Как найти формулу которая задает график прямой

Инфоурок


Алгебра

КонспектыАлгоритм определения формулы линейной функции по графику

Алгоритм определения формулы линейной функции по графику

Скачать материал

без ожидания

Скачать материал

без ожидания

  • Сейчас обучается 1153 человека из 83 регионов

  • Сейчас обучается 97 человек из 36 регионов

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 256 881 материал в базе

  • Выберите категорию:

  • Выберите учебник и тему

  • Выберите класс:

  • Тип материала:

    • Все материалы

    • Статьи

    • Научные работы

    • Видеоуроки

    • Презентации

    • Конспекты

    • Тесты

    • Рабочие программы

    • Другие методич. материалы

Найти материалы

Материал подходит для УМК

  • «Алгебра», Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. / Под ред. Теляковского С.А.

    «Алгебра», Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. / Под ред. Теляковского С.А.

    Тема

    16. Линейная функция и её график

    Больше материалов по этой теме

Другие материалы

Вам будут интересны эти курсы:

  • Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»

  • Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»

  • Курс повышения квалификации «Методика написания учебной и научно-исследовательской работы в школе (доклад, реферат, эссе, статья) в процессе реализации метапредметных задач ФГОС ОО»

  • Курс повышения квалификации «Основы местного самоуправления и муниципальной службы»

  • Курс повышения квалификации «Организация практики студентов в соответствии с требованиями ФГОС юридических направлений подготовки»

  • Курс профессиональной переподготовки «Логистика: теория и методика преподавания в образовательной организации»

  • Курс повышения квалификации «Разработка бизнес-плана и анализ инвестиционных проектов»

  • Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»

  • Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»

  • Курс профессиональной переподготовки «Организация маркетинга в туризме»

  • Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»

  • Курс повышения квалификации «Мировая экономика и международные экономические отношения»

  • Курс профессиональной переподготовки «Управление информационной средой на основе инноваций»

  • Скачать материал (медленно)

    Настоящий материал опубликован пользователем Хидиятова Залифа Даутовна. Инфоурок является
    информационным посредником и предоставляет пользователям возможность размещать на сайте
    методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них
    сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с
    сайта, Вы можете оставить жалобу на материал.

    Удалить материал

  • Хидиятова Залифа Даутовна

    • На сайте: 6 лет и 6 месяцев
    • Подписчики: 0
    • Всего просмотров: 102026
    • Всего материалов:

      37

(Задание подобного вида есть в ВПР по математике за 7 класс)

Семён Муратов

1 декабря 2019  · 297,0 K

Наставник по математике.
Помогаю воронежским школьникам разобраться в математике и…
  · 16 мая 2021

b равна точке, в которой график пересекает ось у

к находим следующим способом:

  1. выбираем 2 точки на прямой, располагающиеся в узлах координатной решетки.

  2. считаем от нижней точки до верхней количество клеток вбок и вверх.

  3. к=количество клеток вверх делить на количество клеток вбок

  4. при подсчете клеток вбок, учитываем направление движения: вправо плюс, влево минус

9,7 K

Комментировать ответ…Комментировать…

младший научный сотрудник ФТИ им. Иоффе  · 2 дек 2019  ·

нужно взять на графике две любые точки (на практике удобно брать те, которые с удобными целыми координатами). Например, пусть по графику видно, что при x = x1, y = y1, при x = x2, y = y2. Две точки (x1,y1) и (x2,y2) подставляются в формулу линейной функции и получается система уравнений относительно k и b. y1 = k*x1 + b, y2 = k*x2 + b. сначалы вычитаем одно из другого и… Читать далее

119,7 K

Линейная функция описывает любую прямую формулой y=k(x+a) +b, где: а- сдвиг по оси х, b-сдвиг по оси у…. Читать дальше

