Как найти формулу кривой по точкам

Уравнение по трем точкам: как найти вершину параболы, формула

Многие технические, экономические и социальные вопросы прогнозируются при помощи кривых. Наиболее используемым типом среди них является парабола, а точнее, ее половина. Важной составляющей любой параболической кривой является ее вершина, определение точных координат которой иногда играет ключевую роль не только в самом отображении протекания процесса, но и для последующих выводов. О том, как найти ее точные координаты, и пойдет речь в данной статье….

Начало поиска

Перед тем как перейти к поиску координат вершины параболы, ознакомимся с самим определением и его свойствами. В классическом понимании параболой называется такое расположение точек, которые удалены на одинаковом расстоянии от конкретной точки (фокус, точка F), а также от прямой, которая не проходит через точку F. Рассмотрим данное определение более предметно на рисунке 1.

Рисунок 1. Классический вид параболы

На рисунке изображена классическая форма. Фокусом является точка F. Директрисой в данном случае будет считаться прямая параллельная оси Y (выделена красным цветом). Из определения можно удостовериться, что абсолютно любая точка кривой, не считая фокуса, имеет себе подобную с другой стороны, удаленную на таком же расстояние от оси симметрии, как и сама. Более того, расстояние от любой из точек на параболе равно расстоянию до директрисы. Забегая вперед, скажем, что центр функции не обязательно должен находиться в начале координат, а ветки могут быть направлены в разные стороны.

Парабола, как и любая другая функция, имеет свою запись в виде формулы:

(1).

В указанной формуле буква «s» обозначает параметр параболы, которая равна расстоянию от фокуса до директрисы. Также есть и другая форма записи, указано ГМТ, имеющая вид:

(2).

Такая формула используется при решении задач из области математического анализа и применяется чаще, чем традиционная (в силу удобства). В дальнейшем будем ориентироваться на вторую запись.

Это интересно! Первый признак равенства треугольников: доказательство

Расчет коэффициентов и основных точек параболы

К числу основных параметров принято относить расположение вершины на оси абсцисс, координаты вершины на оси ординат, параметр директрисы.

Численное значение координаты вершины на оси абсцисс

Если уравнение параболы задано в классическом виде (1), то значение абсциссы в искомой точке будет равняться половине значения параметра s (половине расстояния между директрисой и фокусом). В случае, если функция представлена в виде (2), то x нулевое рассчитывается по формуле:

(3).

Т.е., глядя на эту формулу, можно утверждать, что вершина будет находиться в правой половине относительно оси y в том случае, если один из параметров a или b будет меньше нуля.

Уравнение директрисы определяется следующим уравнением:

(4).

Это интересно! Что такое деление с остатком: примеры для ребенка в 3, 4 классе

Значение вершины на оси ординат

Численное значение местонахождения вершины для формулы (2) на оси ординат можно найти по такой формуле:

.

Отсюда можно сделать вывод, что в случае если а<,0, то вершина кривой будет находиться в верхней полуплоскости, в противном случае – в нижней. При этом точки параболы будут обладать теми же свойствами, что были упомянуты ранее.

Если дана классическая форма записи, то более рациональным будет вычисление значения расположения вершины на оси абсцисс, а через него и последующее значение ординаты. Отметим, что для формы записи (2), ось симметрии параболы, в классическом представлении, будет совпадать с осью ординат.

Важно! При решении заданий с использованием уравнения параболы прежде всего выделите основные значения, которые уже известны. Более того, нелишним будет, если будут определены недостающие параметры. Такой подход заранее даст большее «пространство для маневра» и более рациональное решение. На практике старайтесь использовать запись (2). Она более проста для восприятия (не придется «переворачивать координаты Декарта), к тому же подавляющее количество заданий приспособлено именно под такую форму записи.

Это интересно! Чему равна и как найти площадь равностороннего треугольника

Построение кривой параболического типа

Используя распространенную форму записи, перед тем как построить параболу, требуется найти ее вершину. Проще говоря, необходимо выполнить следующий алгоритм:

  1. Найти координату вершину на оси X.
  2. Найти координату расположения вершины на оси Y.
  3. Подставляя разные значения зависимой переменной X, найти соответствующие значения Y и построить кривую.

Т.е. алгоритм не представляет собой ничего сложного, основной акцент делается на том, как найти вершину параболы. Дальнейший процесс построения можно считать механическим.

При условии, что даны три точки, координаты которых известны, прежде всего необходимо составить уравнение самой параболы, а потом повторить порядок действий, который был описан ранее. Т.к. в уравнении (2) присутствуют 3 коэффициента, то, используя координаты точек, вычислим каждое из них:

(5.1).

(5.2).

(5.3).

В формулах (5.1), (5.2), (5.3) применяются соответственно тех точек, которые известны (к примеру А ( , B (, C ( . Таким путем находим уравнение параболы по 3 точкам. С практической стороны такой подход не является самым «приятным», однако он дает четкий результат, на основе которого впоследствии строится сама кривая.

При построении параболы всегда должна присутствовать ось симметрии. Формула оси симметрии для записи (2) будет иметь такой вид:

(6).

Т.е. найти ось симметрии, которой симметричны все точки кривой, не составляет труда. Точнее, она равна первой координате вершины.

Это интересно! Изучаем математику в игровой форме: как ребенку быстро выучить таблицу умножения

Наглядные примеры

Пример 1. Допустим, имеем уравнение параболы:

Требуется найти координаты вершины параболы, а также проверить, принадлежит ли точка D (10, 5) данной кривой.

Решение: Прежде всего проверим принадлежность упомянутой точки самой кривой

Откуда делаем вывод, что указанная точка не принадлежит заданной кривой. Найдем координаты вершины параболы. Из формул (4) и (5) получаем такую последовательность:

Получается, что координаты на вершине, в точке О, следующие (-1,25, -7,625). Это говорит о том, что наша парабола берет свое начало в 3-й четверти декартовой системы координат.

Пример 2. Найти вершину параболы, зная три точки, которые ей принадлежат: A (2,3), B (3,5), C (6,2). Используя формулы (5.1), (5.2), (5.3), найдем коэффициенты уравнения параболы. Получим следующее:

Используя полученные значения, получим следующие уравнение:

На рисунке заданная функция будет выглядеть следующим образом (рисунок 2):

Рисунок 2. График параболы, проходящий через 3 точки

Т.е. график параболы, который проходит по трем заданным точкам, будет иметь вершину в 1-й четверти. Однако ветки данной кривой направлены вниз, т.е. имеется смещение параболы от начала координат. Такое построение можно было предвидеть, обратив внимание на коэффициенты a, b, c.

В частности, если a<,0, то ветки» будут направлены вниз. При a>,1 кривая будет растянута, а если меньше 1 – сжата.

Константа c отвечает за «движение» кривой вдоль оси ординат. Если c>,0, то парабола «ползет» вверх, в противном случае – вниз. Относительно коэффициента b, то определить степень влияния можно лишь изменив форму записи уравнения, приведя ее к следующему виду:

Если коэффициент b>,0, то координаты вершины параболы будут смещены вправо на b единиц, если меньше – то на b единиц влево.

Важно! Использование приемов определения смещения параболы на координатной плоскости подчас помогает экономить время при решении задач либо узнать о возможном пересечении параболы с другой кривой еще до построения. Обычно смотрят только на коэффициент a, так как именно он дает четкий ответ на поставленный вопрос.

Полезное видео: как найти вершину параболы

Полезное видео: как легко составить уравнение параболы из графика

Вывод

Такой как алгебраический процесс, как определение вершин параболы, не является сложным, но при этом достаточно трудоемкий. На практике стараются использовать именно вторую форму записи с целью облегчения понимания графического решения и решения в целом. Поэтому настоятельно рекомендуем использовать именно такой подход, и если не помнить формулы координаты вершины, то хотя бы иметь шпаргалку.

Кривые второго порядка в математике с примерами решения и образцами выполнения

1) всякая прямая в прямоугольной системе координат определяется уравнением первой степени относительно переменных и ;

2) всякое уравнение первой степени в прямоугольной системе координат определяет прямую и притом единственную.

Мы займемся изучением линий, определяемых уравнениями второй степени относительно текущих
координат и :

Такие линии называются линиями (кривыми) второго порядка. Коэффициенты уравнения (1) могут принимать различные действительные значения, исключая одновременное равенство и нулю (в противном случае уравнение (1) не будет уравнением второй степени).

Окружность и ее уравнения

Как известно, Окружностью называется множество всех точек плоскости, одинаково удаленных от данной точки, называемой центром.

Пусть дана окружность радиуса с центром в точке требуется составить ее уравнение.

Возьмем на данной окружности произвольную точку
(рис. 38). Имеем

удовлетворяют координаты произвольной точки окружности. Более того, этому уравнению не удовлетворяют координаты никакой точки, не лежащей на окружности, так как и . Следовательно, (I) есть уравнение окружности радиуса с центром в точке . Если центр окружности находится на оси , т. е. если , то уравнение (I) примет вид

Если центр окружности находится на оси т. е. если то уравнение (I) примет вид

Наконец, если центр окружности находится в начале координат, т. е. если , то уравнение (I) примет вид

Пример:

Составить уравнение окружности радиуса с центром в точке .

Решение:

Имеем: . Подставив эти значения в уравнение (I), найдем .

Из изложенного выше следует, что уравнение окружности является уравнением второй степени относительно переменных и , как бы она ни была расположена в плоскости . Уравнение окружности (I) является частным случаем общего уравнения второй степени с
переменными

В самом деле, раскрыв скобки в уравнении (1), получим

Справедливо следующее утверждение: если в уравнении (5) , то Уравнение (5) определяет окружность.

Действительно, разделив уравнение (5) почленно на , получим:

Дополним группы членов, стоящие в скобках, до полного квадрата:

Положим Так как, по условию, то можно положить
Получим

Если в уравнении то оно определяет точку (говорят также, что окружность вырождается в точку). Если же то уравнению (5) не удовлетворяет ни одна пара действительных чисел (говорят также, что уравнение (5) определяет «мнимую» окружность).

Пример:

Найти координаты центра и радиус окружности

Решение:

Сравнивая данное уравнение с уравнением (1), находим: . Следовательно, .

Пример:

Установить, какое из уравнений:

определяет окружность. Найти координаты центра и радиус каждой из них.

Решение:

Первое уравнение не определяет окружность, потому что . Во втором уравнении . Однако и оно не определяет окружность, потому что . В третьем уравнении условия выполняются. Для окончательного вывода преобразуем его так:

Это уравнение, а следовательно, и уравнение 3), определяет окружность с центром и радиусом .

В четвертом уравнении также выполняются условия Однако преобразовав его к виду
, устанавливаем, что оно не определяет никакой линии.

Эллипс и его каноническое уравнение

Определение:

Эллипсом называется множество всех точек плоскости, сумма расстояний от каждой из которых до двух данных точек той же плоскости, называемых фокусами, есть величина постоянная, большая расстояния между фокусами.

Составим уравнение эллипса, фокусы и которого лежат на оси
и находятся на одинаковом расстоянии от
начала координат (рис. 39).

Обозначив , получим Пусть произвольная точка эллипса. Расстояния называются фокальными радиусами точки . Положим

тогда, согласно определению эллипса, — величина постоянная и По формуле расстояния между двумя точками находим:

Подставив найденные значения и в равенство (1), получим уравнение эллипса:

Преобразуем уравнение (3) следующим образом!

Имеем: положим

последнее уравнение примет вид

Так как координаты и любой точки эллипса удовлетворяют уравнению (3),то они удовлетворяют уравнению (5).

Покажем, что справедливо и обратное: если координаты точки удовлетворяют уравнению (5) то она принадлежит эллипсу.

Пусть — произвольная точка, координаты которой удовлетворяют уравнению (5). Так как из (5)

то откуда

Подставив (6) в соотношения (2) и проведя необходимые упрощения, получим

Но так как то

т. е. точка действительно принадлежит эллипсу.

Уравнение (5) называется каноническим уравнением
эллипса.

Исследование формы эллипса по его уравнению

Определим форму эллипса по его каноническому
уравнению

1. Координаты точки не удовлетворяют уравнению (1), поэтому эллипс, определяемый этим уравнением не проходит через начало координат.

Найдем точки пересечения эллипса с осями координат. Положив в уравнении (1) , найдем Следовательно, эллипс пересекает ось в точках . Положив в уравнении (1) , найдем точки пересечения эллипса с осью :
(рис.40).

3. Так как в уравнение (1) переменные и входят только в четных степенях, то эллипс симметричен относительно координатных осей, а следовательно, и относительно начала координат.

4. Определим область изменения переменных и . В предыдущем параграфе (см. (7)) мы уже показали, что

Аналогично, переписав уравнение эллипса (1) в виде

получим откуда или

Таким образом, все точки эллипса находятся внутри прямоугольника, ограниченного прямыми
(см. рис, 40).

5. Переписав уравнение (1) соответственно в вида

мы видим, что при возрастании от 0 до величина убывает от до 0, а при возрастании от 0 до величина убывает от до 0. Эллипс имеет форму, изображенную на рис. 41.

Точки пересечения эллипса с осями координат
называются вершинами эллипса. Отрезок называется
большой осью эллипса, а отрезок малой осью. Оси являются осями симметрии эллипса, а точка центром симметрии (или просто центром) эллипса.

Пример:

Определить длину осей и координаты фокусов эллипса

Решение:

Разделив обе части данного уравнения на 1176, приведем его к каноническому виду

Следовательно,

Пример:

Составить каноническое уравнение эллипса, если фокусное расстояние равно 10, а малая ось равна 6.

Решение:

Другие сведения об эллипсе

Мы рассмотрели эллипс, у которого Если же то уравнение

определяет эллипс, фокусы которого лежат на оси (рис. 42). В этом случае длина большой оси равна , а малой . Кроме того, связаны между собой равенством

Определение:

Эксцентриситетом эллипса называется отношение расстояния между фокусами к длине большой оси и обозначается буквой .

Если , то, по определению,

При имеем

Из формул (3) и (4) следует . При этом с
увеличением разности между полуосями и увеличивается соответствующим образом и эксцентриситет

эллипса, приближаясь к единице; при уменьшении разности между и уменьшается и эксцентриситет, приближаясь к нулю. Таким образом, по величине эксцентриситета можно судить о форме эллипса: чем больше эксцентриситет, тем более вытянут эллипс; чем меньше эксцентриситет, тем круглее эллипс. В частности, если и уравнение эллипса примет вид , которое определяет окружность с центром в начале координат. Таким образом, окружность можно рассматривать как частный случай эллипса, у которого полуоси равны между собой, а следовательно, эксцентриситет равен нулю.

Из рис. 43, на котором изображены эллипсы и окружность , хорошо видна зависимость формы эллипса от его эксцентриситета. В заключение поясним, как можно построить эллипс

Для этого на осях координат строим вершины эллипса . Затем из вершины (можно из ) радиусом, равным а, на большой оси делаем засечки (рис. 44). Это будут фокусы эллипса, потому что . Далее, берем нерастяжимую нить, длина которой равна , и закрепляем ее концы в найденных фокусах. Натягиваем нить

острием карандаша и описываем кривую, оставляя нить все время в натянутом состоянии.

Пример:

Составить каноническое уравнение эллипса, фокусы которого лежат на оси , если его большая ось равна 14 и

Решение. Так как фокусы лежат на оси , то По
формуле (2) находим:

Следовательно, искомое уравнение, будет

Гипербола и ее каноническое уравнение

Определение:

Гиперболой называется множество всех точек плоскости, модуль разности расстояний от каждой из которых до двух данных точек той же плоскости, называемых фокусами, есть величина постоянная, меньшая расстояния между фокусами.

Составим уравнение гиперболы, фокусы которой лежат на оси и находятся на одинаковом расстоянии от начала координат (рис. 45).

Обозначив получим , Пусть
— произвольная точка гиперболы.

Расстояния называются фокальными радиусами точки . Согласно определению гиперболы

где — величина постоянная и Подставив

в равенство (1), получим уравнение гиперболы

Уравнение (2) можно привести к более простому виду; для этого преобразуем его следующим образом:

Имеем: . Положим

тогда последнее равенство принимает вид

Так как координаты и любой точки гиперболы удовлетворяют уравнению (2), то они удовлетворяют и уравнению (4).

Как и в случае эллипса (см. конец § 2), можно показать, что справедливо и обратное: если координаты точки удовлетворяют уравнению (4), то она принадлежит гиперболе.

Уравнение (4) называется каноническим уравнением гиперболы.

Исследование формы гиперболы по ее уравнению

Определим форму гиперболы по ее каноническому уравнению

1. Координаты точки (0; 0) не удовлетворяют уравнению (1), поэтому гипербола, определяемая этим уравнением, не проходит через начало координат.

2. Найдем точки пересечения гиперболы с осями координат. Положив в уравнении (1) , найдем . Следовательно, гипербола пересекает ось в точках . Положив в уравнение (1) , получим , а это означает, что система

не имеет действительных решений. Следовательно, гипербола не пересекает ось .

3. Так как в уравнение (1) переменные и входят только в четных степенях, то гипербола симметрична относительно координатных осей, а следовательно, и относительно начала координат.

4. Определим область изменения переменных и ; для этого из уравнения. (1) находим:

Имеем: или ; из (3) следует, что — любое действительное число. Таким образом, все точки гиперболы расположены слева от прямой и справа от прямой

5. Из (2) следует также, что

Это означает, что гипербола состоит из двух ветвей, одна из которых расположена справа от прямой , а другая слева от прямой .

Гипербола имеет форму, изображенную на рис. 46.

Точки пересечения гиперболы с осью называются вершинами гиперболы. Отрезок Рис. 46.

соединяющий вершины гиперболы, называется действительной осью. Отрезок , , называется мнимой осью. Число называется действительной полуосью, число мнимой полуосью. Оси являются осями симметрии гиперболы. Точка пересечения осей симметрии называется центром гиперболы. У гиперболы (1) фокусы всегда находятся на действительной оси.

Пример:

Составить уравнение гиперболы, вершины которой находятся в точках , а расстояние между фокусами равно 14.

Решение:

Имеем: . По формуле находим

Следовательно, искомое уравнение будет

Пример:

Составить каноническое уравнение гиперболы с фокусами на оси , если длина ее действительной оси равна 16 и гипербола проходит через точку .

Решение:

Имеем: . Положив в уравнении (1) , получим

Другие сведения о гиперболе

Асимптоты гиперболы

Определение:

Прямая называется
асимптотой кривой при , если

Аналогично определяется асимптота при . Докажем, что прямые

являются асимптотами гиперболы

при

Так как прямые (2) и гипербола (3) симметричны относительно координатных осей, то достаточно рассмотреть только те точки указанных линий, которые расположены в первой четверти (рис. 47). Напишем уравнения прямых (2) и гиперболы (3), соответствую*
щие первой четверти:

Положив найдем:

Следовательно, прямые (2) являются асимптотами гиперболы (3).

Отметим, что асимптоты (2) совпадают с диагоналям прямоугольника, стороны которого параллельны осям и и равны соответственно и , а его центр находится в начале координат. При этом ветви гиперболы расположены внутри вертикальных углов,
образуемых асимптотами, и приближаются сколь угодно близко к асимптотам (рис.48).

Пример:

Составить уравнение гиперболы, проходящей через точку и, имеющей асимптоты

Решение:

Из данных уравнений асимптот имеем:

Заменив в уравнении гиперболы переменные и координатами точки и его найденным значением, получим:

Следовательно, искомое уравнение будет

Эксцентриситет гиперболы

Определение:

Эксцентриситетом гиперболы называется отношение расстояния между фокусами

к длине действительной оси и обозначается буквой :

Из формулы (§ 5) имеем поэтому

Пример:

Найти эксцентриситет гиперболы .

Решение:

По формуле (5) находим

Равносторонняя гипербола

Гипербола называется равносторонней, если длины ее полуосей равны между собой, т. е. . В этом случае уравнение гиперболы принимает вид

Равносторонняя гипербола определяется одним пара*
метром и асимптотами являются биссектрисы координатных углов:

У всех равносторонних гипербол один и тот же эксцентриситет:

Так как асимптоты равносторонней гиперболы взаимно перпендикулярны, их можно принять за оси новой системы координат полученной в результате поворота осей старой системы вокруг начала координат на угол (рис.49).

Составим уравнение равносторонней гиперболы относительно новой системы координат . Для этого воспользуемся формулами
(4) § 3 гл. 2:

Положив , получим:

Учитывая равенство (6), получим

Уравнение (8) называется уравнением равносторонней гиперболы, отнесенной к своим асимптотам.

Из уравнения (8) следует, что переменные — величины обратно пропорциональные. Таким образом, равносторонняя гипербола, отнесенная к своим асимптотам, представляет собой график обратно пропорциональной зависимости.

Пример:

Составить каноническое уравнение
равносторонней гиперболы, проходящей через точку .

Решение:

Заменив в уравнении (6) переменные координатами точки , получим:

Следовательно, искомое уравнение будет

Парабола и ее каноническое уравнение

Определение:

Параболой называется множество всех точек плоскости, каждая из которых одинаково удалена от данной точки, называемой фокусом, и от данной прямой, не проходящей через данную точку и
называемой директрисой.

Составим уравнение параболы, фокус которой лежит на оси , а
директриса параллельна оси и удалена от нее на такое же расстояние, как и фокус от начала координат (рис.50).

