, так как при поиске начала первого интервала пользовались специальной формулой.

Для дальнейшего исследования я буду пользоваться результатами второй таблицы, так как там ярко выражен модальный интервал (одна мода) и медиана практически точно попадает на середину вариационного ряда.

Мы получили интервальный вариационный ряд — упорядоченную совокупность интервалов варьирования значений случайной величины с соответствующими частотами попаданий в каждый из них значений величины.

II. Графическая интерпретация вариационных рядов.

№ п/п

Границы интервалов,

[x_{i}; x_{i+1})

Середины интервалов,

x_{i}^{*}=frac{x_i+x_{i+1}}{2}

Частоты интервалов,

n_i

Относительные частоты

W_i=frac{n_i}{n}

Плотность относит. частоты

frac{W_i}{h}

Плотность частоты

frac{n_i}{h}

1 16,8 — 24 20,4 1 0,01 0,001 0,139
2 24 — 31,2 27,6 9 0,09 0,013 1,250
3 31,2 — 38,4 34,8 13 0,13 0,018 1,806
4 38,4 — 45,6 42 17 0,17 0,024 2,361
5 45,6 — 52,8 49,2 23 0,23 0,032 3,194
6 52,8 — 60 56,4 18 0,18 0,025 2,500
7 60 — 67,2 63,6 11 0,11 0,015 1,528
8 67,2 — 74,4 70,8 7 0,07 0,010 0,972
9 74,4 — 81,6 78 1 0,01 0,001 0,139
      sum=100 sum=1    

Строим графики:

График гистограммы частот ischanow.com

График гистограммы плотности частот ischanow.com

График гистограммы относительных частот ischanow.com

График гистограммы плотности относительных частот ischanow.com

График полигона частот ischanow.com

Далее найдем моду вариационного ряда:

    [M_o(X)=x_{M_o}+hfrac{(n_2-n_1)}{(n_2-n_1)+(n_2-n_3)}]

где

x_{M_o} — начало модального интервала;

h — длина частичного интервала (шаг);

n_1 — частота предмодального интервала;

n_2 — частота модального интервала;

n_3 — частота послемодального интервала.

Определим модальный интервал — интервал, имеющий наибольшую частоту. Из таблицы видно, что модальным является интервал (45,6 — 52,8).

    [M_o(X)=45,6+7,2frac{(23-17)}{(23-17)+(23-18)}=]

    [=45,6+7,2cdot frac{6}{6+5}=45,6+3,93=49,5]

Медиана

Для интервального ряда медиана находится по формуле:

    [M_e(X)=x_{M_e}+hfrac{0,5n-S_{M_{e}-1}}{n_{M_e}}]

где

x_{M_e} — начало медианного интервала;

h — длина частичного интервала (шаг);

n — объем совокупности;

S_{M_{e}-1} — накопленная частота интервала, предшествующая медианному;

n_{M_e} — частота медианного интервала.

Определим медианный интервал — интервал, в котором впервые накопленная частота превышает половину объема выборки.Так как объем выборки n=100, то n/2=50. По таблице найдем интервал, где впервые накопленные частоты превысят это значение. Таким является интервал (45,6 — 52,8).

Получаем,

    [M_e(X)=45,6+7,2frac{0,5cdot 100-40}{23}approx 48,7.]

III. Расчет сводных характеристик выборки.

Для определения x_B, D_{B}, sigma_{B} составим расчетную таблицу. Для начала определимся с ложным нулем С. В качестве ложного нуля можно принять любую варианту. Максимальная простота вычислений достигается, если выбрать в качестве ложного нуля варианту, которая расположена примерно в середине вариационного ряда (часто такая варианта имеет наибольшую частоту).

Варианте, которая принята в качестве ложного нуля, соответствует условная варианта, равная нулю. В нашем случае С=49,2.

Равноотстоящими называют варианты, которые образуют арифметическую прогрессию с разностью h.

Условными называют варианты, определяемые равенством:

    [U_i=frac{(x_i-C)}{h}]

Произведем расчет условных вариант согласно формуле:

    [U_1=frac{20,4-49,2}{7,2}=-4]

    [U_2=frac{27,6-49,2}{7,2}=-3]

    [U_3=frac{34,8-49,2}{7,2}=-2]

    [U_4=frac{42-49,2}{7,2}=-1]

    [U_5=frac{49,2-49,2}{7,2}=0]

    [U_6=frac{56,4-49,2}{7,2}=1]

    [U_7=frac{63,6-49,2}{7,2}=2]

    [U_8=frac{70,8-49,2}{7,2}=3]

    [U_9=frac{78-49,2}{7,2}=4]