Комментировать ответ…Комментировать…

Студент. Делаю необычные исследования  · 9 мар 2021

Можно использовать способ перемещение. По сути график линейной функции это график прямой пропорциональности (проходящий через начало координат) только смещенное, это смещение и есть b. Если мы перенесем график к началу координат то м сможем найти все данные как у функции прямой пропорциональности, с помощью уравнения

7,2 K

Комментировать ответ…Комментировать…

Достаточно замерить угол n наклона прямой к оси Х (при чем угол будет положительным если прямая находится от оси Х протв движения часовой стрелки и отрицательным если наоборот) Найдем коэффициент

k=tgn ; коэффициент b будет равен ординате точки пересечения прямой с ординатой (осью “Y”)

Подставляем эти значения в уравнение y=kx+b и получаем ур=е данной прямой.

13,8 K

Комментировать ответ…Комментировать…

построить график линейной функции:

a)

y=13x+1,x∈−6;3

;  b)

y=13x+1,x∈−6;3

.

Составим таблицу значений функции:

(x) (-6) (3)
(y) (-1) (2)

Построим на координатной плоскости (xOy) точки ((-6;-1)) и ((3;2)) и

проведём через них прямую.

Далее выделим отрезок, соединяющий построенные точки.

Этот отрезок и есть график линейной функции

y=13x+1,x∈−6;3

.

Точки ((-6); (-1)) и ((3); (2)) на рисунке отмечены тёмными кружочками.

рисунок 2.png

b) Во втором случае функция та же, только значения (x=-6) и (x=3) не рассматриваются, так как они не принадлежат интервалу ((-6;3)). 

Поэтому точки ((-6); (-1)) и ((3); (2)) на рисунке отмечены светлыми кружочками.

рисунок 3.png

По графику линейной функции, можно определить наибольшее и наименьшее значения линейной функции на заданном отрезке.

В случае

a)

y=13x+1,x∈−6;3

, имеем:

yнаиб

 (= 2) и

yнаим

 (= -1);

b)

y=13x+1,x∈−6;3

, концы отрезка не рассматриваются, поэтому наибольшего и наименьшего значений нет.

В этой статье мы рассмотрим линейную функцию, график линейной функции и его свойства. И, как обычно, решим несколько задач на эту тему.

Линейной функцией называется функция вида y=kx+b

В уравнении функции число k, которое мы умножаем на x называется коэффициентом наклона.

Например, в уравнении функции y=-2x+3 k=-2; ~~b=3;

в уравнении функции y=-2+3x   k=3; ~~b=-2;

в уравнении функции y=-x   k=-1; ~~b=0;

в уравнении функции y=5   k=0; ~~b=5.

Графиком линейной функции является прямая линия.

1. Чтобы построить график функции, нам нужны координаты двух точек, принадлежащих графику функции. Чтобы их найти, нужно взять два значения х, подставить их в уравнение функции, и по ним вычислить соответствующие значения y.

Например, чтобы построить график функции y={1/3}x+2  , удобно взять x=0  и x=3  , тогда ординаты эти точек будут равны y=2   и y=3  .

Получим точки А(0;2) и В(3;3). Соединим их и получим график  функции y={1/3}x+2  :

2. В уравнении функции y=kx+b коэффициент k   отвечает за наклон графика функции:

Коэффициент b отвечает за сдвиг графика вдоль оси OY:

На рисунке ниже изображены графики функций y=2x+3; y={1/2}x+3y=x+3

Заметим, что во всех этих функциях коэффициент k больше нуля, и все графики функций наклонены вправо. Причем, чем больше значение k, тем круче идет прямая.

Во всех функциях b=3 – и мы видим, что все графики пересекают ось OY в точке (0;3)

Теперь рассмотрим графики функций y=-2x+3; y=-{1/2}x+3y=-x+3

На этот раз  во всех  функциях коэффициент k меньше нуля, и все графики функций наклонены влево.