Расстояние от фокуса до директрисы называется параметром параболы и обозначается через . Из рис. 50 видно, что следовательно, фокус имеет координаты , а уравнение директрисы имеет вид , или

Пусть — произвольная точка параболы. Соединим точки
и и проведем . Непосредственно из рис. 50 видно, что

а по формуле расстояния между двумя точками

согласно определению параболы

Уравнение (1) является искомым уравнением параболы. Для упрощения уравнения (1) преобразуем его следующим образом:

Последнее уравнение эквивалентно

Координаты точки параболы удовлетворяют уравнению (1), а следовательно, и уравнению (3).

Покажем, что справедливо и обратное: если координаты точки удовлетворяют уравнению (3), то она принадлежит параболе.

Но так как из (3) , и в левой части последнего уравнения можно оставить знак «плюс», т. е. оно является исходным уравнением параболы (1).

Уравнение (3) называется каноническим уравнением параболы.

Исследование формы параболы по ее уравнению

Определим форму параболы по ее каноническому уравнению

1. Координаты точки удовлетворяют уравнению (1), следовательно, парабола, определяемая этим уравнением, проходит через начало координат.

2. Так как в уравнение (1) переменная входит только в четной степени, то парабола симметрична относительно оси абсцисс.

Так как . Следовательно, парабола расположена справа от оси .

4. При возрастании абсциссы ордината изменяется от , т. е. точки параболы неограниченно удаляются как от оси , так и от оси .

Парабола имеет форму, изображенную на рис. 51.

Ось является осью симметрии параболы. Точка пересечения параболы с осью симметрии называется вершиной параболы. Отрезок называется фокальным радиусом точки .

5. Если фокус параболы лежит слева от оси , а директриса справа от нее, то ветви параболы расположены слева от оси (рис. 52, а). Уравнение такой параболы имеет вид

Координаты ее фокуса будут ; директриса определяется уравнением .

6. Если фокус параболы имеет координаты , а директриса задана уравнением , то ветви параболы направлены вверх (рис. 52,6), а ее уравнение имеет вид

7. Наконец, если фокус параболы имеет координаты а директриса задана уравнением , то ветви параболы направлены вниз (рис. 52, в), а ее уравнение имеет вид

Пример:

Дана парабола . Найти координаты ее фокуса и составить уравнение директрисы.

Решение:

Данная парабола симметрична относительно оси , ветви направлены вверх. Сравнивая данное уравнение с уравнением (3), находим:

Следовательно, фокус имеет координаты , а уравнение директрисы будет , или .

Пример:

Составить уравнение параболы с вершиной в начале координат, директриса которой задана уравнением .

Решение:

Из условия задачи следует, что парабола симметрична относительно оси и ветви расположены слева от оси , поэтому искомое уравнение имеет вид . Так как и, следовательно,

Параллельный перенос параболы

Пусть дана парабола с вершиной в точке , ось симметрии которой параллельна оси , а ветви направлены вверх (рис. 53).

Требуется составить ее уравнение. Сделаем параллельный перенос осей координат, поместив начало в точке . Относительно новой системы координат парабола определяется уравнением

Чтобы получить уравнение данной параболы относительно старой системы, воспользуемся формулами преобразования прямоугольных координат при параллельном переносе;

Подставив значения из формул (2) в уравнение (1), получим

Преобразуем это уравнение следующим образом:

С уравнением параболы вида (5) читатель хорошо знаком по школьному курсу.

Пример 1. Составить уравнение параболы с вершиной в точке и с фокусом в точке .

Решение. Вершина и фокус данной параболы лежат на прямой, параллельной оси (у них абсциссы одинаковы), ветви параболы направлены вверх (ордината фокуса больше ординаты вершины), расстояние фокуса от вершины равно

Заменив в уравнении (3) и координатами точки и его найденным значением, получим:

Пример:

Дано уравнение параболы

Привести его к каноническому виду.

Решение:

Разрешив данное уравнение относительно переменной , получим

Сравнивая это уравнение с уравнением (5), находим Из формул (4) имеем:
следовательно, Подставляем найденные значения в уравнение (3):

Положив получим т. е, каноническое уравнение данной параболы.

Уравнения кривых второго порядка как частные случаи общего уравнения второй степени с двумя переменными

Выше было установлено, что уравнение окружности есть частный случай общего уравнения второй степени с переменными и :

Покажем, что и канонические уравнения эллипса, гиперболы и параболы являются частными случаями уравнения (1). В самом деле:
1) при и уравнение (1) примет вид

т. е. определяет эллипс;
2) при и уравнение (1) примет вид

т. е. определяет гиперболу;
3) при и уравнение (1) примет вид т. е. определяет параболу.

Дополнение к кривым второго порядка

Пусть задана кривая, определяемая уравнением второй степени

где — действительные числа; и одновременно не равны нулю. Эта кривая называется кривой второго порядка.

Приведем еще одно определение кривой второго порядка.

Геометрическое место точек плоскости, для которых отношение их расстояний до заданной точки, называемой фокусом, и до заданной прямой, называемой директрисой, есть величина постоянная, равная , является кривой 2-го порядка с эксцентриситетом, равным . Если , то кривая второго порядка — эллипс; — парабола; — гипербола.

Эллипс

Эллипсом называется геометрическое место точек плоскости, для которых сумма расстояний до двух фиксированных точек и этой плоскости, называемых фокусами, есть величина постоянная, равная . Если фокусы совпадают, то эллипс представляет собой окружность.

Каноническое уравнение эллипса: .

Если , то эллипс расположен вдоль оси ; если , то эллипс расположен вдоль оси (рис. 9а, 9б).

Если , то, сделав замену , перейдем в «штрихованную» систему координат, в которой уравнение будет иметь канонический вид:

Декартова прямоугольная система координат, в которой уравнение эллипса имеет канонический вид, называется канонической.

Точки пересечения эллипса с осями координат называются вершинами эллипса. Расстояния от начала координат до вершин и называются соответственно большой и малой полуосями эллипса.

Центр симметрии эллипса, совпадающий с началом координат, называется центром эллипса.

Если — расстояние от начала координат канонической системы координат до фокусов, то .

Отношение называется эксцентриситетом эллипса.

Расстояние от произвольной точки , лежащей на эллипсе, до каждого из фокусов является линейной функцией от ее абсциссы, т.е. .

С эллипсом связаны две замечательные прямые, называемые его директрисами. Их уравнения в канонической системе имеют вид .

Гипербола

Гиперболой называется геометрическое место точек плоскости, для которых абсолютная величина разности расстояний до двух фиксированных точек и этой плоскости, называемых фокусами, есть величина постоянная, равная (рис. 10).

Декартова прямоугольная система координат, в которой уравнение гиперболы имеет канонический вид, называется канонической. Каноническое уравнение гиперболы:

Ось абсцисс канонической системы пересекает гиперболу в точках, называемых вершинами гиперболы. Ось ординат не пересекает гиперболу. и называются вещественной и мнимой полуосями гиперболы. Центр симметрии гиперболы, совпадающий с началом координат, называется центром гиперболы.

Если — расстояние от начала координат канонической системы координат до фокусов гиперболы, то .

Отношение называется эксцентриситетом гиперболы.

Расстояние от произвольной точки , лежащей на гиперболе, до каждого из фокусов равно .

Гипербола с равными полуосями называется равносторонней.

Прямые с уравнениями в канонической системе называются асимптотами гиперболы.

Прямые называют директрисами гиперболы в канонической системе координат.

Парабола

Параболой называется геометрическое место точек плоскости, для которых расстояние до некоторой фиксированной точки этой плоскости равно расстоянию до некоторой фиксированной прямой, также расположенной в рассматриваемой плоскости (рис. 11).

Указанная точка называется фокусом параболы, а фиксированная прямая — директрисой параболы.

Система координат, в которой парабола имеет канонический вид, называется канонической, а ось — осью параболы.

Каноническое уравнение параболы:

Парабола проходит через начало канонической системы координат. Эта точка называется вершиной параболы.

Фокус параболы имеет координаты .

Директрисой параболы называется прямая в канонической системе координат.

Расстояние от произвольной точки параболы до фокуса равно .

Пример задачи решаемой с применением кривых второго порядка

Линия задана уравнением в полярной системе координат. Требуется: 1) построить линию по точкам, начиная от до и придавая значения через промежуток ; 2) найти уравнение данной линии в декартовой прямоугольной системе координат, у которой начало совпадает с полюсом, а положительная полуось абсцисс — с полярной осью, привести его к каноническому виду; 3) по уравнению в декартовой прямоугольной системе координат определить, какая это линия.

Решение:

1) Вычисляя значения с точностью до сотых при указанных значениях , получим таблицу:

Используя полученные табличные значения, построим кривую в полярной системе координат (рис. 17).

2) Используя формулы перехода

из полярной в декартовую систему координат, получим: .

Возведем левую и правую части в квадрат: Выделим полный квадрат и приведем к каноническому виду: , где

3) Это эллипс, смещенный на вдоль оси .

Ответ: эллипс , где

На этой странице размещён краткий курс лекций по высшей математике для заочников с теорией, формулами и примерами решения задач:

Возможно вам будут полезны эти страницы:

Кривая второго порядка и её определение

Кривая второго порядка — это некоторая линия на плоскости, которая в декартовой системе координат задается общим уравнением

Окружность и ее уравнение

Окружностью называется геометрическое место точек, одинаково удаленных от одной точки, называемой центром.

Пользуясь этим определением, выведем уравнение окружности. Пусть радиус ее равен r, а центр находится в точке

О1(а; b). Возьмем на окружности произвольную точку М(х; у) (рис. 27).

По формуле расстояния между двумя точками можем написать:

или, после возведения обеих частей равенства в квадрат,

Так как точка М нами взята произвольно, а радиус r — величина постоянная, то равенство (1) справедливо для всех точек окружности, т. е. координаты любой ее точки удовлетворяют этому равенству. А если так, то равенство (1) нужно рассматривать как уравнение окружности.

В уравнении (1) а и bкоординаты центра окружности, а х и утекущие координаты.

Если положить а = 0, то уравнение (1) обратится в следующее:

и будет определять окружность с центром на оси Оу (рис. 28).

При b = 0 уравнение (1) примет вид

и будет определять окружность с центром на оси Ох (рис. 29).

Наконец, при а = 0 и b = 0 уравнение (1) преобразуется в следующее:

и будет определять окружность с центром в начале координат (рис. 30).

Можно построить окружность, имея ее уравнение. Пусть, например, требуется построить окружность

Перепишем это уравнение в следующем виде:

сравнивая это уравнение с(1), видим, что координаты центра окружности суть (2; — 3) и радиус ее r = 3. Построив

точку О1(2;—3), опишем из нее радиусом, равным 3 единицам масштаба, искомую окружность (рис. 31).

Уравнение окружности как частный вид общего уравнения второй степени

Раскрыв скобки в уравнении (1) , можем написать:

Умножив все члены последнего равенства на А, получим:

тогда уравнение (1) окружности примет вид

Уравнение (2) является частным случаем общего уравнения второй степени с двумя переменными. В самом деле, сравним уравнение (2) с общим уравнением второй степени с двумя переменными, имеющим, как известно, следующий вид:

Мы видим, что уравнение (2) отличается от уравнения (3) только тем, что у первого коэффициенты при х2 и у2 одинаковы и отсутствует член, содержащий произведение ху.

Таким образом, окружность определяется общим уравнением второй степени с двумя переменными, если в нем коэффициенты при х2 и у2 равны между собой и отсутствует член с произведением ху.

Обратно, уравнение вида (2), вообще говоря, определяет окружность. Убедимся в этом на примере. Пусть дано уравнение

Перепишем его в следующем виде:

и преобразуем двучлены, стоящие в скобках, в полные квадраты суммы и разности, прибавив к первому 4, ко второму 16. Чтобы равенство при этом не нарушилось, увеличим и правую часть его на сумму 4+16. Получим:

Последнее равенство является уравнением окружности, имеющей радиус, равный 5, и центр в точке О1(-2; 4).

Бывают однако случаи, когда уравнение (2) при некоторых значениях коэффициентов не определяет окружности; например, уравнению

удовлетворяют координаты единственной точки (0; 0), а уравнению

не удовлетворяют координаты ни одной точки, так как сумма квадратов действительных чисел не может иметь отрицательного значения.

Пример:

и хорда Найти длину этой хорды.

Решение:

Так как концы хорды являются общими точками окружности и хорды, то их координаты удовлетворяют как уравнению первой, так и уравнению второй линии. Поэтому, чтобы найти эти координаты, нужно решить совместно уравнения окружности и хорды. Подставив значение

в уравнение окружности, получим:

Находим значение у:

Итак, концами хорды служат точки с координатами (4; 3) и (6; 1).

По формуле расстояния между двумя точками можем определить искомую длину хорды

Эллипс и его уравнение

Эллипсом называется геометрическое место точек, сумма расстояний каждой из которых от двух данных точек, называемых фокусами, есть величина постоянная (и болыиая, чем расстояние между фокусами).

Пусть, например, на эллипсе взяты точки М1, M2, M3, М4 и т. д. (рис. 32). Если фокусы обозначить через F и F1, то согласно данному определению можно написать:

Геометрическое место точек, обладающих вышеуказанным свойствам (1), и есть эллипс.

На основании определения эллипса составим его уравнение. Для этого выберем систему координат следующим образом. За ось Ох примем прямую, проходящую через фокусы F и F1, а за ось Оу — прямую перпендикулярную

к FF1 и проведенную через середину отрезка FF1 (рис. 33). Обозначим расстояние F1F между фокусами через 2с, тогда координаты фокусов будут:

Возьмем на эллипсе произвольную точку М(х;у). Обозначим постоянную величину суммы расстояний каждой точки от фокусов через 2а, тогда

По формуле расстояния между двумя точками найдем:

Теперь равенство (2) перепишется следующим образом:

и будет представлять уравнение эллипса в принятой системе координат.

Упростим уравнение (3). Для этого перенесем один из радикалов в правую часть уравнения:

Возведем обе части этого равенства в квадрат:

Приведем подобные члены:

Сократив на 4 и снова возведя в квадрат обе части равенства, получим:

Перенесем все члены, содержащие х и у, в левую часть равенства, остальные члены — в правую:

Но согласно определению эллипса

Из последнего неравенства следует, что а потому эту разность можно обозначить через Подставив это обозначение в равенство (4), найдем:

Наконец, разделим все члены последнего равенства на окончательно получим:

где х и у — текущие координаты точек эллипса, а

Уравнение (6) и есть простейший вид уравнения эллипса *).

*) Уравнение (6) получилось в результате двукратного возведения в квадрат уравнения (3), благодаря чему, вообще говоря, возможно появление посторонних корней. Можно показать, что уравнение (6) не имеет посторонних корней, т. е. любая точка, координаты которой удовлетворяют уравнению (6), лежит на эллипсе.

Исследование уравнения эллипса

Определим сначала у из уравнения (5) :

Из того же уравнения (5) найдем:

Рассмотрим теперь равенства (1) и (2).

I. Пусть

*) | х | означает, что х берется по абсолютной величине; таким образом, запись | х |

Тогда каждому значению у, как мы видим из равенства (2), отвечают два значения х равные по абсолютной величине, но с разными знаками. Отсюда следует, что каждому значению у соответствуют на эллипсе две точки, симметричные относительно оси Оу.

Из сказанного заключаем: эллипс симметричен относительно координатных осей.

II. Найдем точки пересечения эллипса с осью Ох. Пусть

тогда из равенства (2) имеем:

Отсюда следует: эллипс пересекает ось Ох в двух точках, координаты которых (а; 0) и (— а; 0) (точки А и А1 на рис. 34).

III. Найдем точки пересечения эллипса с осью Оу. Пусть

тогда из равенства (1) имеем:

Отсюда заключаем, что эллипс пересекает ось Оу в двух точках, координаты которых (0; b) и (0; —b) (точки В и В1 на рис. 35).

IV. Пусть х принимает такие значения, что

тогда выражение под корнем в равенстве (1) будет отрицательным, и, следовательно, у будет иметь мнимые значения. А это значит, что не существует точек эллипса, абсциссы которых удовлетворяют условию (3), т. е. эллипс расположен внутри полосы, заключенной между прямыми х = + а и х = — а (рис. 34, прямые КL и РQ).

Если же положить

то из равенства (2) получим для х мнимые значения. Это говорит о том, что точки, удовлетворяющие условию (4), на эллипсе не лежат, т. е. эллипс заключен между прямыми у = + b и у = — b (рис. 35, прямые РК и QL .

Из сказанного следует, что все точка эллипса лежат внутри прямоугольника, стороны которого параллельны координатным осям и имеют длины, равные 2а и 2b, а диагонали пересекаются в начале координат (рис. 36).

Эллипс имеет форму, показанную на рис. 37, Точки A,, A1, В и В1 называются вершинами эллипса, а точка Оего центром. Отрезок А1А = 2а называется его большой осью, а отрезок В1В = 2bмалой осью, Отрезки и F1М носят название фокальных радиусов точки М.

Эксцентриситет эллипса

Эксцентриситетом эллипса называется отношение расстояния между его фокусами к длине большой оси, т. e.

Эксцентриситет обычно обозначают буквой е. Таким образом,

Но согласно формуле (7)

Поэтому для определения эксцентриситета может служить

Так как 0 а уравнение (6) представляет эллипс, фокусы которого лежат на оси Оу; в этом случае его большая ось равна 2 b , а малая 2 а . В соответствии с этим формула (7) и формулы (1) и (2) настоящей лекции примут такой вид:

Пример:

Определить длину его осей, координаты вершин и фокусов, а также величину эксцентриситета.

Решение:

Разделив обе части данного уравнения на 400, получим:

Итак, большая ось эллипса а малая

Координаты вершин его будут:

Чтобы найти координаты фокусов, нужно узнать величину

Из равенства (7) имеем:

Следовательно, координаты фокусов будут:

Наконец, по формуле (1) настоящей лекции находим:

Связь эллипса с окружностью

Положим, что полуоси эллипса равны между собой, т. е. а = b, тогда уравнение эллипса примет вид

Полученное уравнение, как известно, определяет окружность радиуса, равного а.

Посмотрим, чему будет равен эксцентриситет в этом случае; полагая в формуле (2)

Отсюда заключаем, что окружность есть частный случай эллипса, у которого полуоси равны между собой, а следовательно, эксцентриситет равен нулю.

Гипербола и ее уравнение

Гиперболой называется геометрическое место точек, разность расстояний каждой из которых от двух данных точек, называемых фокусами, есть величина постоянная (эта постоянная берется по абсолютному значению, причем она меньше расстояния между фокусами и не равна нулю).

Пусть, например, точки М1, М2, M3, М4 лежат на гиперболе, фокусы которой находятся в точках F и F1 (рис. 39). Тогда, согласно данному выше определению, можно написать:

Пользуясь определением гиперболы, выведем ее уравнение.

Примем за ось Ох прямую, проходящую через фокусы F и F1 (рис. 40), а за ось Оу — прямую, перпендикулярную к отрезку F1F и делящую его пополам.

Положим F1F = 2c тогда координаты фокусов будут

Возьмем на гиперболе произвольную точку М(х; у) и обозначим величину разности расстояний каждой точки от фокусов через 2а; тогда

По формуле расстояния между двумя точками найдем:

и, заменив в равенстве (2) F1М и их выражениями, напишем:

Это и есть уравнение гиперболы относительно выбранной системы координат, так как оно согласно равенствам (1) справедливо для любой ее точки.
*) Знак + берется в случае, если F1М > , и знак —, если F1М

Возведем обе части уравнения в квадрат:

Приведем подобные члены:

Сократив на 4, снова возведем в квадрат обе части уравнения; получим:

Перенесем в левую часть члены, содержащие х и у, а остальные члены в правую:

Согласно определению гиперболы

При условии (5) разность имеет только положительное значение, а потому ее можно обозначить через

Сделав это в равенстве (4), получим:

Разделив последнее равенство на найдем окончательно:

где х и у— текущие координаты точек гиперболы, а

Равенство (7) представляет собой простейший вид уравнения гиперболы *).

*) Как и в случае эллипса, можно показать, что уравнение (7) равносильно уравнению (3), т. е. не имеет посторонних корней.

Исследование уравнения гиперболы

Из уравнения (6) имеем:

Из этого же уравнения (6) находим:

Исследуем уравнения (1) и (2) для выяснения геометрической формы гиперболы.

I. Найдем точки пересечения гиперболы с осью Ох. Для этого полагаем, у = 0 и из уравнения (2) получаем:

Отсюда следует: гипербола пересекает ось Ох в двух точках, координаты которых (а; 0) и (— а; 0) (рис. 41, точки А и А1).

II. Положим в уравнении (1)

тогда у получит мнимое значение, а это значит, что на гиперболе нет точек, удовлетворяющих условию (3). Следовательно, в полосе между прямыми х = + а и х = — а (прямые KL и РQ на рис. 41) нет точек гиперболы

III. Пусть

тогда из равенства (1) найдем для каждого х два действительных значения у, равных по абсолютной величине, но с противоположными знаками. А это значит, что каждому значению х, удовлетворяющему неравенству (4), соответствуют на нашей кривой две точки, симметричные относительно оси Ох.

Следовательно, гипербола симметрична относительно оси Ох.

С другой стороны, для каждого значения у из равенства (2) найдем два действительных значения х, равных по абсолютной величине, но противоположных по знаку, т. е. каждому значению у на гиперболе соответствуют две точки, симметричные относительно оси Оу.

Следовательно, гипербола 1 симметрична относительно оси Оу.