N п/п

Середины интервалов,

x_{i}^{*}

Частоты интервалов,

n_i

Условные варианты,

U_i

Произведения частот и условных вариант,

n_icdot U_i

Произведения частот и условных вариант,

n_icdot U_i^2

Произведения частот и условных вариант,

n_icdot U_i^3

Произведения частот и условных вариант,

n_icdot U_i^4

Произведения частот и условных вариант,  

n_icdot (U_i+1)^2

Произведения частот и условных вариант,

n_icdot(U_i+1)^4

1 20,4 1 -4 -4 16 -64 256 9 81
2 27,6 9 -3 -27 81 -243 729 36 144
3 34,8 13 -2 -26 52 -104 208 13 13
4 42 17 -1 -17 17 -17 17 0 0
5 49,2 23 0 0 0 0 0 23 23
6 56,4 18 1 18 18 18 18 72 288
7 63,6 11 2 22 44 88 176 99 891
8 70,8 7 3 21 63 189 567 112 1792
9 78 1 4 4 16 64 256 25 625
    sum=100   sum n_iU_i=-9 sum n_iU_i^2=307 sum n_icdot U_i^3=-69 sum n_icdot U_i^4=2227 sum n_icdot (U_i+1)^2=389 sum n_icdot(U_i+1)^4=3857

    
Контроль:

    [sum n_i U_i^2 + 2sum n_iU_i+n=sum n_i{(U_i+1)}^2]

    [sum n_i U_i^2 + 2sum n_iU_i+n=307+2cdot (-9)+100=389]

    [sum n_i{(U_i+1)}^2=389]

Контроль:

    [sum n_i U_i^4 + 4sum n_iU_i^3+6sum n_iU_i^2+4sum n_iU_i+n=sum n_i{(U_i+1)}^4]

    [sum n_i U_i^4 + 4sum n_iU_i^3+6sum n_iU_i^2+4sum n_iU_i+n=]

    [=2227+4cdot (-69)+6 cdot 307+4cdot (-9)+100=3857]

    [sum n_i{(U_i+1)}^4=3857]

Равенство выполнено, следовательно вычисления произведены верно.

Вычислим условные моменты 1-го, 2-го, 3-го и 4-го порядков:

    [M_1^{*}=frac{sum n_iU_i}{n}=frac{-9}{100}=-0,09;]

    [M_2^{*}=frac{sum n_iU_i^2}{n}=frac{307}{100}=3,07;]

    [M_3^{*}=frac{sum n_iU_i^3}{n}=frac{-69}{100}=-0,69;]

    [M_4^{*}=frac{sum n_iU_i^4}{n}=frac{2227}{100}=22,27.]

Найдем выборочные среднюю, дисперсию и среднее квадратическое отклонение :

    [x_{B}=M_1^{*}cdot h+C=-0,09cdot 7,2+49,2=48,552;]

    [D_{B}=(M_2^{*}-{(M_1^{*})}^2)h^2=(3,07-{(-0,09)}^2){7,2}^2approx 158,73.]

    [sigma_{B}=sqrt{D_B}=sqrt{158,73}=12,6.]

Также для оценки отклонения эмпирического распределения от нормального используют такие характеристики, как асимметрия и эксцесс.

Асимметрией теоретического распределения называют отношение центрального момента третьего порядка к кубу среднего квадратического отклонения:

    [a_s=frac{m_3}{sigma_B^3}]

Асимметрия положительна, если «длинная часть» кривой распределения расположена справа от математического ожидания; асимметрия отрицательна, если «длинная часть» кривой расположена слева от математического ожидания. Практически определяют знак асимметрии по расположению кривой распределения относительно моды (точки максимума дифференциальной функции): если «длинная часть» кривой расположена правее моды, то асимметрия положительна, если слева — отрицательна.

Эксцесс эмпирического распределения определяется равенством:

    [e_k=frac{m_4}{sigma_B^4}-3]

где m_4 — центральный эмпирический момент четвертого порядка.

Для нормального распределения эксцесс равен нулю. Поэтому если эксцесс некоторого распределения отличен от нуля, то кривая этого распределения отличается от нормальной кривой: если эксцесс положительный, то кривая имеет более высокую и «острую» вершину, чем нормальная кривая; если эксцесс отрицательный, то сравниваемая кривая имеет более низкую и «плоскую» вершину, чем нормальная кривая. При этом предполагается, что нормальное и теоретическое распределения имеют одинаковые математические ожидания и дисперсии.