Заметим, что чем больше |k|, тем круче идет прямая. Коэффициент b тот же, b=3, и графики также как в предыдущем случае пересекают ось OY в точке (0;3)

Рассмотрим графики функций  y=2x+3y=2x; y=2x-2

Теперь  во всех уравнениях функций коэффициенты k равны. И мы получили три параллельные прямые.

Но коэффициенты b различны, и эти графики пересекают ось OY  в различных точках:

График функции y=2x+3 (b=3) пересекает ось OY  в точке (0;3)

График функции y=2x (b=0) пересекает ось OY  в точке (0;0) –  начале координат.

График функции y=2x-2 (b=-2) пересекает ось OY  в точке (0;-2)

Итак, если мы знаем знаки коэффициентов k и b, то можем сразу представить, как выглядит график функции y=kx+b.

Если  k<0 и b>0то график функции y=kx+b имеет вид:

Если  k>0 и b>0то график функции y=kx+b имеет вид:

Если  k>0 и b<0то график функции y=kx+b имеет вид:

Если  k<0 и b<0то график функции y=kx+b имеет вид:

Если  k=0то  функция y=kx+b превращается в функцию   y=b и ее график имеет вид:

Ординаты всех точек графика функции y=b равны b

Если b=0, то график функции y=kx проходит через начало координат:

 Это график прямой пропорциональности.

3. Отдельно отмечу график уравнения x=a. График этого уравнения представляет собой прямую линию, параллельую оси OY все точки которой имеют абсциссу x=a.

Например, график уравнения x=3  выглядит так:

Внимание! Уравнение x=a не является функцией, так  как различным значениям функции соответствует одно и то же значение аргумента, что не соответствует определению функции.

4. Условие параллельности двух прямых:

График функции y=k_1{x}+b_1 параллелен графику функции y=k_2{x}+b_2, если k_1=k_2

5. Условие перпендикулярности двух прямых:

График функции y=k_1{x}+b_1 перпендикулярен графику функции y=k_2{x}+b_2, если k_1*k_2=-1 или k_1=-1/{k_2}

6. Точки пересечения графика функции y=kx+b с осями координат.

С осью ОY. Абсцисса любой точки, принадлежащей оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY нужно в уравнение функции вместо х подставить ноль. Получим y=b. То есть точка пересечения с осью OY имеет координаты (0;b).

С осью ОХ: Ордината любой точки, принадлежащей оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ нужно в уравнение функции вместо y подставить ноль. Получим 0=kx+b. Отсюда x=-b/k. То есть точка пересечения с осью OX имеет координаты (-b/k;0):

Рассмотрим решение задач.

1. Постройте график функции y=kx+b, если известно, что он проходит через точку А(-3;2) и параллелен прямой y=-4x.

В уравнении функции  y=kx+b два неизвестных параметра: k и b. Поэтому в тексте задачи должны быть два условия, характеризующих график функции.

а) Из того, что график функции y=kx+b параллелен прямой y=-4x, следует, что k=-4. То есть уравнение функции имеет вид y=-4x+b

б) Нам осталось найти b. Известно, что график функции y=-4x+b проходит через точку А(-3;2). Если точка принадлежит графику функции, то при подстановке ее координат в уравнение функции, мы получим верное равенство:

2=-4*(-3)+b  отсюда b=-10

Таким образом, нам надо построить график функции y=-4x-10

Точка А(-3;2) нам известна, возьмем точку B(0;-10)

Поставим эти точки в координатной плоскости и соединим их прямой:

2. Написать уравнение прямой, проходящей через точки A(1;1); B(2;4).

Если прямая проходит через точки с заданными координатами, следовательно, координаты точек удовлетворяют уравнению прямой  y=kx+b. То есть если мы координаты точек подставим в уравнение прямой, то получим верное равенство.

Подставим координаты каждой точки в уравнение  y=kx+b и получим систему линейных уравнений.

delim{lbrace}{matrix{2}{1}{{1=k+b} {4=2k+b} }}{ }

Вычтем из второго уравнения системы первое, и получим k=3. Подставим значение k в первое уравнение системы, и получим b=-2.