IV. Если в уравнении (1) давать х значения, заключенные между +a и то величина у будет изменяться от 0 до : т. е. в этом случае каждому значению х соответствуют на кривой две точки, симметричные относительно оси Ох и отстоящие друг от друга тем дальше, чем больше величина абсциссы. Таким образом, можно сказать, что гипербола имеет бесконечную ветвь, расположенную справа от прямой х = с.

Если же давать х значения, заключенные между — а и , то у будет изменяться опять от 0 до а это значит, что, как в предыдущем случае, гипербола имеет бесконечную ветвь, но идущую влево от прямой х = — а. Итак, гипербола есть кривая, состоящая из двух ветвей, простирающихся в бесконечность.

Из всего изложенного следует, что гипербола

состоит из двух симметричных относительно оси Оу бесконечных ветвей, одна из которых расположена справа от

прямой х = + а, а другая слева от прямой х = — а. Каждая из этих ветвей симметрична относительно оси Ох (рис. 42).

Точки А(а; 0) и А1(- а; 0) называются вершинами гиперболы, а точка О (0; 0) — ее центром.

Отрезок АА1 = 2а носит название действительной или вещественной оси гиперболы в отличие от оси ВВ1 = 2b, называемой мнимой *).

*) Отрезок ВВ1 = 2b называется мнимой осью, так как на нем нет точек гиперболы.

Отрезки F1М и фокальные радиусы точки М.

Эксцентриситет гиперболы

Эксцентриситетом гиперболы называется отношение расстояния между фокусами к длине вещественной оси, т. е.

Эксцентриситет гиперболы, так же как и для эллипса, обозначается буквой е:

Но согласно равенству (8)

поэтому формулу (1) можно представить в следующем виде:

Так как для гиперболы с > а , то дробь

а потому эксцентриситет гиперболы больше единицы.

Асимптоты гиперболы

Построим на осях гиперболы

прямоугольник LQRS со сторонами, равными 2а и 2b и проведем его диагонали LR и QS продолжив их по обе стороны (рис. 43).

Прямая LR проходит через начало координат, поэтому ее уравнение будет:

Но угловой коэффициент

Заменив в уравнении (1) найденным его значением, получим уравнение прямой LR в следующем виде:

Прямая QS также определяется уравнением (1), но угловой коэффициент ее будет уже другой, а именно:

Таким образом, уравнение прямой QS будет:

Обычно уравнения (2) и (3) записывают следующим образом:

Между прямыми, представленными уравнениями (4), и гиперболой существует связь; выясним ее.

Решим совместно способом подстановки уравнения (4) и

уравнение гиперболы

что невозможно, так как

Таким образом, прямые (4) х2 уа

и гипербола не имеют общих точек, т. е. прямые (4) не пересекают гиперболу.

Возьмем на прямой LR и на гиперболе точки М и N, расположенные в первом координатном углу и имеющие одну и ту же абсциссу. Ординатой точки М служит РМ; обозначим ее через Y в отличие от ординаты точки N которую обозначим буквой у. Из уравнения (2) можно написать:

Из уравнения гиперболы имеем:

и посмотрим, как она будет изменяться при возрастании абсциссы. Для этого умножим и разделим правую часть последнего равенства на выражение

Пусть величина х в равенстве (5) бесконечно возрастает, тогда знаменатель дроби также бесконечно растет, а сама дробь уменьшается, приближаясь к нулю. Таким образом, гипотенуза и, следовательно, катет NT в прямоугольном треугольнике МNТ стремится к нулю. Из сказанного делаем вывод: при неограниченном возрастании абсциссы х гипербола приближается к прямой LR как угодно близко, нигде ее не пересекая.

Так как прямые LR и QS, а также точки гиперболы симметричны относительно оси Ох, то можно сказать, что и часть гиперболы, расположенная в четвертом координатном углу, как угодно близко подходит к прямой QS , нигде ее не пересекая.

Вывод, сделанный для правой ветви гиперболы, справедлив и для ее левой ветви благодаря той же симметричности прямых (4) и гиперболы относительно координатных осей.

называются асимптотами гиперболы.

Из сказанного в настоящей лекции можно сделать заключение, что гипербола расположена всеми своими точками внутри вертикальных углов, образуемых асимптотами, и нигде не выходит за их границы. Этим обстоятельством можно воспользоваться для построения гиперболы в случае, если не требуется точного, а достаточно только приближенного ее изображения; для этого, нарисив асимптоты, нужно провести плавную кривую линию, постепенно приближая ее к асимптотам.

Пример:

Дана гипербола

Узнать, лежит ли точка A(2; 1,5) на какой-либо ее асимптоте.

Решение:

Из данного уравнения имеем:

Следовательно, уравнения асимптот будут:

Так как точка А лежит согласно условию в первом координатном углу, то она может принадлежать только асимптоте, определяемой уравнением

Подставив в него вместо х и у координаты точки А, получим тождество:

Значит, точка А лежит на указанной асимптоте гиперболы.

Равносторонняя гипербола

Если в уравнении гиперболы

положим а = b то это уравнение примет вид

Уравнение (1) определяет гиперболу, у которой полуоси равны между собой. Такая гипербола называется равносторонней. Уравнения асимптот в этом случае будут:

так как отношение

Как видно из уравнения (2), угловые коэффициенты асимптот равны + 1 и —1 . Если обозначить углы, образуемые асимптотами с положительным направлением оси Ох, соответственно через а и а1 (рис. 44), то

Следовательно, угол между асимптотами будет:

Отсюда заключаем: асимптоты равносторонней гиперболы взаимно перпендикулярны.

Уравнение равносторонней гиперболы, отнесенной к асимптотам

Так как асимптоты равносторонней гиперболы взаимно перпендикулярны, то их можно принять за оси прямоугольной системы координат и рассматривать гиперболу по отношению к этим новым осям. Выведем уравнение равносторонней гиперболы для этого случая.

Пусть дана равносторонняя гипербола. Тогда ее уравнение по отношению к координатным осям Ох и Оу (рис. 45)

выразится, как было пока-* у зано в , в виде

Взяв на гиперболе произвольную точку М (х; у) и построив ее координаты, будем иметь:

Примем теперь за оси координат асимптоты гиперболы: ОХ— за ось абсцисс, ОY — за ось ординат. Опустив перпендикуляр МС на новую ось абсцисс, найдем:

Выразим новые координаты X н Y точки М через старые х и у. Для этого из точки А проведем и

Обратим внимание на то, что в образовавшихся прямоугольных треугольниках АМВ и АОD

как углы, образованные взаимно перпендикулярными прямыми. Но

Из рисежа имеем:

Перемножив равенства (2) и (3) и приняв во внимание равенство (1), получим:

Положим для краткости

тогда равенство (4) перепишется так:

где m— постоянная величина.

Таково уравнение равносторонней гиперболы, если за оси координат принять ее асимптоты.

Как видно из уравнения (5), переменные X и Y — величины обратно пропорциональные, а потому можно сказать, что равносторонняя гипербола ху = m представляет собой график обратно пропорциональной зависимости между переменными величинами.

Парабола и ее простейшее уравнение

Параболой называется геометрическое место точек, каждая из которых одинаково удалена от точки, называемой фокусом, и от прямой, называемой директрисой <при условии, что фокус не лежит на директрисе).

Пусть точки М1 М2, М3, М4 лежат на параболе (рис. 46).

Если точка F изображает фокус, а прямая АВ— директрису, то согласно данному выше определению можем написать:

Выведем уравнение параболы, пользуясь ее определением. Для этого выберем систему координат, приняв за ось Ох прямую, проведенную через точку F (фокус) перпендикулярно к директрисе АВ, а за

ось Оу — прямую, проходящую через середину отрезка КF перпендикулярно к последнему (рис. 47). Обозначим

тогда координаты фокуса F будут

Возьмем на параболе произвольную точку М(x; у) расстояния ее от фокуса F и от директрисы АВ будут выражаться соответственно отрезками и МN. Согласно определению параболы, можем написать:

Применяя формулу расстояния между двумя точками и приняв во внимание, что точка N имеет координаты , найдем:

Заменив и МN в равенстве (1) их выражениями, получим:

Это и есть уравнение параболы относительно выбранной системы координат, так как оно справедливо для любой ее точки.

Упростим уравнение (2). Для этого возведем обе части его в квадрат:

Приведя подобные члены, получим простейшее уравнение параболы

*) Можно показать, что уравнение (3) равносильно уравнению (2). Величина р называется параметром параболы.

Исследование уравнения параболы

Из уравнения (3) найдем:

Исследуем уравнение (1) для выяснения геометрической формы нашей кривой, полагая р > 0.

I. Положим

Отсюда следует: парабола проходит через начало координат.

II. Если х 0, то у имеет два действительных значения, равных по абсолютной величине, но с разными знаками. Это значит, что каждому положительному значению х на параболе соответствуют две точки, расположенные симметрично относительно оси Ох.

Следовательно, парабола симметрична относительно оси Ох.

IV. Пусть х неограниченно возрастает, тогда и будет неограниченно расти, т. е. точки параболы с перемещением вправо от оси Оу неограниченно удаляются вверх и вниз от оси Ох.

Итак, парабола состоит из бесконечных ветвей.

Вышеизложенное позволяет представить параболу, как показано на рис. 48.

Точка О называется вершиной параболы, отрезок фокальным радиусом точки М параболы, а бесконечная прямая Ох является ее осью симметрии.

Если директрису параболы поместить справа от начала координат, то фокус и ветви ее расположатся как показано на рисеже 49.

При этом абсциссы точек параболы будут удовлетворять условию

а потому ее уравнение примет вид:

Парабола может быть симметрична и относительно оси Оу в этом случае фокус ее будет лежать па оси ординат, а директрисой будет прямая, параллельная оси Ох. Как видно при этом условии координатные оси поменяются ролями, и уравнение параболы примет вид

если ветви ее направлены вверх (рис. 50), и

если ветви направлены вниз (рис. 51).

Пример:

Найти координаты ее фокуса и написать уравнение директрисы.

Решение:

Данная парабола симметрична относительно оси Ох и расположена направо от оси Оу. Из уравнения находим:

Расстояние фокуса от начала координат равно , поэтому абсцисса фокуса будет Итак, фокус находится в точке

Директрисой служит прямая, параллельная оси Оу и отстоящая от последней на расстоянии Следовательно,

уравнение директрисы параболы будет х = — 3.

Пример:

Фокус параболы с вершиной в начале координат лежит в точке F(0; —4). Написать уравнение этой параболы.

Решение:

Согласно условию данная парабола симметрична относительно оси Оу, а ветви ее направлены вниз, поэтому искомое уравнение найдется из (3). Так как

и уравнение параболы будет:

Уравнение параболы со смещенной вершиной и осью, параллельной оси Оу

Возьмем уравнения параболы (2) и (3) и запишем их в следующем виде:

Положив в уравнении (1)

Уравнение (2) определяет параболу, ветви которой направлены вверх, если А > О, вниз, если А

Возьмем на параболе произвольную точку М(х; у). Опустив из нее перпендикуляр МР на ось Ох, будем иметь:

Проведем через О1 прямые О1Х и QY, параллельные координатным осям Ох и Оу, и положим временно, что прямые О1Х и О1Y служат осями новой системы координат. Обозначим координаты точки М в этой системе через X и Y, т. е.

Уравнение параболы в новой системе координат напишется следующим образом:

Чтобы найти ее уравнение относительно прежних осей Ох и Оу, нужно X и Y выразить через х и y. Так как

Подставив в уравнение (3) найденные значения X и Y, получим:

Упростим уравнение (4); для этого раскроем в нем скобки.

тогда уравнение (5) примет вид

Это—уравнение параболы с вершиной, лежащей в любой точке плоскости, и с осью симметрии, параллельной оси Оу.

Рассмотрим частные случаи.

Пусть абсцисса вершины параболы a = 0; тогда величина В в равенстве (6) также будет нулем и уравнение (8) примет следующий вид:

Полученное уравнение определяет параболу, у которой вершина лежит на оси Оу, являющейся в то же время и ее осью симметрии (рис. 53).

Положим, что одна из точек параболы (исключая ее вершину) лежит в начале координат; тогда координаты (0; 0) должны удовлетворять уравнению (8). Заменив в нем х и у нулями, найдем С=0. В этом случае уравнение (8) получит вид

и будет определять параболу, проходящую через начало координат (рис. 54).

Заметим, что и уравнение (2) можно рассматривать как частный случай уравнения (8). Действительно, положив в равенствах (6) и (7)

вследствие чего уравнение (8) преобразуется в следующее:

Из сказанного следует, что парабола, у которой ось симметрии параллельна оси Оу или совпадает с ней, определяется уравнением

при любых значениях А, В и С, кроме А = 0.

Убедимся на примере, что справедливо и обратное утверждение: всякое уравнение вида (8) определяет параболу с осью симметрии, параллельной оси Оу.

Пусть дано уравнение

Преобразуем его следующим образом:

тогда уравнение (10) примет вид:

Уравнение (11) имеет такой же вид, как и уравнение (2), поэтому оно, а следовательно, и уравнение (9) определяют параболу, у которой ось симметрии параллельна оси Оу.

Для построения параболы, определяемой уравнением вида (8), можно использовать обычный прием, применяемый для вычерчивания графиков функций, а именно: дав х ряд значений, вычислить значения у, а затем, построив точки по найденным координатам, провести через них плавную линию.

Пример:

Решение:

Прежде всего найдем абсциссы точек пересечения данной параболы с осью Ох; положив у = 0, получим:

Так как найденные точки симметричны относительно оси параболы, то вершина последней, находясь на этой оси, имеет 0 + 4 0

абсциссу, равную ордината же ее

Этих трех точек достаточно для приближенного изображения параболы.

Для более точного ее представления нужны дополнительные точки. Составим следующую таблицу:

Построив эти точки и прозедя через них плавную линию, получим искомую параболу (рис. 55).

Пример:

Решение:

мнимые, а потому ось Ох не пересекает данную параболу. В этом случае следует найти абсциссы точек пересечения параболы с прямой

(-1 — свободный член данного уравнения параболы)

Решая для этой цели систему уравнений

Полученные точки симметричны относительно оси параболы, поэтому абсцисса ее вершины равна ордината же ее

Присоединим к этим точкам несколько дополнительных точек. Составим таблицу:

Конические сечения

Окружность, эллипс, гипербола и парабола определяются, как мы установили в предыдущих лекциях уравнениями второй степени относительно текущих координат; поэтому их называют кривыми второго порядка. Они были известны еще древним грекам, которые изучали эти кривые, рассматривая их как результат сечения прямого кругового конуса плоскостью в следующих четырех случаях.

I. Секущая плоскость перпендикулярна к оси конуса; в сечении получается окружность (рис. 57).

II. Секущая плоскость образует с осью конуса угол, не равный 90°, и пересекает все его образующие по одну сторону от вершины S; в сечении получается эллипс (рис. 58).

III. Секущая плоскость параллельна какой-либо образующей конуса; при этом получается кривая, называемая параболой (рис. 59).

IV. Секущая плоскость пересекает обе полости конуса; при этом получаются две бесконечные ветви, образующие гиперболу (рис. 60).

Окружность, эллипс, гипербола и парабола называются коническими сечениями.

Конические сечения изучались в древности исключительно геометрическим путем, что представляло большие трудности, и только со времени Декарта, давшего метод координат, изучение их значительно упростилось.

Кривая второго порядка и её вычисление

Уравнение линии. Кривые второго порядка. Окружность. Эллипс. Гипербола. Парабола. Приведение к каноническому виду.

Уравнение линии в декартовых и полярных координатах

В лекции 3 было введено понятие неявной функции, задаваемой уравнением вида F(x,y) = 0.

Определение 6.1. Множество точек плоскости, координаты которых удовлетворяют некоторому уравнению
(6.1) F(x;y) = 0
называется линией (плоской кривой).

Не всякое уравнение определяет линию. Например, уравнение x² + y² = -1 не определяет никакой линии. Кроме того, линия может состоять из отдельных точек. Так, например, уравнению x² + y² = 0 удовлетворяет только начало координат.

Линия не обязательно является графиком функции. Так, например, уравнение x² + y² = 1 определяет окружность с центром в начале координат и радиуса 1 (т.к. d = = 1, расстояние от начала координат равно 1). Однако это не будет графиком функции у от х, т.к. каждому х, |x| ≤ 1, соответствует два значения у: у = ±, т.е. линия задается двумя функциями у = (верхняя полуокружность) и у = — (нижняя полуокружность).

Уравнение произвольной окружности с центром в точке M(a;b) и радиусом R будет иметь вид:
(6.2) (х — а)² + (у- b)² = R²,
т.к. окружность радиусом R есть геометрическое место точек плоскости, находящихся на расстоянии R от центра, т.е. в соответствии с формулой ( 6.2) d = = R.

В частности, окружность с центром в начале координат, радиусом R, описывается уравнением
x² + y² = R².

Пример 6.1. Какую линию описывает уравнение x² + y² = Rx?

Решение: Перенося Rx в левую часть и выделяя полный квадрат, получаем:
x² + y² = Rx ⇔ X2 — Rx + у² = 0 ⇔ x² — Rx +
(х — ) + y² = .

Ответ: данное уравнение описывает окружность с центром в точке M(;0) и радиусом .

Линия может определяться на плоскости уравнением как в декартовых, так и в полярных координатах: F(; r) = 0. Если при этом зависимость r от обладает тем свойством, что каждому значению из области определения соответствует единственное значение r, то данная линия будет графиком функции r от : r = f().

Пример 6.2. Построить график функции, заданной в полярных координатах уравнением r = 2 sin3, ∈ (—∞; ∞).

Решение: Составим таблицу некоторых значений этой функции:

0
r 0 1 2 1 0 -2

Рис. 70. График функции r = 2 sin 3 в декартовых координатах

Далее, пользуясь тем, что из вида графика функции r = 2 sin 3, приведенного в декартовых координатах на рис. 70, следует, что неотрицательные значения г повторяются на промежутках ∈ [0; ], ∈ [;π], ∈ [-;] и т. д.. Отсюда заключаем, что если в полярных координатах построить график в секторе ∈ [0; ], то в секторах ∈ [; π], ∈ [— ; ] и т. д. вид графика будет аналогичный, а в секторах ∈ (; ), ;0) и т.д. графика не будет, т.к. там r Рис. 71. График функции r = 2 sin 3 в полярных координатах

Такой график называют называют “трехлепестковая роза”.

Кривые второго порядка:

Определение 6.2. Кривой второго порядка называется линия, определяемая в декартовых координатах уравнением:
(6.3) Ax² + 2Bxy + Cy² + 2Dx + 2Ey + F = O.

Здесь коэффициенты — действительные числа и, по крайней мере, одно из чисел A₁B или C не равно нулю. Удобство таких обозначений для коэффициентов (2В, 2D, 2Е) станет ясно позже.

Всего существует три ’’реальных” кривых второго порядка: эллипс, (окружность — частный случай эллипса) гипербола и парабола, не считая такие линии, как ’’пара пересекающихся прямых” (ху = 0), «пара параллельных прямых” ((x — у)² — 4), ’’точка” ((x — 5)² + (у — 1)² = 0), ’’прямая” (х — 1)² = 0) и ’’мнимые кривые” (x² + y² + 5 = 0), которым не соответствует ни одна точка.

Окружность

Ранее было получено уравнение ( 6.2) окружности с центром в точке M(а; b), радиусом R. Это уравнение вида ( 6.3), т.е. окружность есть кривая второго порядка — можно показать, что уравнение (6.3), в котором A = C и B = O c помощью дополнения до полного квадрата каждой группы членов Ax² + 2Dx и By² + 2Еу приводится к виду (6.2), определяющему окружность радиуса R, или к виду: (х — а)² + (у — b)² = -R², не определяющему линию при R ≠ 0. Покажем это на примере.

Пример:

Показать, что уравнение 2x² + 2y² — 4x + 8y — 13 = 0 определяет окружность.

Решение: Поделив обе части на 2, получим уравнение в виде: x² + y² — 2x + 4y — 6,5 = 0 или, выделяя полный квадрат: (x² — 2х + 1) + (у² + 4y + 4) = 11,5 ⇔ (х — 1)² + (у + 2)² =11,5. Мы получим уравнение окружности с центром M(1; —2) и радиусом R = √11,5.

Пример:

Показать, что уравнение х² + у² + 6х — 6у + 22 = 0 не определяет никакой линии.

Решение:

Аналогично предыдущему, выделяя полный квадрат, получаем: х² + у² + 6х — 6у + 22 = 0 ⇔ (х² + 6х + 9) + (у² — 6у + 9) = — 4 ⇔ (x + 3)² + (y — 3)² =-4.

Эллипс

Определение:

Эллипсом называется множество всех точек плоскости, сумма расстояний каждой из которых от двух данных точек этой плоскости, называемых фокусами, равна постоянной величине.