Вычисляем центральные эмпирические моменты третьего и четвертого порядков:

    [m_3=(M_3^*-3M_1^*M_2^*+2{(M_1^*)}^3)cdot h^3=51,3;]

    [m_4=(M_4^*-4M_3^*M_1^*+6M_2^*{(M_1^*)}^2-3{(M_1^*)}^4)cdot h^4=59580,97;]

Найдем асимметрию и эксцесс:

    [a_s=frac{51,3}{{12,6}^3}=0,026]

    [e_k=frac{59580,97}{{12,6}^4}-3=-0,635]

IV. Проверка гипотезы о нормальном распределении генеральной совокупности. Критерий согласия Пирсона.

Проверим генеральную совокупность значений размера прибыли банков по критерию Пирсона chi^2

Правило. Для того, чтобы при заданном уровне значимости проверить нулевую гипотезу H_o: генеральная совокупность распределена нормально, надо сначала вычислить теоретические частоты, а затем наблюдаемое значение критерия:

    [chi^2_{nabl}=sum frac{ {(n_i-n_i^{'})}^2}{n_i^{'}}]

и по таблице критических точек распределения chi^2, по заданному уровню значимости alpha и числу степеней свободы k=s-3 найти критическую точку chi^2_{kp}(alpha;k), где s — количество интервалов.

Если chi^2_{nabl}<chi^2_{kp} — нет оснований отвергнуть нулевую гипотезу.

Если chi^2_{nabl}>chi^2_{kp} — нулевую гипотезу отвергают.

Найдем теоретические частоты n_i^', для этого составим следующую таблицу.

Середины интервалов,

x_{i}^{*}

Частоты интервалов,

n_i

Произведем расчет,

x_{i}^{*}-x_B

Произведем расчет,

V_i=frac{(x_{i}^{*}-x_B)}{sigma_B}

Значения функции Гаусса,

varphi(V_i)

Произведем расчет,

frac{nh}{sigma_B}

Теоретические частоты,

n_i^{'}=57 cdotvarphi(V_i)

20,4 1 -28,152 -2,23 0,0332 57 2
27,6 9 -20,952 -1,66 0,1006 57 6
34,8 13 -13,752 -1,09 0,2203 57 13
42 17 -6,552 -0,52 0,3485 57 20
49,2 23 0,648 0,05 0,3984 57 23
56,4 18 7,848 0,62 0,3292 57 19
63,6 11 15,048 1,19 0,1965 57 11
70,8 7 22,248 1,77 0,0833 57 5
78 1 29,448 2,34 0,0258 57 1
  n=100         sum n_i^{'}=100

   
Вычислим chi^2_{nabl}, для чего составим расчетную таблицу.

N^0 n_i n_i^{'} n_i-n_i^{'} {(n_i-n_i^{'})}^2 frac{{(n_i-n_i^{'})}^2}{n_i^'} n_i^2 frac{n_i^2}{n_i^{'}}
1 1 2 -1 0,5 1 0,5
2 9 6 3 9 1,5 81 13,5
3 13 13 0 0 0 169 13
4 17 20 -3 9 0,45 289 14,45
5 23 23 0 0 0 529 23
6 18 19 -1 1 0,05 324 17,05
7 11 11 0 0 0 121 11
8 7 5 2 4 0,8 49 9,8
9 1 1 0 0 0 1 1
sum 100 100    

Наблюдаемое значение критерия,

chi^2_{nabl}=3,30

  103,30

Контроль:

    [sumfrac{n_i^2}{n_i^{'}}-n=sum frac{{(n_i-n_i^{'})}^2}{n_i^'}]

    [sumfrac{n_i^2}{n_i'}-n=103,3-100=3,3]

    [sum frac{{(n_i-n_i')}^2}{n_i'}=3,3]

Вычисления произведены правильно.

Найдем число степеней свободы, учитывая, что число групп выборки (число различных вариант) s=9;

    [k=s-3=9-3=6.]

По таблице критических точек распределения chi^2 по уровню значимости alpha = 0,025 и числу степеней свободы k=6 находим chi^2_{kp}(0,025;6)=14,4.

Так как chi^2_{nabl}<chi^2_{kp} — нет оснований отвергнуть нулевую гипотезу. Другими словами, расхождение эмпирических и теоретических частот незначительное. Следовательно, данные наблюдений согласуются с гипотезой о нормальном распределении генеральной совокупности.

На рисунке построены нормальная (теоретическая) кривая по теоретическим частотам (зеленый график) и полигон наблюдаемых частот (коричневый график). Сравнение графиков наглядно показывает, что построенная теоретическая кривая удовлетворительно отражает данные наблюдений.

График нормальной кривой и полигон наблюдаемых частот

V. Интервальные оценки.

Интервальной называют оценку, которая определяется двумя числами — концами интервала, покрывающего оцениваемый параметр.

Доверительным называют интервал, который с заданной надежностью gamma покрывает заданный параметр.