Итак, уравнение прямой y=3x-2.

3. Постройте график уравнения (2y-x+1)(y^2-1)=0

Чтобы найти,  при каких значениях неизвестного произведение нескольких множителей равно нулю, нужно каждый множитель приравнять к нулю и учесть ОДЗ каждого множителя. 

Это уравнение не имеет ограничений на ОДЗ. Разложим на множители вторую скобку и приравняем каждый множитель к нулю. Получим совокупность уравнений:

delim{[}{matrix{3}{1}{{2y-x+1=0} {y-1=0} {y+1=0}}}{ }

delim{[}{matrix{3}{1}{{y={x/2}-1/2} {y=1} {y=-1}}}{ }

Построим графики всех  уравнений совокупности в одной коорднатной плоскости. Это и есть график уравнения  (2y-x+1)(y^2-1)=0:

4. Постройте график функции y=kx+b, если он перпендикулярен прямой y=-{1/2}x   и проходит через точку М(-1;2)

Мы не будем строить график, только найдем уравнение прямой.

а) Так как график функции y=kx+b, если он перпендикулярен прямой y=-{1/2}x  , следовательно k*{-1/2}=-1, отсюда k=2. То есть уравнение функции имеет вид y=2x+b

б) Мы знаем, что  график функции y=2x+b проходит через точку М(-1;2). Подставим ее координаты в уравнение функции. Получим:

2=2*{-1}+b, отсюда b=4.

Следовательно, наша функция имеет вид: y=2x+4.

5. Постройте график функции y=(x^2-1)(1/{x-1}-1/{x+1})+x

Упростим выражение, стоящее в правой части уравнения функции.

Важно! Прежде чем упрощать выражение, найдем его ОДЗ.

Знаменатель дроби не может быть равен нулю, поэтому x<>1, x<>-1.

(x^2-1)(1/{x-1}-1/{x+1})+x = (x-1)(x+1)({x+1-(x-1)}/({{x-1})({x+1})})+x= (x-1)(x+1)2/{(x-1)(x+1)}+x=x+2

Тогда наша функция принимает вид:

delim{lbrace}{matrix{3}{1}{{y=x+2} {x<>1} {x<>-1}}}{ }

То есть нам надо построить график функции y=x+2 и выколоть на нем две точки: с абсциссами x=1 и x=-1:

И.В. Фельдман, репетитор по математике.

Определение

Функция, заданная формулой y=kx+b, где х – переменная, k и b – некоторые числа, называется линейной функцией. Переменную х называют независимой переменной, переменную у – зависимой переменной.

Графиком линейной функции является прямая. Для построения прямой достаточно взять два значения х, чтобы получить два значения у и, соответственно, две точки, через которые проходит единственная прямая.

Число k называется угловым коэффициентом прямой.

Свойства линейной функции

  1. Область определения функции – множество всех действительных чисел. То есть в данную формулу мы можем подставлять любое значение х.
  2. Областью значений также является множество всех действительных чисел.
  3. Функция не имеет ни наибольших, ни наименьших значений.
  4. При k – положительном, угол наклона к оси х острый, другими словами – график функции возрастает.
  5. При k отрицательном угол наклона к оси х тупой, то есть график функции – убывает.
  6. При k=0 прямая параллельна оси х.
  7. Частный случай линейной функции: y=kx, где число b=0, эту функцию называют прямой пропорциональностью, график такой функции проходит через начало координат.

Рассмотрим на примерах расположение прямых в координатной плоскости в зависимости от значения чисел k и b.

Пример №1

Построить график функции у=2х – 1. Для того, чтобы удобнее было выполнять вычисления, построение и т.д. сделаем таблицу для значений х и у:

Для построения графика подбираем два значения х, одно из них желательно брать равное нулю, второе, например 3 (подбираем небольшие числа).