Обозначим фокусы F₁ и F₁, расстояние между ними 2с, а сумму расстояний до них от точек эллипса через 2а (2а > 2с). Выберем декартову систему координат как показано на рис. 72. По определению эллипса: MF₁ + MF₂ = 2а. Пользуясь формулой (2.6) получаем:



Рис. 72. Фокусы эллипса и гиперболы

Обозначив b² = a² — с² > 0, получаем: b²x² + a²y² — a²b² или:
(6.4)

Уравнение ( 6.4) называется каноническим уравнением эллипса, а и b — полуосями, а — большая полуось, b — малая, т.к. b = Рис. 73. Эллипс

Так как 2а > 2с, то ε т.е. тем меньше эллипс вытянут вдоль фокальной оси Ох. В пределе, при ε → 0,a = b и получается окружность x² + у² = а² радиусом а При этом с = = 0, т.е. F₁ — F₂ = 0. Если эллипс расположен так, что центр его симметрии находится в точке P(x₀; y₀), а полуоси параллельны осям координат, то, перейдя к новым координатам X = х — х₀, У = у — у₀, начало которых совпадает с точкой Р, а оси параллельны исходным (см. п. 2.8), получим, что в новых координатах эллипс описывается каноническим уравнением Уравнение такого эллипса в старых координатах будет:
(6.5)

Гипербола

Определение 6.4. Гиперболой называется множество всех точек плоскости, модуль разности расстояний каждой из которых от двух данных точек этой плоскости, называемых фокусами, равен постоянной величине.

Обозначим фокусы F₁ и F₂, расстояние между ними 2с, а модуль разности расстояний до них от точек гиперболы через 2a (2c > 2a > 0). Выберем декартову систему координат, как показано на рис. 72. По определению гиперболы: MF₁ — MF₂ = ±2а. Пользуясь формулой (2.6), аналогично тому, как это было сделано для эллипса, получаем:
= ±2a ⇒ (а² — c²)x² + a²y² = a²(a² — с²). Обозначив b² = с² — a² > 0 (сравните с выводом формулы ( 6.4) для эллипса), получаем: -b²x² + a²y² = -b²a², или:

Уравнение (6.6) называется каноническим уравнением гиперболы, а и b — полуосями, а — действительной полуосью, b — мнимой. Так как х и у входят в уравнение только в четных степенях, гипербола симметрична относительно осей Ox и Оу. Выразив у из уравнения ( 6.6), получаем: , |x| ≥ а, что означает, что гипербола состоит из двух симметричных половин, верхней у = и нижней у = — . При х = а у = 0, при возрастании х от 0 до +∞, у для верхней части возрастает от 0 до +∞. C учетом симметрии, получаем линию, изображенную на рис. 74.

Точки пересечения гиперболы с осью Ox (фокальной осью) называются ее вершинами A₂(а;0), A₁(-a;0). C осью ординат гипербола не пересекается, поэтому фокальная ось называется действительной осью (а — действительная полуось), а перпендикулярная ей ось — мнимой осью (b — мнимая полуось). Можно показать, что при неограниченном возрастании абсциссы точка гиперболы неограниченно приближается к прямой у = (изображена на рис. 74 пунктиром). Такая прямая, к которой неограниченно приближается некоторая линия, называется асимптотой. Из соображений симметрии вытекает, что у гиперболы две асимптоты: у = и у =-, изображенные на рис. 74 пунктиром. Прямоугольник, с центром в начале координат, со сторонами 2а и 2b, параллельными осям, называется основным. Асимптоты являются его диагоналями.

Рис. 74. Гипербола

Отношение называется эксцентриситетом гиперболы. Т.к. 2α 1. Эксцентриситет определяет форму гиперболы: чем меньше е, тем более вытянут в направлении фокальной оси ее основной прямоугольник (= = — 1 = ε² — 1). Если а = b, гипербола называется равносторонней (равнобочной). Для нее х² — у² = а², асимптоты: у = х, у = —х, ε = = √2. Если центр гиперболы (центр ее симметрии) находится в точке P(x₀; y₀), a оси параллельны осям координат, то, применяя параллельный перенос координат (п. 2.8), аналогично тому, как это было сделано для эллипса, получим уравнение гиперболы:
(6.7)

Уравнение асимптот такой гиперболы будет: у — y₀ =

Парабола

Определение:

Параболой называется множество всех точек плоскости, равноудаленных от данной точки F, называемой фокусом, и данной прямой d, называемой директрисой (F ∉ d).

Обозначим расстояние от фокуса до директрисы р. Эта величина называется параметром параболы. Выберем декартову систему координат как показано на рис. 75.

По определению параболы MF=MN. Из рис. 75. ясно, что:

Рис. 75. Фокус и директриса параболы

Приравнивая, получаем:

(6.8) у² = 2рх

Уравнение ( 6.8) называется каноническим уравнением параболы. Т.к. у входит в уравнение в четной степени, парабола симметрична относительно оси Ох. Выразив у из уравнения, получаем: у = , х ≥ 0. При х =0 у = 0, при возрастании х от 0 до +∞ у для верхней части возрастает от 0 до +∞. C учетом симметрии получаем линию, изображенную на рис. 76.

Ось симметрии параболы называется фокальной осью (ось Ox на рис. 76), точка пересечения пораболы с ней называется вершиной пораболы (точка О на рис. 76). Если вершина параболы находится в точке P(x₀; у₀), фокальная ось параллельна и одинаково направлена с осью Ox и расстояние от директрисы до фокуса равно Р, то с помощью параллельного переноса осей координат нетрудно получить уравнение такой параболы:
(6.9) (y — y₀)² = 2p(x -х₀)

Пример:

Найти фокус, директрису, фокальную ось для параболы у= 4x².

Рис. 76. Парабола

Решение:

Как известно, осью симметрии параболы у = х² является ось Оу, а вершиной — точка О, поэтому фокальной осью будет ось Оу, вершиной — начало координат.

Для определения фокуса и директрисы запишем уравнение данной параболы в виде: x² = y, откуда 2р =; р =. Поэтому фокус имеет координаты F(0; ), а директриса — уравнение у = — (см. рис. 77).

Рис. 77. График параболы у = 4х²

Понятие о приведении общего уравнения второго порядка к каноническому виду

Если в общем уравнении кривой второго порядка ( 6.3)
Ax² + 2Bxy + Cy² + 2Dx + 2Ey +F = 0
коэффициент 2B ≠ 0, то методами, которые будут изложены позже (лекция 34) это уравнение преобразуется к виду, в котором отсутствует член с произведением координат (т.е. 2В — 0).

Для приведения к каноническому виду уравнения ( 6.3), в котором 2В = 0, необходимо дополнить члены, содержащие х и у, до полных квадратов.

Если при этом (В = 0) А = С, то получится окружность (пример 6.3), точка или мнимая окружность (пример 6.4).

Если при этом (В = 0) A ≠ C и A ∙ C > 0, то получится эллипс (пример 6.8) или мнимый эллипс.

Если при этом (В = 0) A ≠ C и A ∙ C Рис. 78. Гипербола

Пример:

Приведите к каноническому виду уравнение и определите вид кривой: x² — 6x — 4y + 29 = 0.

Решение:

Выделим полный квадрат: x² — 6x — 4y + 29 = 0 ⇔ x² — 6x + 9 = 4y — 20 ⇔ (x — 3)² = 4(у — 5). Сделав замену координат X =х — 3, Y = у — 5 мы получим каноническое уравнение параболы X² = 4Y с осью OY и параметром р = 2. Таким образом исходная парабола имела вершину A(3; 5) и ось х = 3 параллельную оси Oy (рис. 79).

Пример:

Приведите к каноническому виду уравнение и определите вид кривой: x² + 4y² + 2x — 24y + 21 =0.

Решение:

Выделив полный квадрат, получим уравнение: (x + 1)² + 4(у — 3)² = 16. Сделав замену координат: X = х + 1, Y = y — 3, получим каноническое уравнение эллипса: X² + AY² ⇔ = 1 с параметрами а = 4, b = 2. Таким образом, исходный эллипс имел центр A( —1;3) и полуоси а = 4, b = 2 (рис. 80).

Рис. 79. Решение примера 6.7 Рис. 80. Решение примера 6.8

Решение заданий на тему: Кривые второго порядка

Пример:

Составьте уравнение окружности, имеющей центр 0(2; —5) и радиус R = 4.

Решение:

В соответствии с формулой (6.2) искомое уравнение имеет вид: (х — 2)² + (у + 5)² = 16.

Ответ: (х — 2)² + (у + 5)² = 16.

Пример:

Составьте уравнение эллипса, зная, что сумма полуосей равна 8 и расстояние между фокусами равно 8.

Решение:

Из условия имеем: a + b = 8, 2c = 8. C учетом того, что b² = а² — с², находим с = 4, а = 5, b = 3. Искомое уравнение эллипса будет: .

Ответ:

Пример:

Составьте уравнение гиперболы, зная, что фокусы F₁(10;0) и F₂(-10; 0) и что гипербола проходит через точку M(12; 3√5)

Решение:

Из условия имеем: с = 10, |MF₁ — MF₂|= 2а ⇔ 2а = а = 8. C учетом того, что b² = с² — а², находим а = 8, с = 10, b = 6. Искомое уравнение гиперболы будет: .
Ответ: .

Пример:

Составьте уравнение параболы, зная, что фокус имеет координаты (5;0), а ось ординат является директрисой.

Решение:

Поскольку расстояние от директрисы параболы до ее полюса равно параметру р, а вершина находится на середине, из условия следует, что р = 5 и вершина расположена в точке A(2,5;0). Таким образом, в новых координатах X = х — 2,5; У = у каноническое уравнение параболы будет: Y² = 10Х, а в старых координатах: у² = 10(х — 2,5).
Ответ: y² = 10x — 25.

Пример:

Приведите к каноническому виду уравнение x² + y² — 2х + 6у — 5 = 0, определите вид кривой и ее параметры.

Решение:

Выделим полный квадрат: х² — 2х + у² + 6у — 5 = 0 ⇔ x² — 2x + 1 + у² + 6у + 9 — 1 — 9 — 5 = 0 ⇔ (х — 1)² + (у + 3)² = 15

В соответствии с формулой (6.2) это есть уравнение окружности с центром в точке A(1; -3), радиусом √5.
Ответ: (х — 1)² + (у + 3)² = 15.

Пример:

Приведите к каноническому виду уравнение x² + 4у² + 4х — 16у — 8 = 0, определите вид кривой и ее параметры:

Решение:

Выделим полный квадрат: x² + 4х + 4у² — 16y -8 = 0 ⇔ x²+4x + 4 + 4y²- 16y + 16-4-16-8 = 0 ⇔ (x + 2)² + 4(y²-4у+ 4) -28 ⇔ (х + 2)² + 4(y — 2)² = 28 ⇔ = 1. Сделав замену координат: X = x +2, Y = у — 2, в новых координатах получим уравнение эллипса с полуосями а = √28 и b = √7. Таким образом, в старых координатах эллипс имеет центр A(—2; 2) и полуоси а = 2√7 и b = √7.
Ответ: = 1.

Пример:

Приведите к каноническому виду уравнение x² + 2y² + 8x — 4 = 0, определите вид кривой и ее параметры.

Решение:

Выделим полный квадрат:
x²+2y²+8x-4 = 0 ⇔ x²+8x+16+2y²-16-4 =0 ⇔ (x+4)²+2y2-20 = 0 ⇔ =1

Сделав замену координат X = х + 4, Y — у, убеждаемся, что эта кривая — эллипс, с полуосями a = 2√5 и b = √10 и центром A(-4;0).
Ответ: =1

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

VMath

Инструменты сайта

Основное

Навигация

Информация

Действия

Содержание

Касательная, нормальная плоскость, соприкасающаяся плоскость, бинормаль, главная нормаль, репер Френе

Краткие теоретические сведения

Кривая в пространстве

Рассмотрим в пространстве гладкую кривую $gamma$.

Пусть точка $M$ принадлежит данной кривой и отвечает значению параметра $t=t_0$. Тогда радиус-вектор и координаты данной точки равны:

begin vec=vec(t_0), quad x_0=x(t_0),, y_0=y(t_0), , z_0=z(t_0). end

Пусть в точке $M$ $ vec(t_0)neqvec<0>$, то есть $M$ не является особой точкой.

Касательная к кривой

Касательная к кривой, проведенная в точке $M$, имеет направляющий вектор коллинеарный вектору $vec(t_0)$.

Пусть $vec$ — радиус-вектор произвольной точки касательной, тогда уравнение этой касательной имеет вид

Здесь $lambdain(-infty,+infty)$ — параметр, определяющий положение точки на касательной (то есть разным значениям $lambda$ будут соответствовать разные значения $vec$).

Если $vec=$, $M = (x(t_0), y(t_0), z(t_0))$, то можно записать уравнение касательной в каноническом виде:

Нормальная плоскость

Плоскость, проходящую через данную точку $M$ кривой $gamma$ перпендикулярно касательной в этой точке, называют нормальной плоскостью.

Пусть $vec$ — радиус-вектор произвольной точки нормальной плоскости, тогда ее уравнение можно записать в векторном виде через скалярное произведение векторов $vec-vec(t_0)$ и $vec(t_0)$:

Если расписать покоординатно, то получим следующее уравнение:

begin x'(t_0)cdot(X-x(t_0))+y'(t_0)cdot(Y-y(t_0))+z'(t_0)cdot(Z-z(t_0))=0. end

Соприкасающаяся плоскость

Плоскость, проходящую через заданную точку $M$ кривой $gamma$ параллельно векторам $vec(t_0)$, $vec(t_0)$, когда они неколлинеарны, называют соприкасающейся плоскостью кривой.

Если $vec$ — радиус-вектор произвольной точки соприкасающейся плоскости, то ее уравнение можно записать через смешанной произведение трех компланарных векторов $vec-vec(t_0)$, $vec(t_0)$, $vec(t_0)$:

Зная координаты точки и векторов, определяющих плоскость, запишем смешанное произведение через определитель. Получим следующее уравнение соприкасающейся плоскости:

begin left| begin X-x(t_0) & Y-y(t_0) & Z-z(t_0) \ x'(t_0) & y'(t_0) & z'(t_0)\ x”(t_0) & y”(t_0) & z”(t_0) \ end right|=0 end

Бинормаль и главная нормаль

Прямая, проходящая через точку $M$ кривой $gamma$ перпендикулярно касательной к кривой в этой точке, называется нормалью.

Таких кривых можно провести бесконечно много, все они образуют нормальную плоскость. Мы выделим среди нормалей две — бинормаль и главную нормаль.

Нормаль, перпендикулярную соприкасающейся плоскости, называют бинормалью.

Нормаль, лежащую в соприкасающейся плоскости, называют главной нормалью.

Из определения бинормали (перпендикулярна касательной и перпендикулярна соприкасающейся плоскости) следует, что в качестве ее направляющего вектора мы можем взять векторное произведение $ vec(t_0)timesvec(t_0)$, тогда ее уравнение можно записать в виде:

Как и раньше, $vec$ — радиус-вектор произвольной точки бинормали. Каноническое уравнение прямой:

Из определения главной нормали (перпендикулярна касательной и перпендикулярна бинормали) следует, что в качестве ее направляющего вектора можно взять векторное произведение $vec(t_0) timesleft[vec(t_0),vec(t_0)right]$:

Уравнение в каноническом виде распишите самостоятельно.

Спрямляющая плоскость

Плоскость, проходящую через заданную точку $M$ кривой $gamma$ перпендикулярно главной нормали, называют спрямляющей плоскостью.

Другое определение: Плоскость, определяемую касательной к кривой и бинормалью в той же точке, называют спрямляющей плоскостью.

Второе определение позволяет записать уравнение спрямляющей плоскости через смешанное произведение трех компланарных векторов, определяющих эту плоскость $vec-vec(t_0)$, $vec(t_0)$, $vec(t_0)timesvec(t_0)$: begin left(vec-vec(t_0),, vec(t_0),, vec(t_0)timesvec(t_0)right)=0. end Зная координаты соответствующих векторов, можно легко записать это смешанное произведение через определитель, раскрыв который, вы получите общее уравнение спрямляющей плоскости.

Репер Френе

Орт (то есть единичный вектор) касательной обозначим: $$ vec<tau>=frac<vec(t_0)><|vec(t_0)|>. $$ Орт бинормали: $$ vec<beta>=frac<vec(t_0)timesvec(t_0)><|vec(t_0)timesvec(t_0)|>. $$ Орт главной нормали: $$ vec<nu>=frac<vec(t_0) times[vec(t_0),,vec(t_0)]><|vec(t_0) times [vec(t_0),,vec(t_0)]|>. $$

Правая тройка векторов $vec<tau>$, $vec<nu>$, $vec<beta>$ называется репером Френе.

Решение задач

Задача 1

Кривая $gamma$ задана параметрически:

Точка $M$, принадлежащая кривой, соответствует значению параметра $t=0$. Записать уравнения касательной, бинормали, главной нормали, нормальной плоскости, соприкасающейся плоскости и спрямляющей плоскости, проведенных к данной кривой в точке $M$. Записать векторы репера Френе.

Решение задачи 1

Задачу можно решать разными способами, точнее в разном порядке находить уравнения прямых и плоскостей.

Начнем с производных.

begin 1cdot X+0cdot Y+1cdot (Z-1)=0,, Rightarrow ,, X+Z=1. end

begin left| begin X-0 & Y-0 & Z-1 \ 1 & 0 & 1\ 0 & 2 & 1 \ end right|=0 end Раскрываем определитель, получаем уравнение: begin -2X-Y+2Z-2=0 end

begin 1cdot X-4cdot Y-1cdot (Z-1)=0,, Rightarrow ,, X-4Y-Z+1=0. end

Поскольку направляющий вектор главной нормали у нас был найден как векторное произведение направляющих векторов касательной и бинормали, тройка $vec<tau>$, $vec<nu>$, $vec<beta>$ не будет правой (по определению векторного произведения вектор $vec<tau>timesvec<beta>$ направлен так, что тройка векторов $vec<tau>$, $vec<beta>$, $vec<nu>=vec<tau>timesvec<beta>$

— правая). Изменим направление одного из векторов. Например, пусть

Теперь тройка $vec<tau>$, $vec<nu>$, $vec<tilde<beta>>$ образует репер Френе для кривой $gamma$ в точке $M$.

Задача 2

Написать уравнение соприкасающейся плоскости к кривой $$ x=t,,, y=frac<2>,,, z=frac<3>, $$ проходящей через точку $N(0,0,9)$.

Решение задачи 2

Нетрудно заметить, что точка $N$ не принадлежит заданной кривой $gamma$. Следовательно соприкасающаяся плоскость проведена в какой-то точке $M(t=t_0)ingamma$, но при этом плоскость проходит через заданную точку $N(0,0,9)$.

Найдем значение параметра $t_0$.

Для этого запишем уравнение соприкасающейся плоскости, проведенной в произвольной точке $M(t=t_0)$. И учтем, что координаты $N$ должны удовлетворять полученному уравнению.

Соприкасающаяся плоскость определяется векторами $vec(t_0)$, $vec(t_0)$, поэтому записываем определитель begin left| begin X-t_0 & Y-t_0^2/2 & Z-t_0^3/3 \ &&\ 1 & t_0 & t^2_0 \ &&\ 0 & 1 & 2t_0 end right|=0 quad Rightarrow end

begin (X-t_0)cdot t_0^2 – (Y-t_0^2/2)cdot 2t_0 + (Z-t_0^3/3)=0. end Подставляем вместо $X$, $Y$, $Z$ координаты точки $N$: $X=0$, $Y=0$, $Z=9$, упрощаем и получаем уравнение относительно $t_0$: begin 9-t_0^3/3=0 quad Rightarrow quad t_0=3. end Подставив найденное $t_0$ в записанное ранее уравнение, запишем искомое уравнение соприкасающейся плоскости: $$ 9X-6Y+Z-9=0. $$

Задача 3

Через точку $Pleft(-frac45,1,2right)$ провести плоскость, являющуюся спрямляющей для кривой: $$ x=t^2,,, y=1+t,,, z=2t. $$

Решение задачи 3

Как и в предыдущей задаче нам неизвестны координаты точки, в которой проведена спрямляющая плоскость к заданной кривой. Найдем их.

Спрямляющая плоскость определяется касательной и бинормалью, то есть векторами $vec(t_0)$ и $vec(t_0)timesvec(t_0)$.

Записываем уравнение спрямляющей плоскости: begin left| begin X-t_0^2 & Y-1-t_0 & Z-2t_0 \ 2t_0 & 1 & 2\ 0 & 4 & -2 end right|= 0 end

Раскрываем определитель. Подставляем в уравнение координаты точки $P$: $X=-4/5$, $Y=1$, $Z=2$. Упрощаем и получаем уравнение для нахождения $t_0$: begin 5t_0^2-8t_0-4=0 ,, Rightarrow ,, t_<01>=2,, t_<02>=-frac25. end

Уравнения соприкасающихся плоскостей к заданной кривой, проходящих через $P$, принимают вид: begin & 5X-4Y-8Z+24=0,\ & 25X+4Y+8Z=0. end

[spoiler title=”источники:”]

http://lfirmal.com/krivyie-vtorogo-poryadka-ellips-giperbola-parabola/

http://vmath.ru/vf5/diffgeom/seminar1

[/spoiler]

Данный калькулятор по введенным данным строит несколько моделей регрессии: линейную, квадратичную, кубическую, степенную, логарифмическую, гиперболическую, показательную, экспоненциальную. Результаты можно сравнить между собой по корреляции, средней ошибке аппроксимации и наглядно на графике. Теория и формулы регрессий под калькулятором.

Если не ввести значения x, калькулятор примет, что значение x меняется от 0 с шагом 1.