Интервальной оценкой (с надежностью gamma) математического ожидания (а) нормально распределенного количественного признака Х по выборочной средней x_B при известном среднем квадратическом отклонении sigma генеральной совокупности служит доверительный интервал

    [x_B-frac{tsigma}{sqrt{n}}<a<x_B+frac{tsigma}{sqrt{n}},]

где frac{tsigma}{sqrt{n}}=delta — точность оценки, n — объем выборки, t — значение аргумента функции Лапласа phi (t) (см. приложение 2), при котором phi(t)=frac{gamma}{2};

при неизвестном среднем квадратическом отклонении sigma (и объеме выборки n<30)

    [x_B-frac{t_{gamma}cdot S}{sqrt{n}}<a<x_B+frac{t_{gamma}cdot S}{sqrt{n}},]

    [S=sqrt{frac{n}{n-1}D_B}]

где S — исправленное выборочное среднее квадратическое отклонение, t_{gamma} находят по таблице приложения по заданным n и gamma.

В нашем примере среднее квадратическое отклонение известно, sigma_B=12,6. А также x_B=48,55, n=100, gamma=0,95. Поэтому для поиска доверительного интервала используем первую формулу:

    [x_B-frac{tsigma}{sqrt{n}}<a<x_B+frac{tsigma}{sqrt{n}}]

Все величины, кроме t, известны. Найдем t из соотношения phi(t)=frac{0,95}{2}=0,475. По таблице приложения находим t=1,96. Подставив t=1,96, sigma_B=12,6, x_B=48,55, n=100 в формулу, окончательно получим искомый доверительный интервал:

    [48,55-frac{1,96cdot 12,6}{10}<a<48,55+frac{1,96cdot 12,6}{10}]

    [48,55-2,47<a<48,55+2,47]

    [46,08<a<51,02]

Интервальной оценкой (с надежностью gamma) среднего квадратического отклонения sigma нормально распределенного количественного признака Х по «исправленному» выборочному среднему квадратическому отклонению S служит доверительный интервал

S(1-q)<sigma<S(1+q),    (при q<1), (*)

0<sigma<S(1+q),      (при q>1),

где q — находят по таблице приложения по заданным n и gamma.

По данным gamma=0,95 и n=100 по таблице приложения 4 найдем q=0,143. Так как q<1, то, подставив S=sqrt{frac{n}{n-1}D_B}=sqrt{frac{100}{99}cdot 158,73}approx 12,66, quad quad q=0,143 в соотношение (*), получим доверительный интервал:

    [12,66(1-0,143)<sigma<12,66(1+0,143)]

    [10,85<sigma<14,47]

Содержание

  1. Подсчет ЧИСЕЛ попадающих в интервал в EXCEL
  2. Как посчитать интервал в excel
  3. Как посчитать интервал в excel
  4. Описание
  5. Синтаксис
  6. Замечания
  7. Функция ДОВЕРИТ и нормальный доверительный интервал в Excel
  8. Как построить доверительный интервал нормального распределения в Excel
  9. Пример расчета доверительного интервала в Excel
  10. Как найти границы доверительного интервала в Excel
  11. Вычисление доверительного интервала в Microsoft Excel
  12. Процедура вычисления
  13. Способ 1: функция ДОВЕРИТ.НОРМ
  14. Способ 2: функция ДОВЕРИТ.СТЮДЕНТ

Подсчет ЧИСЕЛ попадающих в интервал в EXCEL

history 19 апреля 2013 г.

Подсчет чисел, попадающих в интервал – стандартная задача: используйте функцию СЧЕТЕСЛИМН() . Усложним задачу, сделаем интервал легко настраиваемым.

В качестве примера подсчета чисел возьмем список с числовыми значениями от 4 до 30 (См. файл примера ).

Будем подсчитывать значения, попадающие в интервал, например, (4;15]. Причем, границы интервала «включает [ ]» и «не включает ( )» будем выбирать из Выпадающего (раскрывающегося) списка .

Примечание : решение без выбора интервалов = СЧЁТЕСЛИМН(A2:A12;»>»&D2;A2:A12;» Предполагается, что границы интервала введены в ячейки D2 и F2 . Эти ячейки не должны быть пустыми, даже если одна из границ =0. Если в диапазоне A2:A12 содержатся числовые значения в текстовом формате , то они будут проигнорированы.

Для настройки границ интервала используем Проверку данных с типом данных Список . В качестве источника укажем для левой границы >;>= и для правой СЧЁТЕСЛИМН(A2:A12;C2&D2;A2:A12;E2&F2)

  • = СЧЁТЕСЛИ($A$2:$A$12;C2&D2)-(СЧЁТЗ($A$2:$A$12)-СЧЁТЕСЛИ($A$2:$A$12;E2&F2))
  • Формула = БСЧЁТ(A1:A12;A1;H2:I3) требует предварительного создания таблицы с условиями. Заголовки этой таблицы должны в точности совпадать с заголовками исходной таблицы.
  • Источник

    Как посчитать интервал в excel

    Как посчитать интервал в excel

    В этой статье описаны синтаксис формулы и использование в Microsoft Excel.