Теперь подставляем значения х в формулу и вычисляем соответствующие значения у:

у=2х – 1=2×0 – 1= –1;

у=2х – 1=2×3 – 1= 5.

Вписываем в таблицу значения у:

Теперь строим систему координат, отмечаем в ней точки с координатами      А(0; –1) и В(3;5), проводим через эти две точки прямую.

Итак, по формуле мы видим, что угловой коэффициент – положительный, значит, график – возрастает, что мы и видим на нашем графике.

Пример №2.

Построить график функции у= –3х+4. Итак, делаем таблицу на два значения, например, возьмем 0 и 2.

По формуле видим, что угловой коэффициент отрицательный, значит, прямая будет убывать. Строим убывающую прямую в системе координат через две точки А(0;4) и В(2; –2).

Пример №3

Построить график функции у=4. Видим, что в данном случае число х=0, значит, прямая будет проходить через точку с координатой (0;4) параллельно оси х. На графике это выглядит следующим образом:

Построить график функции у=3х. Данная функция является частным случаем, когда прямая проходит через начало координат. Поэтому в данном случае можно взять устно одно значение х, например 2, тогда у получим равный 6. Таким образом, имеем две точки (2;6) и (0;0). Строим их в системе координат и проводим через них прямую, которая будет возрастать, так как угловой коэффициент равен 3, т.е. положительный.

Задание OM1106o

На рисунках изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.

ГРАФИКИ:

КОЭФФИЦИЕНТЫ:

1) k>0, b<0                   2) k>0, b>0                    3) k<0, b<0 


ассмотрим коэффициенты под №3. Если k<0, значит, график имеет тупой (>900) угол с положит.направлением оси абсцисс (Ох). Если b<0, то это говорит, что график пересекает ось ординат (Оу) ниже нуля. Эти два условия реализованы на графике В. Итак, получаем для ответа пару: В–3.

У двух других пар коэффициентов (№№ 1 и 2) зафиксировано, что k>0. Это соответствует оставшимся графикам А и Б, т.к. они оба наклонены к положительно направлению оси Оx под острым углом (<900). Следовательно, выбор соответствия должен быть выполнен по коэффициенту b.

В 1-й паре коэффициентов b<0. Это означает, что соответствующий им график должен пересекать ось Оу в точке ниже начала координат. Таковым является график Б, и мы получаем пару Б–1. В паре коэффициентов №2 b>0, что соответствует графику А, который пересекает ось Оу выше начала координат. Это подтверждает, что и оставшаяся пара А–2 тоже верна.

Ответ: 213

pазбирался: Даниил Романович | обсудить разбор

Задание OM1103o

Установите соответствие между функциями и их графиками.

Функции:

A) y = 3x

Б) y = -3x

В) y = (1/3)x

Графики:

Графики функций огэ по математике в 5 задании


Функция представляет собой линейную зависимость, а именно уравнение первого порядка вида:

y = kx + b

График данной функции зависит от и b.

  • если k < 0,  то функция убывает, то есть линия идет сверху вниз, как на третьем рисунке
  • если k > 0, то функция возрастает, то есть линия идет снизу вверх, как на первых двух рисунках
  • коэффициент b определяет сдвиг по оси y, если b < 0, то прямая пересекает ось y ниже 0 в точке y = b, если  b > 0, то выше ноля в точке y = b
  • если k >1, то прямая идет круче, чем обычная y = x (как на втором и третьем графике), если k <1 , то положе, как на примере рисунка №1

Следовательно, графику y = 3x соответствует рисунок 2, так как прямая идет снизу вверх и она более крутая, чем кривая на рисунке 1, которому соответствует функция y = (1/3)x.

Графику 3 соответствует функция y = -3x так как k = -3 < 0, и график идет сверху вниз.

Ответ:

A) 2

Б) 3

В) 1

Ответ: 231

pазбирался: Даниил Романович | обсудить разбор

Даниил Романович | Просмотров: 6.1k

Добавить комментарий