PLANETCALC, Аппроксимация функции одной переменной

Аппроксимация функции одной переменной

Квадратичная аппроксимация

Аппроксимация степенной функцией

Показательная аппроксимация

Логарифмическая аппроксимация

Гиперболическая аппроксимация

Экспоненциальная аппроксимация

Точность вычисления

Знаков после запятой: 4

Коэффициент линейной парной корреляции

Средняя ошибка аппроксимации, %

Средняя ошибка аппроксимации, %

Средняя ошибка аппроксимации, %

Средняя ошибка аппроксимации, %

Средняя ошибка аппроксимации, %

Логарифмическая регрессия

Средняя ошибка аппроксимации, %

Гиперболическая регрессия

Средняя ошибка аппроксимации, %

Экспоненциальная регрессия

Средняя ошибка аппроксимации, %

Результат

Файл очень большой, при загрузке и создании может наблюдаться торможение браузера.

Линейная регрессия

Уравнение регрессии:
widehat{y}=ax+b

Коэффициент a:
a&=frac{sum x_i sum y_i- nsum x_iy_i}{left(sum x_iright)^2-nsum x_i^2}

Коэффициент b:
b&=frac{sum x_i sum x_iy_i-sum x_i^2sum y_i}{left(sum x_iright)^2-nsum x_i^2}

Коэффициент линейной парной корреляции:
r_{xy}&=frac{nsum x_iy_i-sum x_isum y_i}{sqrt{left(nsum x_i^2-left(sum x_iright)^2right)!!left(nsum y_i^2-left(sum y_iright)^2 right)}}

Коэффициент детерминации:
R^2=r_{xy}^2

Средняя ошибка аппроксимации:
overline{A}=dfrac{1}{n}sumleft|dfrac{y_i-widehat{y}_i}{y_i}right|cdot100%

Квадратичная регрессия

Уравнение регрессии:
widehat{y}=ax^2+bx+c

Система уравнений для нахождения коэффициентов a, b и c:
begin{cases}asum x_i^2+bsum x_i+nc=sum y_i,,\[2pt] asum x_i^3+bsum x_i^2+csum x_i=sum x_iy_i,,\[2pt] asum x_i^4+bsum x_i^3+csum x_i^2=sum x_i^2y_i,;end{cases}

Коэффициент корреляции:
R= sqrt{1-frac{sum(y_i-widehat{y}_i)^2}{sum(y_i-overline{y})^2}},
где
overline{y}= dfrac{1}{n}sum y_i

Коэффициент детерминации:
R^2

Средняя ошибка аппроксимации:
overline{A}=dfrac{1}{n}sumleft|dfrac{y_i-widehat{y}_i}{y_i}right|cdot100%

Кубическая регрессия

Уравнение регрессии:
widehat{y}=ax^3+bx^2+cx+d

Система уравнений для нахождения коэффициентов a, b, c и d:
begin{cases}asum x_i^3+bsum x_i^2+csum x_i+nd=sum y_i,,\[2pt] asum x_i^4+bsum x_i^3+csum x_i^2+dsum x_i=sum x_iy_i,,\[2pt] asum x_i^5+bsum x_i^4+csum x_i^3+dsum x_i^2=sum x_i^2y_i,,\[2pt] asum x_i^6+bsum x_i^5+csum x_i^4+dsum x_i^3=sum x_i^3y_i,;end{cases}

Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации – используются те же формулы, что и для квадратичной регрессии.

Степенная регрессия

Уравнение регрессии:
widehat{y}=acdot x^b

Коэффициент b:
b=dfrac{nsum(ln x_icdotln y_i)-sumln x_icdotsumln y_i }{nsumln^2x_i-left(sumln x_iright)^2 }

Коэффициент a:
a=exp!left(dfrac{1}{n}sumln y_i-dfrac{b}{n}sumln x_iright)

Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.

Показательная регрессия

Уравнение регрессии:
widehat{y}=acdot b^x

Коэффициент b:
b=expdfrac{nsum x_iln y_i-sum x_icdotsumln y_i }{nsum x_i^2-left(sum x_iright)^2 }

Коэффициент a:
a=exp!left(dfrac{1}{n}sumln y_i-dfrac{ln b}{n}sum x_iright)

Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.

Гиперболическая регрессия

Уравнение регрессии:
widehat{y}=a + frac{b}{x}

Коэффициент b:
b=dfrac{nsumdfrac{y_i}{x_i}-sumdfrac{1}{x_i}sum y_i }{nsumdfrac{1}{x_i^2}-left(sumdfrac{1}{x_i}right)^2 }

Коэффициент a:
a=dfrac{1}{n}sum y_i-dfrac{b}{n}sumdfrac{1}{x_i}

Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации – используются те же формулы, что и для квадратичной регрессии.

Логарифмическая регрессия

Уравнение регрессии:
widehat{y}=a + bln x

Коэффициент b:
b=dfrac{nsum(y_iln x_i)-sumln x_icdot sum y_i }{nsumln^2x_i-left(sumln x_iright)^2 }

Коэффициент a:
a=dfrac{1}{n}sum y_i-dfrac{b}{n}sumln x_i

Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации – используются те же формулы, что и для квадратичной регрессии.

Экспоненциальная регрессия

Уравнение регрессии:
widehat{y}=e^{a+bx}

Коэффициент b:
b=dfrac{nsum x_iln y_i-sum x_icdotsumln y_i }{nsum x_i^2-left(sum x_iright)^2 }

Коэффициент a:
a=dfrac{1}{n}sumln y_i-dfrac{b}{n}sum x_i

Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации – используются те же формулы, что и для квадратичной регрессии.

Вывод формул

Сначала сформулируем задачу:
Пусть у нас есть неизвестная функция y=f(x), заданная табличными значениями (например, полученными в результате опытных измерений).
Нам необходимо найти функцию заданного вида (линейную, квадратичную и т. п.) y=F(x), которая в соответствующих точках принимает значения, как можно более близкие к табличным.
На практике вид функции чаще всего определяют путем сравнения расположения точек с графиками известных функций.

Полученная формула y=F(x), которую называют эмпирической формулой, или уравнением регрессии y на x, или приближающей (аппроксимирующей) функцией, позволяет находить значения f(x) для нетабличных значений x, сглаживая результаты измерений величины y.

Для того, чтобы получить параметры функции F, используется метод наименьших квадратов. В этом методе в качестве критерия близости приближающей функции к совокупности точек используется суммы квадратов разностей значений табличных значений y и теоретических, рассчитанных по уравнению регрессии.

Таким образом, нам требуется найти функцию F, такую, чтобы сумма квадратов S была наименьшей:
S=sumlimits_i(y_i-F(x_i))^2rightarrow min

Рассмотрим решение этой задачи на примере получения линейной регрессии F=ax+b.
S является функцией двух переменных, a и b. Чтобы найти ее минимум, используем условие экстремума, а именно, равенства нулю частных производных.

Используя формулу производной сложной функции, получим следующую систему уравнений:
begin{cases} sum [y_i - F(x_i, a, b)]cdot F^prime_a(x_i, a, b)=0 \ sum [y_i - F(x_i, a, b)]cdot F^prime_b(x_i, a, b)=0 end{cases}

Для функции вида F(x,a,b)=ax+b частные производные равны:
F^prime_a=x,
F^prime_b=1

Подставив производные, получим:
begin{cases} sum (y_i - ax_i-b)cdot x_i=0 \ sum (y_i - ax_i-b)=0 end{cases}

Далее:
begin{cases} sum y_ix_i - a sum x_i^2-bsum x_i=0 \ sum y_i - asum x_i - nb=0 end{cases}

Откуда, выразив a и b, можно получить формулы для коэффициентов линейной регрессии, приведенные выше.
Аналогичным образом выводятся формулы для остальных видов регрессий.

Линейная аппроксимация

При обработке экспериментальных данных часто возникает необходимость аппроксимировать их линейной функцией.

Аппроксимацией (приближением) функции f(x) называется нахождение такой функции ( аппроксимирующей функции ) g(x) , которая была бы близка заданной. Критерии близости функций могут быть различные.

В случае если приближение строится на дискретном наборе точек, аппроксимацию называют точечной или дискретной .

В случае если аппроксимация проводится на непрерывном множестве точек (отрезке), аппроксимация называется непрерывной или интегральной . Примером такой аппроксимации может служить разложение функции в ряд Тейлора, то есть замена некоторой функции степенным многочленом.

Наиболее часто встречающим видом точечной аппроксимации является интерполяция – нахождение промежуточных значений величины по имеющемуся дискретному набору известных значений.

Пусть задан дискретный набор точек, называемых узлами интерполяции , а также значения функции в этих точках. Требуется построить функцию g(x) , проходящую наиболее близко ко всем заданным узлам. Таким образом, критерием близости функции является g(xi)=yi .

В качестве функции g(x) обычно выбирается полином, который называют интерполяционным полиномом .

В случае если полином един для всей области интерполяции, говорят, что интерполяция глобальная .

В случае если между различными узлами полиномы различны, говорят о кусочной или локальной интерполяции.

Найдя интерполяционный полином, мы можем вычислить значения функции между узлами, а также определить значение функции даже за пределами заданного интервала (провести экстраполяцию ).

Аппроксимация линейной функцией

Любая линейная функция может быть записана уравнением
Уравнение прямой
Аппроксимация заключается в отыскании коэффициентов a и b уравнения таких, чтобы все экспериментальные точки лежали наиболее близко к аппроксимирующей прямой.

С этой целью чаще всего используется метод наименьших квадратов (МНК), суть которого заключается в следующем: сумма квадратов отклонений значения точки от аппроксимирующей точки принимает минимальное значение:
Метод наименьших квадратов
Решение поставленной задачи сводится к нахождению экстремума указанной функции двух переменных. С этой целью находим частные производные функции функции по коэффициентам a и b и приравниваем их к нулю.
Частные производные МНК
Решаем полученную систему уравнений
Частные производные МНК
Определяем значения коэффициентов
Коэффициенты линейной аппроксимации по МНК
Для вычисления коэффициентов необходимо найти следующие составляющие:
МНК
Тогда значения коэффициентов будут определены как
Коэффициенты линейной аппроксимации

Пример реализации

Для примера реализации воспользуемся набором значений, полученных в соответствии с уравнением прямой

y = 8 · x — 3

Рассчитаем указанные коэффициенты по методу наименьших квадратов.
Результат сохраняем в форме двумерного массива, состоящего из 2 столбцов.
При следующем запуске программы добавим случайную составляющую к указанному набору значений и снова рассчитаем коэффициенты.

Реализация на Си

Результат выполнения
Запуск без случайной составляющей
Реализация линейной аппроксимации по МНК
Запуск со случайной составляющей
Реализация линейной аппроксимации по МНК

Построение графика функции

Для наглядности построим график функции, полученный аппроксимацией по методу наименьших квадратов. Подробнее о построении графика функции описано здесь.

Реализация на Си

Результат выполнения
Реализация линейной аппроксимации по МНК (график)

Аппроксимация с фиксированной точкой пересечения с осью y

В случае если в задаче заранее известна точка пересечения искомой прямой с осью y, в решении задачи останется только одна частная производная для вычисления коэффициента a.
Частная производная по a
В этом случае текст программы для поиска коэффициента угла наклона аппроксимирующей прямой будет следующий (имя функции getApprox() заменено на getApproxA() во избежание путаницы).

Результат выполнения программы поиска коэффициента угла наклона аппроксимирующей прямой при фиксированном значении b=0:
Аппроксимация при фиксированном b

Как по точкам определить функцию: Как по точкам найти функцию найти функцию по точкам Математика

Построение графиков функций — урок. Алгебра, 10 класс.

построить график функции y=x2&plus;4×2−4.

Решение 1. Обозначим: f(x)=x2&plus;4×2−4. Область определения этой функции: D(f)=(−∞;−2)∪(−2;2)∪(2;&plus;∞), так как x≠2,x≠−2.

2. Проведём исследование функции на чётность/нечётность:

Функция чётная. Следовательно, можно построить ветви графика функции для x≥0 и отобразить их симметрично относительно оси ординат.

3. Определим асимптоты. Вертикальная асимптота: прямая (x=1), т. к. при (x=1) знаменатель дроби равен нулю, а числитель при этом не равен нулю. Для определения горизонтальной асимптоты вычисляем limx→∞f(x):

Следовательно, (y=1) — горизонтальная асимптота.

4. Определим стационарные и критические точки, точки экстремума и промежутки монотонности функции:

Производная существует на всей области определения функции, следовательно, критических точек у функции нет.

Стационарные точки определим из уравнения y′=0. Получаем: (-16x=0) — откуда получаем, что (x=0). При (x<0) имеем: y′>0; при (x>0) имеем: y′<0. Таким образом, в точке (x=0) функция имеет максимум, причём ymax=f(0)=02&plus;402−4=−1.

При (x>0) имеем: y′<0. Учитывая точку разрыва (x=2), делаем вывод: функция убывает на промежутках 0;2) и (2;&plus;∞).

5. Найдём несколько точек, принадлежащих графику функции f(x)=x2&plus;4×2−4 при x≥0:

(0. 5)

6. Сначала нарисуем часть графика при x≥0, потом — часть, симметричную ей относительно оси (y). Полученный график имеет точку максимума ((0;-2)), горизонтальную асимптоту (y=1) и вертикальную асимптоту (x=2).

Как построить график функции

В этой статье разобран самый простой метод получения графика функции.

Суть метода: найти несколько точек принадлежащих графику, расставить их на координатной плоскости и соединить. Этот способ не лучший (лучший – построение графиков с помощью элементарных преобразований), но если вы все забыли или ничего не учили, то знайте, что у вас всегда есть план Б – возможность построить график по точкам.

Итак, алгоритм по шагам:

1. Представьте, как выглядит ваш график.

Строить гораздо легче, если вы понимаете, что примерно должны получить в итоге. Поэтому сначала посмотрите на функцию и представьте, как примерно должен выглядеть ее график. Все виды графиков элементарных функций вы можете найти здесь. Этот пункт желательный, но не обязательный.

Пример: Построить график функции (y=-)(frac)

Данная функция — гипербола с ветвями расположенными во второй и четвертой четверти. Её график выглядит как-то так:

2. Составьте таблицу точек, принадлежащих графику:

Теперь подставим разные значения «иксов» в функцию, и для каждого икса посчитаем значение «игрека».

(y) — не существует (делить на ноль нельзя)

Результат вычислений удобно представлять в виде таблицы, примерно такой:

Как вы могли догадаться, полученные пары «икс» и «игрек» — это точки, лежащие на нашем графике.

4. Постройте координатную плоскость и отметьте на ней точки из таблицы.

5. Если нужно, найдите еще несколько точек и нанесите их на координатную плоскость.

Пример: Чтобы построить график мне не хватает нескольких точек из отрицательной части, а также рядом с осью игрек, поэтому я добавлю столбцы с (x=-2), (x=-4), (x=)(frac) и (x=-)(frac)

6. Постройте график

Теперь аккуратно и плавно соединяем точки.

Онлайн уравнение прямой по двум точкам с подробным решением

Калькулятор уравнения прямой онлайн составлет общее уравнение прямой и уравнение прямой с угловым коэффициентом k по двум точкам.

Исходные данные:

A x + B y + C = 0общее уравнение прямой, где A и B одновременно не равны нулю:

составление общее уравнение прямой, где

расчет коэффициента А для общего уравнения прямой

расчет коэффициента B для общего уравнения прямой

расчет коэффициента C для общего уравнения прямой

y = k x + bуравнение прямой с угловым коэффициентом k, равным тангенсу угла, образованного данной прямой и положительным направлением оси ОХ (ось абсцисс):

составление уравнения прямой с угловым коэффициентом, где

расчет углового коэффициента k

расчет коэффициента b

I. Порядок действий при составлении уравнения прямой, проходящей через 2 точки онлайн калькулятором:

  1. Для составления уравнения прямой требуется ввести значеня координат 2 точек ([X1, Y1]; [X2, Y2]).

прямая (прямая линия) — это бесконечная линия, по которой проходит кратчайший путь между любыми двумя ее точками. интерполяция — способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений. линейная интерполяция — нахождение промежуточного значения функции по двум точкам (условно проведя прямую между ними). квадратичная интерполяция — нахождение промежуточного значения функции по трем точкам (интерполирующая функция многочлен второго порядка — парабола).

    Блок исходных данных выделен желтым цветом, блок промежуточных вычислений выделен голубым цветом, блок решения выделен зеленым цветом.

Аппроксимация в Matlab — CodeTown.ru

Приветствую! Сегодня продолжаем говорить об обработке экспериментальных данных. Сегодняшняя статья — продолжение предыдущей темы: Интерполяция в Matlab. Настоятельно советую с ней ознакомиться перед чтением данной статьи. По сути аппроксимация в Matlab очень похожа на интерполяцию, однако, для её реализации используются другие правила и функции.

Аппроксимация

Относительно интерполяции, аппроксимация получила более широкое распространение. Сущность этого метода состоит в том, что табличные данные аппроксимируют кривой, которая не обязательно должна пройти через все узловые точки, а должна как бы сгладить все случайные помехи табличной функции.

МНК (Метод Наименьших Квадратов)

Одним из самых популярных методов аппроксимации в Matlab и в других средах, это Метод Наименьших Квадратов ( МНК ). В этом методе при сглаживании опытных данных аппроксимирующую кривую стремятся провести так, чтобы её отклонения от табличных данных по всем узловым точкам были минимальными.

Суть МНК заключается в следующем: для табличных данных, полученных в результате эксперимента, отыскать аналитическую зависимость, сумма квадратов уклонений которой от табличных данных во всех узловых точках была бы минимальной.

Аппроксимация в Matlab по МНК осуществляется с помощью функции polyfit. Функция p = polyfit(x, y, n) находит коэффициенты полинома p(x) степени n, который аппроксимирует функцию y(x) в смысле метода наименьших квадратов. Выходом является строка p длины n+1, содержащая коэффициенты аппроксимирующего полинома.

Примеры задач

Разберём задачу, в которой разрешается использование встроенных матлабовских функций.

Осуществить аппроксимацию в Matlab табличных данных x = [0, 0.1 , 0.2, 0.3, 0.5] и y = [3, 4.5, 1.7, 0.7, -1] . Применяя метод наименьших квадратов, приблизить ее многочленами 1-ой и 2-ой степени. 2+coeff2(2)*x+coeff2(3)))

Вывод:
ans = 0.9253
ans = 0.8973

Однако, встречаются задачи, где требуется реализовать аппроксимацию в Matlab без использования специальных функций.

Найти у(0.25) путём построения аппроксимирующего полинома методом наименьших квадратов согласно данным:
x: 0, 0.1, 0.2, 0.3, 0.5
y: 3, 4.5, 1.7, 0.7, -1
p: 0.5, 0.8, 1.6, 0.8, 0.1
Построить этот полином без учёта весовых коэффициентов с использованием определителя Вандермонда и стандартных операторов.

Вывод:
a =
228.1447
-176.0984
22.7745
3.1590
qq = 228.1447 -176.0984 22.7745 3.1590
y2 = 1.4113

Как видите встроенные функции для аппроксимации в Matlab укорачивают алгоритм почти вдвое.

Существует также возможность реализации всего алгоритма через одну функцию, но для преподавателей студентов она скорее всего будет не приемлема. С помощью функции lsqcurvefit(fun,x0,xdata,ydata), где:
xdata,ydata– табличные значения аппроксимируемой функции;
x0 –стартовое значение параметров функции;
fun – функция аппроксимации, задаваемая пользователем

С аналитически-теоретической стороны, существуют такие виды аппроксимации:

  • Аппроксимация ортогональными классическими полиномами.
  • Аппроксимация каноническим полиномом

Но на практике их реализацию требуют редко.

Вот и вся основная информация по аппроксимации в Matlab, если остались вопросы, задавайте их в комментариях.

Скачать исходник первой задачи
Скачать исходник второй задачи

Поделиться ссылкой:

Получить функцию по точкам. Как по точкам найти функцию

Как построить график по n точкам? Самое простое — отметить их маркерами на координатной сетке. Однако для наглядности их хочется соединить, чтобы получить легко читаемую линию. Соединять точки проще всего отрезками прямых. Но график-ломаная читается довольно тяжело: взгляд цепляется за углы, а не скользит вдоль линии. Да и выглядят изломы не очень красиво. Получается, что кроме ломаных нужно уметь строить и кривые. Однако тут нужно быть осторожным, чтобы не получилось вот такого:

Метрика программного обеспечения — это функция системы, документации или процесса, которые могут быть объективно измерены. Вот некоторые примеры: размер программного обеспечения, количество зарегистрированных дефектов, количество тестовых примеров на случай использования, количество людей, необходимых для разработки системного модуля, среди прочих. Метрики можно разделить на контроль или прогнозирование. Элементы управления обычно связаны с программными процессами, такими как: среднее усилие и время, необходимое для исправления дефекта.

Немного матчасти

Функции f i могут быть самыми разными, но чаще всего используют полиномы некоторой степени. В этом случае итоговая интерполирующая функция (кусочно заданная на промежутках, ограниченных точками P i ) называется сплайном .

Прогнозирующие показатели напрямую связаны с самой системой. Примерами являются: цикломатрическая сложность, строки кода, размер класса и другие. Прогнозирующие показатели могут влиять на принятие решений руководителями проектов. Менеджеры используют показатели процесса, чтобы решить, нужно ли вносить изменения в процесс. Предиктивные меры также используются для оценки усилий, необходимых для создания или внесения изменений в программное обеспечение. В этой статье, когда мы ссылаемся на показатели программного обеспечения, мы будем иметь дело с теми, которые классифицируются как прогноз.

В разных инструментах для построения графиков — редакторах и библиотеках — задача «красивой интерполяции» решена по-разному. В конце статьи будет небольшой обзор существующих вариантов. Почему в конце? Чтобы после ряда приведённых выкладок и размышлений можно было поугадывать, кто из «серьёзных ребят» какие методы использует.