    Описание

    Возвращает доверительный интервал для среднего генеральной совокупности с нормальным распределением.

    Доверительный интервал — это диапазон значений. Выборка «x» находится в центре этого диапазона, а диапазон — x ± ДОВЕРИТ. Например, если x — это пример времени доставки продуктов, заказаных по почте, то x ± ДОВЕРИТ — это диапазон средств численности населения. Для любого средней численности населения (μ0) в этом диапазоне вероятность получения выборки от μ0 больше, чем x, больше, чем альфа; для любого средней численности населения (μ0, не в этом диапазоне), вероятность получения выборки от μ0 больше, чем x, меньше, чем альфа. Другими словами, предположим, что для построения двунамерного теста на уровне значимости альфа гипотезы о том, что это μ0, используются значения x, standard_dev и размер. Тогда мы не отклонить эту гипотезу, если μ0 находится через доверительный интервал, и отклонить эту гипотезу, если μ0 не находится в доверительный интервал. Доверительный интервал не позволяет нам сделать вывод о том, что вероятность 1 — альфа, что следующий пакет займет время доставки через доверительный интервал.

    Важно: Эта функция была заменена одной или несколькими новыми функциями, которые обеспечивают более высокую точность и имеют имена, лучше отражающие их назначение. Хотя эта функция все еще используется для обеспечения обратной совместимости, она может стать недоступной в последующих версиях Excel, поэтому мы рекомендуем использовать новые функции.

    Чтобы узнать больше о новых функциях, см. в разделах Функция ДОВЕРИТ.НОРМ и Функция ДОВЕРИТ.СТЬЮДЕНТ.

    Синтаксис

    Аргументы функции ДОВЕРИТ описаны ниже.

    Альфа — обязательный аргумент. Уровень значимости, используемый для вычисления доверительного уровня. Доверительный уровень равен 100*(1 — альфа) процентам или, иными словами, значение аргумента «альфа», равное 0,05, означает 95-процентный доверительный уровень.

    Стандартное_откл — обязательный аргумент. Стандартное отклонение генеральной совокупности для диапазона данных, предполагается известным.

    Размер — обязательный аргумент. Размер выборки.

    Замечания

    Если какой-либо из аргументов не является числом, возвращается #VALUE! значение ошибки #ЗНАЧ!.

    Если альфа ≤ 0 или ≥ 1, доверит возвращает #NUM! значение ошибки #ЗНАЧ!.

    Если Standard_dev ≤ 0, возвращается #NUM! значение ошибки #ЗНАЧ!.

    Если значение аргумента «размер» не является целым числом, оно усекается.

    Подсчет можно реализовать множеством формул, приведем несколько:

    • = СЧЁТЕСЛИМН(A2:A12;C2&D2;A2:A12;E2&F2)
    • = СЧЁТЕСЛИ($A$2:$A$12;C2&D2)-(СЧЁТЗ($A$2:$A$12)-СЧЁТЕСЛИ($A$2:$A$12;E2&F2))
    • Формула = БСЧЁТ(A1:A12;A1;H2:I3) требует предварительного создания таблицы с условиями. Заголовки этой таблицы должны в точности совпадать с заголовками исходной таблицы.

    СОВЕТ: Более сложные условия подсчета рассмотрены в статье Подсчет значений с множественными критериями (Часть 1. Условие И) .

    Функция ДОВЕРИТ и нормальный доверительный интервал в Excel

    Функция ДОВЕРИТ в Excel предназначена для определения доверительного интервала для среднего значения, найденного для генеральной совокупности, которая имеет нормальное распределение.

    Другими словами, рассматриваемая функция позволяет определить допустимые отклонения для найденного среднего значения с учетом известных уровня значимости (заданная вероятность того, что некоторое значение находится в доверительном интервале) и стандартного отклонения (меры степени разброса значений относительно среднего значения для генеральной совокупности).

    Как построить доверительный интервал нормального распределения в Excel

    Поскольку интервал значений, в котором находится некоторая неизвестная величина, совпадает с областью, в которой могут изменяться значения этой величины, то вероятность правильности оценки данной величины стремится к нулю. Поэтому, принято устанавливать определенное значение вероятности для нахождения границ изменения некоторой величины. Значения, находящиеся между этими границами, называют доверительным интервалом.

    Рассматриваемая функция была заменена функцией ДОВЕРИТ.НОРМ с версии Excel 2010. Функция ДОВЕРИТ была оставлена для обеспечения совместимости с документами, созданными в более ранних версиях табличного редактора.

    Пример расчета доверительного интервала в Excel

    Пример 1. В заводском цехе производят деталь, длина которой должна составлять 200 мм. Стандартное отклонение от длины – 3,6 мм. Для контроля качества деталей из партии (генеральная совокупность) делают выборку из 25 деталей. Определить интервал с доверительный уровнем 95%.