Показатели программного обеспечения являются индикаторами, возникающими в результате измерительной деятельности процесса разработки программного обеспечения, которые помогают в управлении проектами. Существует несколько способов измерения системы. Еще некоторые, другие менее эффективны и эффективны. Некоторые вызывают больше, другие меньше влияют на команду. Некоторые из них могут применяться во всем программном процессе. В качестве примера можно привести строки кода, которые измеряют размер продукта.

Другим примером метрики является человекоподобное усилие или человеко-час. Ротация работоспособности также может считаться метрикой. Другими примерами являются точка использования и функциональная точка, которая является одной из наиболее часто используемых и широко распространенных показателей.

Ставим опыты

Однако, как отмечалось выше, иногда хочется получить в итоге гладкую кривую.

Анализ по функциональной точке имеет в качестве основной цели измерение функциональности системы на основе представления пользователя в соответствии со следующими характеристиками.

  • База основана на представлении пользователя.
  • Тем имеет смысл для конечных пользователей.
  • Используются оценки Утилиза.

Что есть гладкость? Бытовой ответ: отсутствие острых углов. Математический: непрерывность производных. При этом в математике гладкость имеет порядок, равный номеру последней непрерывной производной, и область, на которой эта непрерывность сохраняется. То есть, если функция имеет гладкость порядка 1 на отрезке [a ;&nbspb ], это означает, что на [a ;&nbspb ] она имеет непрерывную первую производную, а вот вторая производная уже терпит разрыв в каких-то точках.
У сплайна в контексте гладкости есть понятие дефекта. Дефект сплайна — это разность между его степенью и его гладкостью. Степень сплайна — это максимальная степень использованных в нём полиномов.
Важно отметить, что «опасными» точками у сплайна (в которых может нарушиться гладкость) являются как раз P i , то есть точки сочленения сегментов, в которых происходит переход от одного полинома к другому. Все остальные точки «безопасны», ведь у полинома на области его определения нет проблем с непрерывностью производных.
Чтобы добиться гладкой интерполяции, нужно повысить степень полиномов и подобрать их коэффициенты так, чтобы в граничных точках сохранялась непрерывность производных.

Он в основном количественно определяет функции, содержащиеся в программном обеспечении, в значимых терминах для пользователей. Эта мера напрямую связана с функциональными требованиями. Хотя он очень популярен, его также критикуют многие авторы, которые считают, что это не объективная мера.

Чтобы рассказать о функциональной точке, необходимо выполнить несколько шагов, как показано на рисунке 1. Первый — это определить тип счета. На этом этапе вы определяете, что будет измеряться, тип подсчета, который будет использоваться для измерения дизайна программного обеспечения, как в процессе, так и в продукте. Возможны три типа подсчетов.

Традиционно для решения такой задачи используют полиномы третьей степени и добиваются непрерывности первой и второй производной. То, что получается, называют кубическим сплайном дефекта 1 . Вот как он выглядит для наших данных:

Счетчик проекта развития, счетчик проектов улучшения, количество приложений. . В упрощенном виде первая измеряет функциональность, предоставляемую конечным пользователям, когда проект готов к моменту его установки. Этот счет также охватывает преобразование данных, необходимых для развертывания программного обеспечения.

Второе измеряет модификации существующего приложения, которое включает в себя функции, включенные, измененные и исключенные из системы проектом, в дополнение к функциям преобразования данных. Важно помнить, что всегда после подсчета обслуживания и его реализации количество функциональных точек приложения должно обновляться в соответствии с изменениями, внесенными в функциональные возможности. Это призвано постоянно обновлять подсчет точек функции приложения.

Кривая, действительно, гладкая. Но если предположить, что это график некоторого процесса или явления, который нужно показать заинтересованному лицу, то такой метод, скорее всего, не подходит. Проблема в ложных экстремумах. Появились они из-за слишком сильного искривления, которое было призвано обеспечить гладкость интерполяционной функции. Но зрителю такое поведение совсем не кстати, ведь он оказывается обманут относительно пиковых значений функции. А ради наглядной визуализации этих значений, собственно, всё и затевалось.
Так что надо искать другие решения.

Третий и последний тип счета измеряет функциональность, предоставляемую пользователю установленным приложением и в процессе производства, так что текущая функциональность имеет меру. Шаги операций функции рисунка. Второй шаг для подсчета — это идентификация объема счета и границы приложения. На этом этапе область оцениваемой системы и ее граница ограничены.

Граница приложения определяет, что является внешним для приложения. — концептуальный интерфейс между приложением и внешними пользователями. Область определяет набор или подмножество программного обеспечения известного размера. Третий и четвертый шаги — это подсчет функций данных и функций транзакции. На этих шагах подсчитываются нескорректированные функциональные точки. На этих этапах рассматриваются.

Другое традиционное решение, кроме кубических сплайнов дефекта 1 — полиномы Лагранжа. Это полиномы степени n &nbsp–&nbsp1, принимающие заданные значения в заданных точках. То есть членения на сегменты здесь не происходит, вся последовательность описывается одним полиномом.
Но вот что получается:

Функции данных: внутренние логические файлы, файлы внешнего интерфейса, функции транзакции: внешние записи, внешние выходы и внешние запросы. Логическая обработка не должна иметь математической формулы или вычисления и не должна генерировать производные данные.

Пятым шагом для подсчета является расчет коэффициента корректировки. Эти факторы связаны с характеристиками приложения. Он отвечает за исправление искажений предыдущего шага и основывается на общих характеристиках системы, в которой определены 14 элементов, которые определяют значение уровня влияния каждого из этих элементов размера системы.

Гладкость, конечно, присутствует, но наглядность пострадала так сильно, что… пожалуй, стоит поискать другие методы. На некоторых наборах данных результат выходит нормальный, но в общем случае ошибка относительно линейной интерполяции (и, соответственно, ложные экстремумы) может получаться слишком большой — из-за того, что тут всего один полином на все сегменты.

Легкость изменения. Шестой и последний шаг счетчика — это вычисление скорректированных точек функции. На этом шаге исправлены возможные искажения, возникающие при расчете нескорректированных функциональных точек, приближая измерения к реальной ситуации. Обычно и по контракту корректирующие коэффициенты равны 1, так что они не влияют на нескорректированные функциональные точки.

Он делится на циклы, называемые спринтами. Именно в этих спринтах выполняются мероприятия по проекту. Его практика осуществляется по этапам, известным как «Совещание по планированию», «Ежедневный анализ», «Обзор и ретроспектива». Существует также «Заготовка продукта» и «Спринт-отставание», где перечислены действия по проекту и будут разделены спринтами. Для этого расчет производится по следующей формуле.

В компьютерной графике очень широко применяются кривые Безье , представленные полиномами k -й степени.
Они не являются интерполирующими, так как из k &nbsp+&nbsp1 точек, участвующих в построении, итоговая кривая проходит лишь через первую и последнюю. Остальные k &nbsp–&nbsp1 точек играют роль своего рода «гравитационных центров», притягивающих к себе кривую.
Вот пример кубической кривой Безье:

Как применить это в реальном случае? Пример 2 практической части этой статьи. Пример 1 — Регистрация клиентов. В этом примере рассмотрим экран «Мастер клиента», показанный на рисунке 2. Рисунок каркаса клиента. Давайте рассмотрим все этапы только для примера.

Регистрация клиентов. . Подсчет транзакций. Извлекая сложность и общие функциональные точки как функций данных, так и функций транзакций, необходимо вычислить нескорректированные функциональные точки, умножив количество функций, определенных для заданной сложности, на их вклад. Наконец, добавьте все найденные точки функции. Давайте рассмотрим пример нашего клиента, как показано на рисунке 3.

Как это можно использовать для интерполяции? На основе этих кривых тоже можно построить сплайн. То есть на каждом сегменте сплайна будет своя кривая Безье k -й степени (кстати, k &nbsp=&nbsp1 даёт линейную интерполяцию). И вопрос только в том, какое k взять и как найти k &nbsp–&nbsp1 промежуточную точку.
Здесь бесконечно много вариантов (поскольку k ничем не ограничено), однако мы рассмотрим классический: k &nbsp=&nbsp3.
Чтобы итоговая кривая была гладкой, нужно добиться дефекта 1 для составляемого сплайна, то есть сохранения непрерывности первой и второй производных в точках сочленения сегментов (P i ), как это делается в классическом варианте кубического сплайна.
Решение этой задачи подробно (с исходным кодом) рассмотрено .
Вот что получится на нашем тестовом наборе:

Расчет коэффициента корректировки выполняется для каждого приложения для каждого счета. Важно помнить, что показанные факторы связаны с характеристиками приложения и могут влиять на его размер. После вычислений нескорректированных функциональных точек и коэффициента корректировки вычисляется функция, скорректированная по формуле.

Коэффициент корректировки тока: значение корректировки, обнаруженное после проекта технического обслуживания. Таким образом, размер функциональности, который будет реализован, будет составлять 13 пунктов. Пример 2 — Отчет о регистрации клиентов. В этом примере только один спринт будет использоваться для реализации функциональных возможностей и доведения его до завершения тестирования. Запрос был подан в уже существующую систему и в производстве на клиенте.

Стало лучше: ложные экстремумы всё ещё есть, но хотя бы не так сильно отличаются от реальных.

Думаем и экспериментируем

В качестве прямых, на которых лежат точки C i &nbsp–&nbsp1 (2) , P i и C i (1) , целесообразно взять касательные к графику интерполируемой функции в точках P i . Это гарантирует отсутствие ложных экстремумов, так как кривая Безье оказывается ограниченной ломаной, построенной на её контрольных точках (если эта ломаная не имеет самопересечений).

Будет использоваться владелец продукта клиента, специалист, который будет поднимать, описывать и определять приоритеты требований и правил, которые должны быть разработаны. Прогноз «Идеальный день» был сделан для каждого вида деятельности с использованием шкалы, поэтому определение создания функциональности было всего лишь одним спринтом. При кодировании у нас будет 14, 5 дней. Остальные дни будут для документации, тестов и любых исправлений ошибок, обнаруженных командой тестирования.

Для расчета Идеального Дня было определено, что это будет считаться производительностью 90% в день 8 часов в день. Планирование показателей по Покеру было применено, и после нескольких обсуждений в итоге было достигнуто 125 баллов. Для каждой точки оценивалось почасовое значение в общей сложности 220 часов.

Методом проб и ошибок эвристика для расчёта расстояния от точки интерполируемой последовательности до промежуточной контрольной получилась такой:

Эвристика 1

Первая и последняя промежуточные контрольные точки равны первой и последней точке графика соответственно (точки C 1 (1) и C n &nbsp–&nbsp1 (2) совпадают с точками P 1 и P n соответственно).
В этом случае получается вот такая кривая:

Как видно, ложных экстремумов уже нет. Однако если сравнивать с линейной интерполяцией, местами ошибка очень большая. Можно сделать её ещё меньше, но тут в ход пойдут ещё более хитрые эвристики.

Отчет о регистрации клиентов. Для дидактических целей счет будет проходить через все этапы, как в примере 1. Проект улучшения. . Идентификация границы приложения. Извлекая сложность и общие функциональные точки как функций данных, так и функций транзакции, необходимо вычислить нескорректированные функциональные точки. Давайте посмотрим на наш пример отчета о записи клиентов на рисунке.

Рисунок Всего необычных точек функции. Коэффициент корректировки = 0, 65. Расчет скорректированных функциональных точек. После вычислений нескорректированных функциональных точек и коэффициента корректировки будет рассчитана функция, скорректированная в соответствии с формулой, представленной в примере 1.

К текущему варианту мы пришли, уменьшив гладкость на один порядок. Можно сделать это ещё раз: пусть сплайн будет иметь дефект 3. По факту, тем самым формально функция не будет гладкой вообще: даже первая производная может терпеть разрывы. Но если рвать её аккуратно, визуально ничего страшного не произойдёт.
Отказываемся от требования равенства расстояний от точки P i до точек C i &nbsp–&nbsp1 (2) и C i (1) , но при этом сохраняем их все лежащими на одной прямой:

Таким образом, размер функциональности, который будет реализован, будет составлять 3. 03 функциональных пункта. Мы можем заключить, что точка функции является метрикой, ориентированной на пользователя. Они описывают, что программное обеспечение должно делать с точки зрения задач и услуг.

Тем не менее, это очень распространенный, стандартизированный и один из наиболее широко используемых сегодня. И главное, не учитывает ни язык программирования, ни «чувство» профессионала на момент разработки, как и многие другие стратегии. Тем не менее, можно сделать совместное из двух методов, где сложность может быть оценена с учетом оценок, сделанных разработчиками, и размера, с учетом взгляда пользователя.

Эвристика для вычисления расстояний будет такой:

Эвристика 2

Расчёт l 1 и l 2 такой же, как в «эвристике 1».
При этом, однако, стоит ещё проверять, не совпали ли точки P i и P i &nbsp+&nbsp1 по ординате, и, если совпали, полагать l 1 &nbsp=&nbspl 2 &nbsp=&nbsp0. Это защитит от «вспухания» графика на плоских отрезках (что тоже немаловажно с точки зрения правдивого отображения данных).

Результат получается такой:

В результате на шестом сегменте ошибка уменьшилась, а на седьмом — увеличилась: кривизна у Безье на нём оказалась больше, чем хотелось бы. Исправить ситуацию можно, принудительно уменьшив кривизну и тем самым «прижав» Безье ближе к отрезку прямой, которая соединяет граничные точки сегмента. Для этого используется следующая эвристика:

Эвристика 3

Если абсцисса точки пересечения касательных в точках P i (x i ,&nbspy i ) и P i &nbsp+&nbsp1 (x i &nbsp+&nbsp1 ,&nbspy i &nbsp+&nbsp1) лежит в отрезке [x i ;&nbspx i &nbsp+&nbsp1 ], то l 1 либо l 2 полагаем равным нулю. В том случае, если касательная в точке P i направлена вверх, нулю полагаем максимальное из l 1 и l 2 , если вниз — минимальное.

На этом было принято решение признать цель достигнутой.
Может быть, кому-то пригодится код .

А как люди-то делают?
MS Excel

Это очень похоже на рассмотренный выше сплайн дефекта 1, основанный на кривых Безье. Правда, в отличие от него в чистом виде, тут всего два ложных экстремума — первый и второй сегменты (у нас было четыре). Видимо, к классическому поиску промежуточных контрольных точек тут добавляются ещё какие-то эвристики. Но ото всех ложных экстремумов они не спасли.

LibreOffice Calc

В настройках это названо кубическим сплайном. Очевидно, он тоже основан на Безье, и вот тут уже точная копия нашего результата: все четыре ложных экстремума на месте.

Есть там ещё один тип интерполяции, который мы тут не рассматривали: B-сплайн. Но для нашей задачи он явно не подходит, так как даёт вот такой результат:)

Highcharts , одна из самых популярных JS-библиотек для построения диаграмм

Тут налицо «метод касательных» в варианте равенства расстояний от точки интерполируемой последовательности до промежуточных контрольных. Ложных экстремумов нет, зато есть сравнительно большая ошибка относительно линейной интерполяции (седьмой сегмент).

amCharts , ещё одна популярная JS-библиотека

Картина очень похожа на экселевскую, те же два ложных экстремума в тех же местах.

Coreplot , самая популярная библиотека построения графиков для iOS и OS X

Есть ложные экстремумы и видно, что используется сплайн дефекта 1 на основе Безье.
Библиотека открытая, так что можно посмотреть в код и убедиться в этом.

aChartEngine , вроде как самая популярная библиотека построения графиков для Android

Больше всего похоже на кривую Безье степени n &nbsp–&nbsp1, хотя в самой библиотеке график называется «cubic line». Странно! Как бы то ни было, тут не только присутствуют ложные экстремумы, но и в принципе не выполняются условия интерполяции.

Вместо заключения

Метки: Добавить метки

Определите степень полинома, который будет использован для интерполирования. Он имеет вид: Кn*Х^n + К(n-1)*Х^(n-1) +.0.

Если вы не можете найти линейную функцию , а точнее распознать ее среди многих, то не переживайте. Трудного в этом ничего нет. Всего лишь пару простых правил, и вы будете всегда отличать функции друг от друга.

Линейная функция является самой просто из основных школьных функций. Если вы только начали изучать их, то, несомненно, у вас могут возникнуть некоторые трудности по распознаванию. Учителя зачастую считают, что дети легко и быстро усваивают материал. Но бывает , что пропустишь всего лишь одно занятие, а уже материал стал более сложны и непонятным, и самому его не разобрать . Поэтому первым делом вам нужно начать с определения, в котором говорится, что линейной функцией называется функция вида f(x)=ax+b. То есть вам необходимо запомнить общий вид, с помощью которого вы сможете находить подобные и определять, что данные функции линейные.

Если общий вид не помогает, и вы все равно никак не разыщите линейную функцию , то вам поможет график. По точкам постройте чертеж (можно даже схематический). Запомните одну важную вещь: у линейной функции график всегда прямая. Поэтому, сделав рисунок , вы сразу же увидите, линейная она у вас либо нет.

В случае, если график не удается построить, есть еще один способ распознавания , который является одним из наиболее простых. Запомните раз и навсегда, что линейная функция имеет степень не выше второй, то есть квадратичная функция никак не может быть линейной, также как и кубическая, и функция четвертой, пятой степеней и так далее. Даже если функция равна числу и в левой части не содержит х, то все равно она будет линейной.

Рекомендуем также

Функция поиска уравнения по таблице точек

Поиск по уравнениям функций

Инструмент для нахождения уравнения функции по ее точкам, ее координатам x, y = f (x) в соответствии с некоторыми методами интерполяции и алгоритмами поиска уравнений

Функция поиска уравнений — dCode

dCode является бесплатным, а его инструменты являются ценным подспорьем в играх, математике, геокешинге, головоломках и задачах, которые нужно решать каждый день!
Предложение? обратная связь? Жук ? идея ? Запись в dCode !

Ответы на вопросы (FAQ)

Как найти уравнение кривой?

Чтобы найти уравнение на графике:

Метод 1 (подгонка): проанализируйте кривую (посмотрев на нее), чтобы определить, какой тип функции это (линейная, экспоненциальная, логарифмическая, периодическая и т. Д.).) и укажите некоторые значения в таблице, и dCode найдет функцию, которая ближе всего подходит к этим точкам.

Метод 2 (интерполяция): из конечного числа точек существуют формулы, позволяющие создать многочлен, который проходит точно через эти точки (см. Интерполяция Лагранжа), указать значения определенных точек, и dCode вычислит проходящий полином по этим точкам. точки.

Как найти уравнение из набора точек?

Чтобы вывести уравнение функции из таблицы значений (или кривой), существует несколько математических методов.

Метод 1: обнаруживает замечательные решения , как и замечательные идентичности, иногда легко найти уравнение, анализируя значения (сравнивая два последовательных значения или идентифицируя определенные точные значения).

Пример: функция имеет для точек (пары $ (x, y) $) координаты: $ (1,2) (2,4), (3,6), (4,8) $, ординаты увеличиваются на 2, а абсциссы увеличиваются на 1, решение тривиально: $ f (x) = 2x $

Метод 2: использовать функцию интерполяции , более сложный, этот метод требует использования математических алгоритмов, которые могут найти многочлены, проходящие через любые точки.Наиболее известными интерполяциями являются лагранжева интерполяция, ньютоновская интерполяция и интерполяция Невилля.

NB: для данного набора точек существует бесконечное количество решений, потому что через определенные точки проходят бесконечные функции. dCode пытается предложить максимально упрощенные решения, основанные на аффинной функции или полиноме низкой степени (степени 2 или 3).

Как найти уравнение линии?

Исходный код

dCode сохраняет за собой право собственности на исходный код онлайн-инструмента Function Equation Finder.За исключением явной лицензии с открытым исходным кодом (обозначенной CC / Creative Commons / free), любой алгоритм, апплет или фрагмент «Function Equation Finder» (конвертер, решатель, шифрование / дешифрование, кодирование / декодирование, шифрование / дешифрование, переводчик) или любая «Функция» Функция Equation Finder (вычисление, преобразование, решение, расшифровка / шифрование, дешифрование / шифрование, декодирование / кодирование, перевод), написанная на любом информационном языке (Python, Java, PHP, C #, Javascript, Matlab и т. Д.), Без загрузки данных , скрипт, копипаст или доступ к API для «Function Equation Finder» будут бесплатными, то же самое для автономного использования на ПК, планшете, iPhone или Android! dCode распространяется бесплатно и онлайн.

Нужна помощь?

Пожалуйста, посетите наше сообщество dCode Discord для запросов о помощи!
NB: для зашифрованных сообщений проверьте наш автоматический идентификатор шифра!

Вопросы / комментарии

уравнение, координата, кривая, точка, интерполяция, таблица

Источник: https: //www.dcode.2 + bx + c> ) задается тремя числами, разумно предположить, что мы могли бы подогнать параболу к трем точкам на плоскости. Это действительно так, и это полезная идея. На этом шаге мы увидим, как алгебраически подогнать параболу к трем точкам на декартовой плоскости. Это включает в себя вспоминание или обучение тому, как решить три уравнения с тремя неизвестными. Это полезный навык сам по себе.

Уникальный круг, проходящий через три неколлинеарных точки

Решение трех линейных уравнений с тремя неизвестными

Линейные уравнения в координатной плоскости (Алгебра 1, Визуализация линейных функций) — Mathplanet

Линейное уравнение — это уравнение с двумя переменными, график которого представляет собой линию. График линейного уравнения — это набор точек на координатной плоскости, которые все являются решениями уравнения. Если все переменные представляют собой действительные числа, можно изобразить уравнение, нанеся на график достаточно точек для распознавания шаблона, а затем соединить точки, чтобы включить все точки.

Если вы хотите построить график линейного уравнения, у вас должно быть как минимум две точки, но обычно рекомендуется использовать более двух точек. При выборе очков старайтесь включать как положительные, так и отрицательные значения, а также ноль.

Пример

Постройте функцию y = x + 2

Начните с выбора пары значений для x, например -2, -1, 0, 1 и 2 и вычислите соответствующие значения y.

X Y = х + 2 Заказанная пара
-2 -2 + 2 = 0 (-2, 0)
-1 -1 + 2 = 1 (-1, 1)
0 0 + 2 = 2 (0, 2)
1 1 + 2 = 3 (1, 3)
2 2 + 2 = 4 (2, 4)

Теперь вы можете просто нанести пять упорядоченных пар на координатную плоскость

На данный момент это пример дискретной функции.Дискретная функция состоит из изолированных точек.

Проведя линию через все точки и продолжая линию в обоих направлениях, мы получаем противоположность дискретной функции, непрерывную функцию, которая имеет непрерывный график.

Если вы хотите использовать только две точки для определения вашей линии, вы можете использовать две точки, где график пересекает оси. Точка, в которой график пересекает ось x, называется отрезком x, а точка, в которой график пересекает ось y, называется отрезком y.Пересечение по оси x находится путем нахождения значения x, когда y = 0, (x, 0), а точка пересечения по оси y находится путем нахождения значения y, когда x = 0, (0, y).

Стандартная форма линейного уравнения —

$$ Ax + By = C, : : A, B neq 0 $$

Прежде чем вы сможете построить линейное уравнение в его стандартной форме, вы сначала должны решить уравнение относительно y.

Отсюда вы можете построить уравнение, как в примере выше.

График y = a представляет собой горизонтальную линию, где прямая проходит через точку (0, a)

В то время как график x = a представляет собой вертикальную линию, проходящую через точку (a, 0)

Постройте график линейного уравнения y = 3x — 2

Функции: графики и пересечения

Предполагать ж ( Икс ) а также грамм ( Икс ) это две функции, которые принимают на входе действительное число и выводят действительное число.

Тогда точки пересечения ж ( Икс ) а также грамм ( Икс ) эти числа Икс для которого ж ( Икс ) знак равно грамм ( Икс ) .

Иногда точные значения легко найти, решив уравнение ж ( Икс ) знак равно грамм ( Икс ) алгебраически.

Пример 1:

Какие точки пересечения функций ж ( Икс ) а также грамм ( Икс ) если ж ( Икс ) знак равно Икс + 6 а также грамм ( Икс ) знак равно — Икс ?

Точки пересечения ж ( Икс ) а также грамм ( Икс ) эти числа Икс для которого ж ( Икс ) знак равно грамм ( Икс ) .

Это, Икс + 6 знак равно — Икс .

Икс + 6 знак равно — Икс 2 Икс + 6 знак равно 0 2 Икс знак равно — 6 Икс знак равно — 3

Теперь вы можете использовать значение Икс найти соответствующий у -координата точки пересечения.

Подставьте значение Икс в любой из двух функций.

грамм ( — 3 ) знак равно — ( — 3 ) знак равно 3

Уравнения также можно решить графически, построив две функции на координатной плоскости и указав точку их пересечения.

В других случаях бывает сложно найти точные значения. Возможно, вам потребуется использовать технологию для их оценки.

Пример 2:

Найдите точку (точки) пересечения двух функций.

ж ( Икс ) знак равно | Икс — 5 | грамм ( Икс ) знак равно бревно Икс

Здесь не так-то просто решить алгебраически.Решения уравнения | Икс — 5 | знак равно бревно Икс не являются красивыми рациональными числами.

Изобразите функции на координатная плоскость .

Вы можете использовать графическую утилиту, чтобы определить, что координаты точек пересечения приблизительно равны ( 4,36 , 0,64 ) а также ( 5.76 , 0,76 ) .

1.1: Четыре способа представления функции

  • Определите, представляет ли отношение функцию.
  • Найдите значение функции.
  • Определите, является ли функция взаимно однозначной.
  • Используйте тест вертикальной линии для определения функций.
  • Изобразите функции, перечисленные в библиотеке функций.

Авиалайнер меняет высоту по мере увеличения расстояния от точки старта полета.Вес подрастающего ребенка со временем увеличивается. В каждом случае одно количество зависит от другого. Между двумя величинами существует взаимосвязь, которую мы можем описывать, анализировать и использовать для прогнозирования. В этом разделе мы разберем такие отношения.

Определение того, представляет ли отношение функцию

Отношение — это набор упорядоченных пар. Набор первых компонентов каждой упорядоченной пары называется областью, а набор вторых компонентов каждой упорядоченной пары называется диапазоном.Рассмотрим следующий набор упорядоченных пар. Первые числа в каждой паре — это первые пять натуральных чисел. Второе число в каждой паре вдвое больше первого.

Обратите внимание, что каждое значение в домене также известно как входное значение или независимая переменная и часто обозначается строчной буквой (x ).Каждое значение в диапазоне также известно как выходное значение или зависимая переменная и часто обозначается строчной буквой (y ).

Функция (f ) — это отношение, которое присваивает одно значение в диапазоне каждому значению в домене. Другими словами, никакие (x ) — значения не повторяются. Для нашего примера, который связывает первые пять натуральных чисел с числами, удваивающими их значения, это отношение является функцией, потому что каждый элемент в домене, , связан ровно с одним элементом в диапазон, ( ).

Теперь давайте рассмотрим набор упорядоченных пар, который связывает термины «четный» и «нечетный» с первыми пятью натуральными числами. Он будет выглядеть как

Обратите внимание, что каждый элемент в домене не связан ровно с одним элементом в диапазоне ( ). Например, термин «нечетный» соответствует трем значениям из области ( ), а термин «четный» соответствует двум значениям из диапазона ( ).Это нарушает определение функции, поэтому это отношение не является функцией.

На рисунке ( PageIndex ) сравниваются отношения, которые являются функциями, а не функциями.

Рисунок ( PageIndex ): (a) Это отношение является функцией, потому что каждый вход связан с одним выходом. Обратите внимание, что входные (q ) и (r ) оба дают выход (n ). (б) Эта связь также является функцией. В этом случае каждый вход связан с одним выходом. (c) Это отношение не является функцией, потому что вход (q ) связан с двумя разными выходами.

Функция — это отношение, в котором каждое возможное входное значение приводит ровно к одному выходному значению. Мы говорим: «Выход — это функция входа».

Входные значения составляют область , а выходные значения составляют диапазон .

Как сделать: учитывая связь между двумя величинами, определите, является ли связь функцией

  1. Определите входные значения.
  2. Определите выходные значения.
  3. Если каждое входное значение приводит только к одному выходному значению, классифицируйте отношение как функцию. Если какое-либо входное значение приводит к двум или более выходам, не классифицируйте отношение как функцию.

Пример ( PageIndex ): определение того, являются ли прайс-листы меню функциями

Меню кофейни, показанное на рисунке ( PageIndex ), состоит из предметов и их цен.

  1. Цена зависит от товара?
  2. Является ли товар функцией цены?

Решение

  1. Начнем с рассмотрения ввода как пунктов меню. Выходные значения — это цены. См. Рисунок ( PageIndex ).

У каждого элемента в меню есть только одна цена, поэтому цена зависит от элемента.

  1. Два пункта меню имеют одинаковую цену.Если мы рассматриваем цены как входные значения, а товары как выходные, то с одним и тем же входным значением может быть связано несколько выходных данных. См. Рисунок ( PageIndex ).

Следовательно, товар не зависит от цены.

Пример ( PageIndex ): определение того, являются ли правила оценки класса функциями

В конкретном математическом классе общая процентная оценка соответствует среднему баллу.Является ли средний балл функцией процентной оценки? Является ли процентная оценка функцией среднего балла? В таблице ( PageIndex ) показано возможное правило назначения оценок.

Процентное содержание 0–56 57–61 62–66 67–71 72–77 78–86 87–91 92–100
Средний балл 0.0 1,0 1,5 2,0 2,5 3,0 3,5 4,0

Таблица ( PageIndex ): баллы успеваемости за класс.

Решение

Для любой процентной оценки существует связанный средний балл, поэтому средний балл является функцией процентной оценки. Другими словами, если мы введем процентную оценку, на выходе получится конкретный средний балл.

В данной системе оценок существует диапазон процентных оценок, соответствующих одному и тому же среднему баллу. Например, учащиеся, получившие средний балл 3,0, могут иметь различные процентные оценки от 78 до 86. Таким образом, процентная оценка не является функцией среднего балла.

Таблица ( PageIndex ) перечисляет пять величайших бейсболистов всех времен в порядке рангов.

  1. Является ли ранг функцией имени игрока?
  2. Имя игрока зависит от ранга?

Ответ б

да.(Примечание: если бы два игрока были разделены, скажем, за 4-е место, то имя не зависело бы от ранга.)

Использование обозначения функций

Как только мы определим, что отношение является функцией, нам нужно отобразить и определить функциональные отношения, чтобы мы могли понять и использовать их, а иногда также, чтобы мы могли программировать их в компьютерах. Есть разные способы представления функций. Стандартные обозначения функций — это одно из представлений, облегчающих работу с функциями.

Чтобы представить «рост является функцией возраста», мы начинаем с определения описательных переменных (h ) для роста и (a ) для возраста. Буквы (f ), (g ) и (h ) часто используются для обозначения функций точно так же, как мы используем (x ), (y ) и (z ) для обозначения числа и (A ), (B ) и (C ) для представления множеств.

Помните, мы можем использовать любую букву для названия функции; обозначение (h (a) ) показывает нам, что (h ) зависит от (a ). Значение (a ) необходимо поместить в функцию (h ), чтобы получить результат. Скобки указывают, что возраст вводится в функцию; они не указывают на умножение.

Мы также можем дать алгебраическое выражение в качестве входных данных для функции.Например, (f (a + b) ) означает «сначала сложите (a ) и (b ), и результат будет входом для функции (f )». Для получения правильного результата операции необходимо выполнять именно в таком порядке.

Запись (y = f (x) ) определяет функцию с именем (f ). Это читается как « (y ) является функцией (x )». Буква (x ) представляет входное значение или независимую переменную. Буква (y ) или (f (x) ) представляет выходное значение или зависимую переменную.

Пример ( PageIndex ): использование обозначения функций для дней в месяце

Используйте обозначение функции для представления функции, вход которой является названием месяца, а выход — количеством дней в этом месяце.

Решение

Использование обозначения функций для дней в месяце

Используйте обозначение функции для представления функции, вход которой является названием месяца, а выход — количеством дней в этом месяце.

Количество дней в месяце является функцией названия месяца, поэтому, если мы назовем функцию (f ), мы напишем ( text = f ( text ) ) или (d = f (m) ). Название месяца — это вход в «правило», которое связывает определенное число (выход) с каждым входом.

Рисунок ( PageIndex ): функция (31 = f (январь) ), где 31 — результат, f — правило, а январь — вход.

Например, (f ( text ) = 31 ), потому что в марте 31 день. Обозначение (d = f (m) ) напоминает нам, что количество дней, (d ) (выход), зависит от названия месяца (m ) (вход).

Анализ

Обратите внимание, что входные данные функции не обязательно должны быть числами; входные данные функции могут быть именами людей, метками геометрических объектов или любым другим элементом, определяющим какой-либо вид вывода.Однако большинство функций, с которыми мы будем работать в этой книге, будут иметь числа как входы и выходы.

Пример ( PageIndex ): интерпретация обозначения функции

Функция (N = f (y) ) дает количество полицейских (N ) в городе в году (y ). Что означает (f (2005) = 300 )?

Решение

Когда мы читаем (f (2005) = 300 ), мы видим, что входной год — 2005. Выходное значение, количество полицейских ((N) ), равно 300.Помните, (N = f (y) ). Утверждение (f (2005) = 300 ) говорит нам, что в 2005 году в городе было 300 полицейских.

Используйте обозначение функций, чтобы выразить вес свиньи в фунтах как функцию ее возраста в днях (d ).

Ответ

Вопросы и ответы

Вместо обозначения, такого как (y = f (x) ), можем ли мы использовать тот же символ для вывода, что и для функции, например, (y = y (x) ), означающий « (y ) является функцией (x )? »

Да, это часто делается, особенно по прикладным предметам, использующим высшую математику, например физике и инженерии.Однако, исследуя математику, нам нравится проводить различие между такой функцией, как (f ) , которая является правилом или процедурой, и выходом y, который мы получаем, применяя (f ) к конкретному ввод (x ) . Вот почему мы обычно используем такие обозначения, как (y = f (x), P = W (d) ) и т. Д.

Представление функций с помощью таблиц

Общий метод представления функций — в виде таблицы. Строки или столбцы таблицы отображают соответствующие входные и выходные значения.В некоторых случаях эти значения представляют все, что мы знаем об отношениях; в других случаях таблица предоставляет несколько избранных примеров из более полных отношений.

Таблица ( PageIndex ) перечисляет входное число каждого месяца ( ( text = 1 ), ( text = 2 ) и т. Д.) И вывод значение количества дней в этом месяце. Эта информация представляет все, что мы знаем о месяцах и днях для данного года (который не является високосным). Обратите внимание, что в этой таблице мы определяем функцию дней в месяце (f ), где (D = f (m) ) идентифицирует месяцы целым числом, а не именем.

Номер месяца, (м ) (ввод)

Таблица ( PageIndex ) определяет функцию (Q = g (n) ) Помните, это обозначение говорит нам, что (g ) — это имя функции, которая принимает входные данные (n ) и дает результат (Q ).

(п )

Таблица ( PageIndex ) отображает возраст детей в годах и соответствующий им рост.В этой таблице показаны лишь некоторые из имеющихся данных о росте и возрасте детей. Мы сразу видим, что эта таблица не представляет функцию, потому что одно и то же входное значение, 5 лет, имеет два разных выходных значения, 40 дюймов и 42 дюйма.

Возраст в годах, (a ) (ввод)

Как: по таблице входных и выходных значений определить, представляет ли таблица функцию

  1. Определите входные и выходные значения.
  2. Проверьте, сопряжено ли каждое входное значение только с одним выходным значением. Если это так, таблица представляет функцию.

Пример ( PageIndex ): определение таблиц, представляющих функции

Какая таблица, Таблица ( PageIndex ), Таблица ( PageIndex ) или Таблица ( PageIndex ), представляет функцию (если есть)?

Решение

Таблица ( PageIndex ) и Таблица ( PageIndex ) определяют функции.В обоих случаях каждое входное значение соответствует ровно одному выходному значению. Таблица ( PageIndex ) не определяет функцию, потому что входное значение 5 соответствует двум различным выходным значениям.

Когда таблица представляет функцию, соответствующие входные и выходные значения также могут быть указаны с использованием обозначения функции.

Функция, представленная таблицей ( PageIndex ), может быть представлена ​​записью

[f (2) = 1 text f (5) = 3 text f (8) = 6 nonumber ]

[g (−3) = 5 text g (0) = 1 text g (4) = 5 nonumber ]

представляют функцию в таблице ( PageIndex ).

Таблица ( PageIndex ) не может быть выражена аналогичным образом, потому что она не представляет функцию.

Представляет ли таблица ( PageIndex ) функцию?

Поиск входных и выходных значений функции

Когда мы знаем входное значение и хотим определить соответствующее выходное значение для функции, мы оцениваем функцию.Оценка всегда дает один результат, потому что каждое входное значение функции соответствует ровно одному выходному значению.

Когда мы знаем выходное значение и хотим определить входные значения, которые будут производить это выходное значение, мы устанавливаем выход равным формуле функции и решаем вход. Решение может дать более одного решения, потому что разные входные значения могут давать одно и то же выходное значение.

Вычисление функций в алгебраических формах

Когда у нас есть функция в форме формулы, вычислить ее обычно несложно.2 + 2p − 3 = 0 & text \ (p + 3) (p − 1) = 0 & text End nonumber ]

Если ((p + 3) (p − 1) = 0 ), либо ((p + 3) = 0 ), либо ((p − 1) = 0 ) (или оба они равны (0 )). Мы установим каждый множитель равным (0 ) и решим относительно (p ) в каждом случае.

[(p + 3) = 0, ; p = −3 nonumber ]

[(p − 1) = 0, , p = 1 nonumber ]

Это дает нам два решения. Выход (h (p) = 3 ), когда вход либо (p = 1 ), либо (p = −3 ). Мы также можем проверить, построив график, как на рисунке ( PageIndex ).2 + 2п )

Учитывая функцию (g (m) = sqrt ), решите (g (m) = 2 ).

Ответ

Вычисление функций, выраженных в формулах

Некоторые функции определяются математическими правилами или процедурами, выраженными в форме уравнения . Если можно выразить выход функции с помощью формулы, включающей входную величину, то мы можем определить функцию в алгебраической форме.Например, уравнение (2n + 6p = 12 ) выражает функциональную связь между (n ) и (p ). Мы можем переписать его, чтобы решить, является ли (p ) функцией (n ).

Как: Для данной функции в форме уравнения напишите ее алгебраическую формулу.

  1. Решите уравнение, чтобы изолировать выходную переменную с одной стороны от знака равенства, а другую сторону как выражение, которое включает только входную переменную.
  2. Используйте все обычные алгебраические методы для решения уравнений, такие как сложение или вычитание одной и той же величины с обеих сторон или от них, или умножение или деление обеих сторон уравнения на одинаковую величину.

Пример ( PageIndex ): поиск уравнения функции

Выразите отношение (2n + 6p = 12 ) как функцию (p = f (n) ), если это возможно.

Решение

Чтобы выразить отношение в этой форме, нам нужно иметь возможность записать отношение, где (p ) является функцией (n ), что означает запись его как (p = [ text п] ).

Следовательно, (p ) как функция от (n ) записывается как

[p = f (n) = 2− frac n nonumber ]

Анализ

Важно отметить, что не все отношения, выраженные уравнением, можно также выразить как функцию с формулой. 2 = 1 ) функцию с (x ) на входе и (y ) на выходе? Если это так, выразите отношение как функцию (y = f (x) ).y ), если мы хотим выразить y как функцию от x, не существует простой алгебраической формулы, включающей только (x ), которая равна (y ). Однако каждый (x ) определяет уникальное значение для (y ), и существуют математические процедуры, с помощью которых (y ) можно найти с любой желаемой точностью. В этом случае мы говорим, что уравнение дает неявное (подразумеваемое) правило для (y ) как функции (x ), даже если формулу нельзя записать явно.

Оценка функции, заданной в табличной форме

Как мы видели выше, мы можем представлять функции в виде таблиц.И наоборот, мы можем использовать информацию в таблицах для написания функций, и мы можем оценивать функции с помощью таблиц. Например, насколько хорошо наши питомцы вспоминают теплые воспоминания, которыми мы с ними делимся? Существует городская легенда, что у золотой рыбки память 3 секунды, но это всего лишь миф. Золотая рыбка может помнить до 3 месяцев, в то время как бета-рыба имеет память до 5 месяцев. И хотя продолжительность памяти щенка не превышает 30 секунд, взрослая собака может запоминать 5 минут. Это скудно по сравнению с кошкой, у которой объем памяти составляет 16 часов.

Функция, которая связывает тип питомца с продолжительностью его памяти, легче визуализировать с помощью таблицы (Table ( PageIndex )).

Память питомца

интервал в часах

Иногда оценка функции в табличной форме может быть более полезной, чем использование уравнений. Здесь вызовем функцию (P ). Область функции — это тип домашнего животного, а диапазон — это действительное число, представляющее количество часов, в течение которых хранится память питомца.Мы можем оценить функцию (P ) при входном значении «золотая рыбка». Мы бы написали (P (золотая рыбка) = 2160 ). Обратите внимание, что для оценки функции в табличной форме мы идентифицируем входное значение и соответствующее выходное значение из соответствующей строки таблицы. Табличная форма для функции P кажется идеально подходящей для этой функции, больше, чем запись ее в форме абзаца или функции.

Как сделать: для функции, представленной в виде таблицы, определить конкретные выходные и входные значения

1.Найдите данный вход в строке (или столбце) входных значений.
2. Определите соответствующее выходное значение в паре с этим входным значением.
3. Найдите заданные выходные значения в строке (или столбце) выходных значений, отмечая каждый раз, когда это выходное значение появляется.
4. Определите входные значения, соответствующие заданному выходному значению.

Пример ( PageIndex ): Вычисление и решение табличной функции

Использование таблицы ( PageIndex ),

а. Оцените (g (3) ).
г. Решите (g (n) = 6 ).

(п )

Решение

а.Вычисление (g (3) ) означает определение выходного значения функции (g ) для входного значения (n = 3 ). Выходное значение таблицы, соответствующее (n = 3 ), равно 7, поэтому (g (3) = 7 ).
г. Решение (g (n) = 6 ) означает определение входных значений n, которые производят выходное значение 6. Таблица ( PageIndex ) показывает два решения: 2 и 4.

(п )

Когда мы вводим 2 в функцию (g ), на выходе получается 6.Когда мы вводим 4 в функцию (g ), наш результат также равен 6.

Используя Table ( PageIndex ), вычислите (g (1) ).