    Вид таблицы данных:

    Для определения доверительного интервала используем функцию:

    • 1-B2 – уровень значимости (рассчитан с учетом зависимости от доверительного уровня);
    • B3 – значение стандартного отклонения;
    • B4 – количество деталей в выборке.

    То есть, границы доверительного интервала соответствуют: (Xср-1,4112;Xср+1,4112). Допустим, было определено среднее значение выборки – 199,5 мм. Тогда доверительный интервал примерно определяется как (198,1;200,9), при этом номинальная длина детали (200 мм) находится в доверительном диапазоне, то есть производственный процесс не нарушен.

    Как найти границы доверительного интервала в Excel

    Пример 2. Были проведены опыты по определению скорости распространения звуковой волны в воздухе. Результаты 10 опытов записаны в таблицу. Определить левую и правую границы доверительного интервала для среднего значения.

    Вид таблицы данных:

    Для нахождения левой границы используем формулу:

    В данном случае выборка и генеральная совокупность приняты как имеющиеся данные для 10 проведенных опытов. Среднее выборочное значение рассчитано с помощью функции СРЗНАЧ. Для получения левой границы доверительного интервала из данного значения вычитаем число, полученное в результате выполнения функции ДОВЕРИТ, в которой значение второго аргумента определено с помощью функции СТАНДОТКЛОН.Г, а число опытов – подсчетом количества ячеек функцией СЧЁТЗ.

    Поскольку уровень значимости не задан, используем стандартное значение – 0,05.

    Правая граница определяется аналогично с разницей в том, что к среднему значению выборки прибавляется результат расчета функции ДОВЕРИТ:

    Источник

    Вычисление доверительного интервала в Microsoft Excel

    Одним из методов решения статистических задач является вычисление доверительного интервала. Он используется, как более предпочтительная альтернатива точечной оценке при небольшом объеме выборки. Нужно отметить, что сам процесс вычисления доверительного интервала довольно сложный. Но инструменты программы Эксель позволяют несколько упростить его. Давайте узнаем, как это выполняется на практике.

    Процедура вычисления

    Этот метод используется при интервальной оценке различных статистических величин. Главная задача данного расчета – избавится от неопределенностей точечной оценки.

    В Экселе существуют два основных варианта произвести вычисления с помощью данного метода: когда дисперсия известна, и когда она неизвестна. В первом случае для вычислений применяется функция ДОВЕРИТ.НОРМ, а во втором — ДОВЕРИТ.СТЮДЕНТ.

    Способ 1: функция ДОВЕРИТ.НОРМ

    Оператор ДОВЕРИТ.НОРМ, относящийся к статистической группе функций, впервые появился в Excel 2010. В более ранних версиях этой программы используется его аналог ДОВЕРИТ. Задачей этого оператора является расчет доверительного интервала с нормальным распределением для средней генеральной совокупности.

    Его синтаксис выглядит следующим образом:

    «Альфа» — аргумент, указывающий на уровень значимости, который применяется для расчета доверительного уровня. Доверительный уровень равняется следующему выражению:

    «Стандартное отклонение» — это аргумент, суть которого понятна из наименования. Это стандартное отклонение предлагаемой выборки.

    «Размер» — аргумент, определяющий величину выборки.

    Все аргументы данного оператора являются обязательными.

    Функция ДОВЕРИТ имеет точно такие же аргументы и возможности, что и предыдущая. Её синтаксис таков:

    Как видим, различия только в наименовании оператора. Указанная функция в целях совместимости оставлена в Excel 2010 и в более новых версиях в специальной категории «Совместимость». В версиях же Excel 2007 и ранее она присутствует в основной группе статистических операторов.

    Граница доверительного интервала определяется при помощи формулы следующего вида:

    Где X – это среднее выборочное значение, которое расположено посередине выбранного диапазона.

    Теперь давайте рассмотрим, как рассчитать доверительный интервал на конкретном примере. Было проведено 12 испытаний, вследствие которых были получены различные результаты, занесенные в таблицу. Это и есть наша совокупность. Стандартное отклонение равно 8. Нам нужно рассчитать доверительный интервал при уровне доверия 97%.

    1. Выделяем ячейку, куда будет выводиться результат обработки данных. Щелкаем по кнопке «Вставить функцию».
    2. Появляется Мастер функций. Переходим в категорию «Статистические» и выделяем наименование «ДОВЕРИТ.НОРМ». После этого клацаем по кнопке «OK».
    3. Открывается окошко аргументов. Его поля закономерно соответствуют наименованиям аргументов.
      Устанавливаем курсор в первое поле – «Альфа». Тут нам следует указать уровень значимости. Как мы помним, уровень доверия у нас равен 97%. В то же время мы говорили, что он рассчитывается таким путем:

    Значит, чтобы посчитать уровень значимости, то есть, определить значение «Альфа» следует применить формулу такого вида:

    То есть, подставив значение, получаем:

    Путем нехитрых расчетов узнаем, что аргумент «Альфа» равен 0,03. Вводим данное значение в поле.

    Как известно, по условию стандартное отклонение равно 8. Поэтому в поле «Стандартное отклонение» просто записываем это число.

    В поле «Размер» нужно ввести количество элементов проведенных испытаний. Как мы помним, их 12. Но чтобы автоматизировать формулу и не редактировать её каждый раз при проведении нового испытания, давайте зададим данное значение не обычным числом, а при помощи оператора СЧЁТ. Итак, устанавливаем курсор в поле «Размер», а затем кликаем по треугольнику, который размещен слева от строки формул.

    Появляется список недавно применяемых функций. Если оператор СЧЁТ применялся вами недавно, то он должен быть в этом списке. В таком случае, нужно просто кликнуть по его наименованию. В обратном же случае, если вы его не обнаружите, то переходите по пункту «Другие функции…».

  • Появляется уже знакомый нам Мастер функций. Опять перемещаемся в группу «Статистические». Выделяем там наименование «СЧЁТ». Клацаем по кнопке «OK».
  • Появляется окно аргументов вышеуказанного оператора. Данная функция предназначена для того, чтобы вычислять количество ячеек в указанном диапазоне, которые содержат числовые значения. Синтаксис её следующий:

    Группа аргументов «Значения» представляет собой ссылку на диапазон, в котором нужно рассчитать количество заполненных числовыми данными ячеек. Всего может насчитываться до 255 подобных аргументов, но в нашем случае понадобится лишь один.

    Устанавливаем курсор в поле «Значение1» и, зажав левую кнопку мыши, выделяем на листе диапазон, который содержит нашу совокупность. Затем его адрес будет отображен в поле. Клацаем по кнопке «OK».
    После этого приложение произведет вычисление и выведет результат в ту ячейку, где она находится сама. В нашем конкретном случае формула получилась такого вида:

    Общий результат вычислений составил 5,011609.
    Но это ещё не все. Как мы помним, граница доверительного интервала вычисляется путем сложения и вычитания от среднего выборочного значения результата вычисления ДОВЕРИТ.НОРМ. Таким способом рассчитывается соответственно правая и левая граница доверительного интервала. Само среднее выборочное значение можно рассчитать при помощи оператора СРЗНАЧ.

    Данный оператор предназначен для расчета среднего арифметического значения выбранного диапазона чисел. Он имеет следующий довольно простой синтаксис:

    Аргумент «Число» может быть как отдельным числовым значением, так и ссылкой на ячейки или даже целые диапазоны, которые их содержат.

    Итак, выделяем ячейку, в которую будет выводиться расчет среднего значения, и щелкаем по кнопке «Вставить функцию».

  • Открывается Мастер функций. Снова переходим в категорию «Статистические» и выбираем из списка наименование «СРЗНАЧ». Как всегда, клацаем по кнопке «OK».
  • Запускается окно аргументов. Устанавливаем курсор в поле «Число1» и с зажатой левой кнопкой мыши выделяем весь диапазон значений. После того, как координаты отобразились в поле, клацаем по кнопке «OK».
  • После этого СРЗНАЧ выводит результат расчета в элемент листа.
  • Производим расчет правой границы доверительного интервала. Для этого выделяем отдельную ячейку, ставим знак «=» и складываем содержимое элементов листа, в которых расположены результаты вычислений функций СРЗНАЧ и ДОВЕРИТ.НОРМ. Для того, чтобы выполнить расчет, жмем на клавишу Enter. В нашем случае получилась следующая формула:

    Результат вычисления: 6,953276
    Таким же образом производим вычисление левой границы доверительного интервала, только на этот раз от результата вычисления СРЗНАЧ отнимаем результат вычисления оператора ДОВЕРИТ.НОРМ. Получается формула для нашего примера следующего типа:

    Результат вычисления: -3,06994
    Мы попытались подробно описать все действия по вычислению доверительного интервала, поэтому детально расписали каждую формулу. Но можно все действия соединить в одной формуле. Вычисление правой границы доверительного интервала можно записать так:

    =СРЗНАЧ(B2:B13)+ДОВЕРИТ.НОРМ(0,03;8;СЧЁТ(B2:B13))
    Аналогичное вычисление левой границы будет выглядеть так:

    =СРЗНАЧ(B2:B13)-ДОВЕРИТ.НОРМ(0,03;8;СЧЁТ(B2:B13))

    Способ 2: функция ДОВЕРИТ.СТЮДЕНТ

    Кроме того, в Экселе есть ещё одна функция, которая связана с вычислением доверительного интервала – ДОВЕРИТ.СТЮДЕНТ. Она появилась, только начиная с Excel 2010. Данный оператор выполняет вычисление доверительного интервала генеральной совокупности с использованием распределения Стьюдента. Его очень удобно использовать в том случае, когда дисперсия и, соответственно, стандартное отклонение неизвестны. Синтаксис оператора такой:

    Как видим, наименования операторов и в этом случае остались неизменными.

    Посмотрим, как рассчитать границы доверительного интервала с неизвестным стандартным отклонением на примере всё той же совокупности, что мы рассматривали в предыдущем способе. Уровень доверия, как и в прошлый раз, возьмем 97%.

    1. Выделяем ячейку, в которую будет производиться расчет. Клацаем по кнопке «Вставить функцию».
    2. В открывшемся Мастере функций переходим в категорию «Статистические». Выбираем наименование «ДОВЕРИТ.СТЮДЕНТ». Клацаем по кнопке «OK».
    3. Производится запуск окна аргументов указанного оператора.

    В поле «Альфа», учитывая, что уровень доверия составляет 97%, записываем число 0,03. Второй раз на принципах расчета данного параметра останавливаться не будем.

    После этого устанавливаем курсор в поле «Стандартное отклонение». На этот раз данный показатель нам неизвестен и его требуется рассчитать. Делается это при помощи специальной функции – СТАНДОТКЛОН.В. Чтобы вызвать окно данного оператора, кликаем по треугольнику слева от строки формул. Если в открывшемся списке не находим нужного наименования, то переходим по пункту «Другие функции…».

  • Запускается Мастер функций. Перемещаемся в категорию «Статистические» и отмечаем в ней наименование «СТАНДОТКЛОН.В». Затем клацаем по кнопке «OK».
  • Открывается окно аргументов. Задачей оператора СТАНДОТКЛОН.В является определение стандартного отклонения при выборке. Его синтаксис выглядит так:

    Нетрудно догадаться, что аргумент «Число» — это адрес элемента выборки. Если выборка размещена единым массивом, то можно, использовав только один аргумент, дать ссылку на данный диапазон.

    Устанавливаем курсор в поле «Число1» и, как всегда, зажав левую кнопку мыши, выделяем совокупность. После того, как координаты попали в поле, не спешим жать на кнопку «OK», так как результат получится некорректным. Прежде нам нужно вернуться к окну аргументов оператора ДОВЕРИТ.СТЮДЕНТ, чтобы внести последний аргумент. Для этого кликаем по соответствующему наименованию в строке формул.

  • Снова открывается окно аргументов уже знакомой функции. Устанавливаем курсор в поле «Размер». Опять жмем на уже знакомый нам треугольник для перехода к выбору операторов. Как вы поняли, нам нужно наименование «СЧЁТ». Так как мы использовали данную функцию при вычислениях в предыдущем способе, в данном списке она присутствует, так что просто щелкаем по ней. Если же вы её не обнаружите, то действуйте по алгоритму, описанному в первом способе.
  • Попав в окно аргументов СЧЁТ, ставим курсор в поле «Число1» и с зажатой кнопкой мыши выделяем совокупность. Затем клацаем по кнопке «OK».
  • После этого программа производит расчет и выводит значение доверительного интервала.
  • Для определения границ нам опять нужно будет рассчитать среднее значение выборки. Но, учитывая то, что алгоритм расчета при помощи формулы СРЗНАЧ тот же, что и в предыдущем способе, и даже результат не изменился, не будем на этом подробно останавливаться второй раз.
  • Сложив результаты вычисления СРЗНАЧ и ДОВЕРИТ.СТЮДЕНТ, получаем правую границу доверительного интервала.
  • Отняв от результатов расчета оператора СРЗНАЧ результат расчета ДОВЕРИТ.СТЮДЕНТ, имеем левую границу доверительного интервала.
  • Если расчет записать одной формулой, то вычисление правой границы в нашем случае будет выглядеть так:

    =СРЗНАЧ(B2:B13)+ДОВЕРИТ.СТЬЮДЕНТ(0,03;СТАНДОТКЛОН.В(B2:B13);СЧЁТ(B2:B13))
    Соответственно, формула расчета левой границы будет выглядеть так:

    =СРЗНАЧ(B2:B13)-ДОВЕРИТ.СТЬЮДЕНТ(0,03;СТАНДОТКЛОН.В(B2:B13);СЧЁТ(B2:B13))

    Как видим, инструменты программы Excel позволяют существенно облегчить вычисление доверительного интервала и его границ. Для этих целей используются отдельные операторы для выборок, у которых дисперсия известна и неизвестна.

    Источник

  • Добавить комментарий