Ответ

Поиск значений функций из графика

Оценка функции с помощью графика также требует нахождения соответствующего выходного значения для данного входного значения, только в этом случае мы находим выходное значение, глядя на график.Решение функционального уравнения с использованием графика требует нахождения всех экземпляров данного выходного значения на графике и наблюдения за соответствующими входными значениями.

Пример ( PageIndex ): чтение значений функций из графика

Учитывая график на рисунке ( PageIndex ),

  1. Вычислить (f (2) ).
  2. Решите (f (x) = 4 ).

Решение

Чтобы оценить (f (2) ), найдите точку на кривой, где (x = 2 ), затем прочтите координату y этой точки.Точка имеет координаты ((2,1) ), поэтому (f (2) = 1 ). См. Рисунок ( PageIndex ).

( PageIndex ): график положительной параболы с центром в ((1, 0) ) с отмеченной точкой ((2, 1) ), где (f (2) = 1 ) .

Чтобы решить (f (x) = 4 ), мы находим выходное значение 4 на вертикальной оси. Двигаясь горизонтально по прямой (y = 4 ), мы обнаруживаем две точки кривой с выходным значением 4: ((- 1,4) ) и ((3,4) ). Эти точки представляют два решения (f (x) = 4 ): −1 или 3. Это означает (f (−1) = 4 ) и (f (3) = 4 ), или когда вход — -1 или 3, выход — 4.См. Рисунок ( PageIndex ).

Рисунок ( PageIndex ): График обращенной вверх параболы с вершиной в ((0,1) ) и помеченными точками в ((- 1, 4) ) и ((3 , 4) ). Прямая в точке (y = 4 ) пересекает параболу в отмеченных точках.

Учитывая график на рисунке ( PageIndex ), решите (f (x) = 1 ).

Ответ

(x = 0 ) или (x = 2 )

Определение того, является ли функция однозначной

Некоторые функции имеют заданное выходное значение, соответствующее двум или более входным значениям.Например, на биржевой диаграмме, показанной на рисунке в начале этой главы, цена акции составляла 1000 долларов в пять разных дат, что означает, что было пять различных входных значений, которые все привели к одному и тому же выходному значению в 1000 долларов.

Однако некоторые функции имеют только одно входное значение для каждого выходного значения, а также имеют только один выход для каждого входа. Мы называем эти функции взаимно однозначными функциями. В качестве примера рассмотрим школу, в которой используются только буквенные оценки и десятичные эквиваленты, как указано в Таблице ( PageIndex ).

Letter Grade Средний балл
A 4,0
В 3,0
С 2,0
D 1,0

Таблица ( PageIndex ): буквенные оценки и десятичные эквиваленты.

Эта система оценок представляет собой функцию «один-к-одному», потому что каждая вводимая буква дает один конкретный выходной средний балл, а каждый средний балл соответствует одной вводимой букве.

Чтобы визуализировать эту концепцию, давайте еще раз посмотрим на две простые функции, изображенные на рисунках ( PageIndex ) и ( PageIndex ). Функция в части (a) показывает взаимосвязь, которая не является взаимно однозначной, потому что входы (q ) и (r ) оба дают выход (n ). Функция в части (b) показывает взаимосвязь, которая является функцией «один-к-одному», потому что каждый вход связан с одним выходом.

Однозначная функция — это функция, в которой каждое выходное значение соответствует ровно одному входному значению.2 ). Поскольку площади и радиусы являются положительными числами, существует ровно одно решение: ( sqrt > ). Таким образом, площадь круга однозначно зависит от радиуса круга.

  1. Является ли остаток функцией номера банковского счета?
  2. Является ли номер банковского счета функцией баланса?
  3. Является ли баланс однозначной функцией номера банковского счета?

а.да, потому что на каждом банковском счете в любой момент времени имеется единый баланс;

г. нет, потому что несколько номеров банковских счетов могут иметь одинаковый баланс;

г. нет, потому что один и тот же выход может соответствовать более чем одному входу.

  1. Если каждая процентная оценка, полученная на курсе, соответствует одной буквенной оценке, является ли буквенная оценка функцией процентной оценки?
  2. Если да, то функция взаимно однозначная?

а.Да, буквенная оценка является функцией процентной оценки;
г. Нет, не один на один. Мы могли бы получить 100 различных процентных чисел, но только около пяти возможных буквенных оценок, поэтому не может быть только одного процентного числа, соответствующего каждой буквенной оценке.

Использование теста вертикальной линии

Как мы видели в некоторых примерах выше, мы можем представить функцию с помощью графика. Графики отображают огромное количество пар ввода-вывода на небольшом пространстве. Предоставляемая ими визуальная информация часто упрощает понимание взаимоотношений.Обычно графики строятся с входными значениями по горизонтальной оси и выходными значениями по вертикальной оси.

Наиболее распространенные графики называют входное значение (x ) и выходное значение (y ), и мы говорим, что (y ) является функцией (x ), или (y = f (x) ), когда функция названа (f ). График функции — это совокупность всех точек ((x, y) ) на плоскости, которая удовлетворяет уравнению (y = f (x) ). Если функция определена только для нескольких входных значений, то график функции представляет собой только несколько точек, где координата x каждой точки является входным значением, а координата y каждой точки является соответствующим выходным значением.Например, черные точки на графике на рисунке ( PageIndex ) говорят нам, что (f (0) = 2 ) и (f (6) = 1 ). Однако множество всех точек ((x, y) ), удовлетворяющих (y = f (x) ), является кривой. Показанная кривая включает ((0,2) ) и ((6,1) ), потому что кривая проходит через эти точки

. Рисунок ( PageIndex ): График многочлена.

Тест вертикальной линии можно использовать для определения того, представляет ли график функцию. Если мы можем нарисовать любую вертикальную линию, которая пересекает график более одного раза, то график не определяет функцию, потому что функция имеет только одно выходное значение для каждого входного значения.См. Рисунок ( PageIndex ) .

Рисунок ( PageIndex ): три графика, наглядно демонстрирующие, что является функцией, а что нет.

Практическое руководство. Имея график, используйте тест вертикальной линии, чтобы определить, представляет ли график функцию

  1. Проверьте график, чтобы увидеть, пересекает ли нарисованная вертикальная линия кривую более одного раза.
  2. Если такая линия есть, определите, что график не представляет функцию.

Пример ( PageIndex ): Применение теста вертикальной линии

Какой из графиков на рисунке ( PageIndex ) представляет (ы) функцию (y = f (x) )?

Рисунок ( PageIndex ): график полинома (a), наклонной вниз прямой (b) и круга (c).

Решение

Если какая-либо вертикальная линия пересекает график более одного раза, отношение, представленное на графике, не является функцией. Обратите внимание, что любая вертикальная линия будет проходить только через одну точку двух графиков, показанных в частях (a) и (b) рисунка ( PageIndex ). Из этого можно сделать вывод, что эти два графика представляют функции. Третий график не представляет функцию, потому что не более чем значений x вертикальная линия пересекает график более чем в одной точке, как показано на рисунке ( PageIndex ).

Рисунок ( PageIndex ): График круга.

Представляет ли график на рисунке ( PageIndex ) функцию?

Рисунок ( PageIndex ): График функции абсолютного значения. Ответ

Использование теста горизонтальной линии

После того, как мы определили, что график определяет функцию, простой способ определить, является ли она взаимно однозначной функцией, — это использовать тест горизонтальной линии .Проведите через график горизонтальные линии. Если какая-либо горизонтальная линия пересекает график более одного раза, то график не представляет собой взаимно однозначную функцию.

Практическое руководство. Имея график функции, используйте тест горизонтальной линии, чтобы определить, представляет ли график однозначную функцию

  1. Проверьте график, чтобы увидеть, пересекает ли нарисованная горизонтальная линия кривую более одного раза.
  2. Если такая линия есть, определите, что функция не взаимно однозначна.

Пример ( PageIndex ): Применение теста горизонтальной линии

Рассмотрим функции, показанные на рисунке ( PageIndex ) и рисунке ( PageIndex ). Являются ли какие-либо функции взаимно однозначными?

Решение

Функция на рисунке ( PageIndex ) не является взаимно однозначной. Горизонтальная линия, показанная на рисунке ( PageIndex ), пересекает график функции в двух точках (и мы даже можем найти горизонтальные линии, которые пересекают его в трех точках.)

Рисунок ( PageIndex ): График многочлена с горизонтальной линией, пересекающей 2 точки

Функция на рисунке ( PageIndex ) взаимно однозначна. Любая горизонтальная линия будет пересекать диагональную линию не более одного раза.

Является ли график, показанный на рисунке ( PageIndex ), взаимно однозначным?

Ответ

Нет, потому что он не проходит тест горизонтальной линии.

Ключевые понятия

  • Отношение — это набор упорядоченных пар.Функция — это особый тип отношения, в котором каждое значение домена или вход приводит ровно к одному значению диапазона или выходу.
  • Функциональная нотация — это сокращенный метод соотнесения ввода и вывода в форме (y = f (x) ).
  • В табличной форме функция может быть представлена ​​строками или столбцами, которые относятся к входным и выходным значениям.
  • Чтобы оценить функцию, мы определяем выходное значение для соответствующего входного значения. Алгебраические формы функции можно оценить, заменив входную переменную заданным значением.
  • Чтобы найти конкретное значение функции, мы определяем входные значения, которые дают конкретное выходное значение.
  • Алгебраическая форма функции может быть записана из уравнения.
  • Входные и выходные значения функции можно определить по таблице.
  • Связь входных значений с выходными значениями на графике — еще один способ оценить функцию.
  • Функция взаимно однозначна, если каждое выходное значение соответствует только одному входному значению.
  • График представляет функцию, если любая вертикальная линия, проведенная на графике, пересекает график не более чем в одной точке.
  • График функции «один к одному» проходит проверку горизонтальной линии.

Глоссарий

зависимая переменная
выходная переменная

домен
набор всех возможных входных значений для отношения

функция
отношение, в котором каждое входное значение дает уникальное выходное значение

Проверка горизонтальной линии
Метод проверки взаимно однозначности функции путем определения того, пересекает ли какая-либо горизонтальная линия график более одного раза

независимая переменная
входная переменная

введите
каждый объект или значение в домене, который относится к другому объекту или значению посредством отношения, известного как функция

однозначная функция
функция, для которой каждое значение вывода связано с уникальным значением ввода

вывод
каждый объект или значение в диапазоне, который создается, когда входное значение вводится в функцию

диапазон
набор выходных значений, которые являются результатом входных значений в отношении

отношение
набор заказанных пар

Проверка вертикальной линии
Метод проверки того, представляет ли график функцию, путем определения того, пересекает ли вертикальная линия график не более одного раза

Авторы и авторство

Как рассчитать уклон в точке — Видео и стенограмма урока

Нахождение уклона в точке Шаги

Хорошо, теперь мы знаем взаимосвязь между производными и уклонами.Это соотношение уступает место этапам нахождения наклона функции в заданной точке ( x 1, y 1):

  1. Найдите производную функции (есть много разных способов сделать это, в зависимости от на функции) и
  2. Вставьте значение x , x 1 точки в производную (это наклон функции в точке)

Довольно просто, правда? Давайте применим это на практике! Снова рассмотрим наш пример с бассейном.Предположим, вода стекает 15 минут. Мы можем подключить 15 для x , чтобы увидеть, сколько воды осталось в бассейне:

A (15) = 4 (15) 2 — 320 (15) + 6400 = 2500

Через 15 минут слива , в бассейне осталось 2500 галлонов воды. Если мы хотим узнать скорость, с которой пул истощается в этот момент, мы просто выполняем функцию через предыдущие шаги.

Сначала находим производную функции. Для этой функции мы используем следующие факты, чтобы найти производную:

  • Производная суммы или разницы — это сумма или разность производных, соответственно
  • Производная константы равна 0, а
  • Производная от axn is тревогаn -1

Таким образом, производная A ( x ) = 4 x 2 — 320 x + 6400 равна A ‘( x ) = 8 x — 320

Следующий шаг состоит в том, чтобы вставить x = 15 в A ‘:

A ‘ (15) = 8 * 15 — 320 = -200

. вода, выходящая из бассейна, составляет 200 галлонов в минуту.Не позволяйте отрицательному ответу сбивать вас с толку. Это отрицательно, потому что вода уходит из бассейна, поэтому количество воды уменьшается. Если бы мы наполняли бассейн, то было бы положительно. В общем, когда значение функции уменьшается, ее наклон отрицательный, а когда значение функции увеличивается, ее наклон положительный.

Обратите внимание: если мы проведем касательную линию к графику функции, где x = 15, мы увидим, что это выглядит так, как будто наклон линии составляет примерно -200.

Мы видим, что мы вычислили наклон кривой в точке (15, 2500).

Дополнительная практика

Предположим, мы хотели узнать, как быстро истощается пул через 20 минут. Это тот же процесс. Мы уже нашли производную, поэтому просто подставляем x = 20 в производную A :

A ‘(20) = 8 * 20 — 320 = -160

Мы видим, что через 20 минут слива, вода выходит из бассейна со скоростью 160 галлонов в минуту.Опять же, мы можем заметить, что наклон касательной к кривой при x = 20 выглядит примерно как -160, поэтому мы знаем, что сделали это правильно.

Резюме урока

Хорошо, давайте на минутку рассмотрим то, что мы узнали. Производная функции дает формулу, которая позволяет нам вычислить наклон функции в любой заданной точке. Чтобы найти наклон функции в точке ( x 1, y 1), мы используем следующие шаги:

  1. Найдите производную функции и
  2. Вставьте x 1 в производную для x

Это дает вам наклон функции в точке ( x 1, y 1).

По сути, когда мы находим наклон функции в данной точке, мы находим скорость изменения этой функции в этой точке. Поскольку скорость изменений в мире вокруг нас постоянно меняется, это чрезвычайно полезное знание!

Линейные функции и их графики

Обзор линий графика

Напомним, что множество всех решений линейного уравнения может быть представлено на прямоугольной координатной плоскости с использованием прямой линии, проходящей по крайней мере через две точки; эта линия называется ее графиком.Например, чтобы построить график линейного уравнения 8x + 4y = 12, мы сначала решим для y .

8x + 4y = 12 Вычтем 8x с обеих сторон. 4y = −8x + 12 Разделим обе части на 4.y = −8x + 124 Упростим. Y = −8×4 + 124y = −2x + 3

В таком виде мы видим, что y зависит от x ; другими словами, x — это независимая переменная, которая определяет значения других переменных. Обычно мы думаем о x -значении упорядоченной пары ( x , y ) как о независимой переменной.и y — зависимая переменная — переменная, значение которой определяется значением независимой переменной. Обычно мы думаем о значении y упорядоченной пары ( x , y ) как о зависимой переменной. Выберите по крайней мере два значения x и найдите соответствующие значения y . Рекомендуется выбирать ноль, некоторые отрицательные числа, а также некоторые положительные числа. Здесь мы выберем пять значений x , определим соответствующие значения y , а затем сформируем репрезентативный набор упорядоченных парных решений.

Как найти функцию зная только точки?

Судя по всему, то, о чем Вы говорите — аппроксимация функции. В Википедии более подробна статья про интерполяцию.

По сути, Ваша задача сводится к 2м шагам:
1. По точкам и общим зависимостям выбирается форма функции (например, полиномиальная, экспоненциальная и.т.п).
2. Строится модель, в которой задаётся функция с неизвестными параметрами. Задача — найти такие параметры, чтобы минимизировать функцию невязки(часто это квадрат разности между реальными значениями в заданых точках и значениями модельной функции, см. МНК).

Расчет кривой второго порядка на плоскости по точкам

Элементы кривой второго порядка или координаты
Уравнения Ax^2+By^2+Cxy+Dx+Ey+F=0
A=
B=
C=
D=
E=
F=

Полученная формула
Коэффициенты через пробел

Калькулятор предназначен для расчета и создания уравнения кривых второго порядка на декартовой плоскости по нескольким точкам, от двух до пяти.

Не является секретом то, что уравнение кривой второго порядка может быть представлена формулой

формула кривой второго порядка

Мы будем использовать чуть измененную формулу, разделив все коэффициенты на a6

приведенная формула кривой второго порядка

отсюда видно, что кривую второго порядка  можно однозначно определить по пяти точкам.

Кривая второго порядка при различных коэффициентах может превращатся в следующие “типы”:

– Эллипс

– Окружность

– Парабола

– Гипербола

– пара пересекающихся прямых

– пара паралельных несовпадающих прямых

– пары совпадающих прямых

– линии, вырождающиеся в точку

– “нулевые линии”, то есть “линии”, вовсе не имеющие точек

Если Вам интересны формулы при которых получаются все эти типы, то пожалуйста

формула окружности  – окружность

формула "нулевой" окружности – “нулевая” окружность

(cfrac{x^2}{a^2}+cfrac{y^2}{b^2}-1=0) – эллипс

формула точки  –  точка

формула равносторонней гиперболы  –  равносторонняя гипербола

формула пары пересекающихся прямых  – пара пересекающихся прямых

формула параболы – формула параболы

формула пары параллельных прямых – пара параллельных прямых

формула нулевой линии – нулевая линия

формула пары совпадающих прямых – пара совпадающих прямых

Этот сервис позволяет Вам по заданным точкам определить, какую же кривую второго порядка провести через эти точки. Кроме этого, Вы увидите все основные параметры полученной кривой второго порядка. 

От Вас лишь понадобится предоставить боту от двух до пяти декартовых координат, что бы бот мог решить эту задачу.

ИНВАРИАНТЫ И СВОДНАЯ ТАБЛИЦА

Любая кривая второго порядка формула кривой второго порядка характеризуется  тремя инвариантами, имеющими вид

первый инвариант

(I_2=begin{pmatrix}a_1&frac{a_3}{2}%20%20frac{a_3}{2}&%20a_2end{pmatrix})

(I_3=K_2=begin{pmatrix}a_1&%20frac{a_3}{2}%20&frac{a_4}{2}frac{a_3}{2}&%20a_2&frac{a_5}{2}frac{a_4}{2}&%20frac{a_5}{2}&a_6end{pmatrix})

второй инвариант

 https://img.abakbot.ru/cgi-bin/mathtex.cgi?I_3=K_2=begin{pmatrix}a_1&%20frac{a_3}{2}%20&frac{a_4}{2}frac{a_3}{2}&%20a_2&frac{a_5}{2}frac{a_4}{2}&%20frac{a_5}{2}&a_6end{pmatrix}

И одним семиинвариантом

семиинвариант

если Вам интересно, откуда они появились, то рекомендуем  прочитать книгу “Аналитическая геометрия – Делоне”

Характеристическое уравнение кривой второго порядка:

характеристическое уравнение

Таким образом сводная таблица имеет вид

Признак типа Признак класса Название Приведенное уравнение Каноническое уравнение
первый признак типа признаки класса Эллипс первое приведенное уравнение frac{x^}{a^2}+frac{y^2}{b^2}-1=0
I_2>0, & I_1K_2>0 Мнимый эллипс frac{x^}{a^2}+frac{y^2}{b^2}+1=0
I_2>0, & K_2=0 Точка frac{x^}{a^2}+frac{y^2}{b^2}=0
I_2<0, & K_2ne0 Гипербола frac{x^}{a^2}-frac{y^2}{b^2}-1=0
I_2<0, & K_2=0 Пара пересекающихся прямых frac{x^}{a^2}-frac{y^2}{b^2}=0
I_1^2-4I_2=0 Окружность x^2+y^2-R^2=0
второй признак типа I_2=0, & K_2ne0 Парабола I_1x^2+2ysqrt{-frac{K_2}{I_1}}=0 x^2-2py=0
третий признак типа I_2=0, & K_2ne0,&K_1<0 Пара паралельных прямых I_1x^2+frac{K_1}{I_1}=0 x^2--a^2=0
I_2=0, & K_2ne0,&K_1>0 Пара мнимых паралельных прямых x^2+a^2=0
I_2=0, & K_2ne0,&K_1=0 Пара совпадающих прямых x^2=0

Анализируя написанные онлайн калькуляторы по этой теме, нашел интересную “особенность”. Попробовав рассчитать по трем точкам  кривую второго порядка, зная что эти точки принадлежат окружности, я с завидным постоянством получал ответ, что графиком(формой)полученного уравнения кривой является эллипс.

Нет формально, конечно стоит признать что окружность является частным примером эллипса, но ведь можно пойти дальше и признать что и эллипс и гипербола и парабола, являются лишь частным примером кривой второго порядка общего вида,  и в ответах таких калькуляторов выдавать ответ  пользователю “вы получили уравнение второго порядка” и всё…  не соврали же…

Такое сверхлегкое трактование и смешение определений геометрических фигур, никак не способствует пониманию  и сути решаемых задач. Это как в анекдоте “А теперь нарисуем квадрат со сторонами 3 на 4″(с)  И не поймешь то ли рисовать квадрат, то ли прямоугольник….

Пример:

Начнем сразу с проверочного примера

Вообще, убедимся правильно ли считает бот?

Итак, есть у нас функция x*x+3x-11=y

определим значения при x=1,2,3,4,5

значения получились такие y=-7,-1,7,17,29

и зададим эти точки в качестве исходных

пишем kp2 1:-7 2:-1 3:7 4:17 5:29

в результате получаем следующее:

-0.09091*x^2-0.00000*y^2--0.00000*x*y-0.27273*x+0.09091*y+1=0

На первый взгляд получилось далеко не то, что должно получится.

Но если мы уберем нулевые коэффициенты, и разделим все на  0.09091 то результат будет такой 

(-x^2-3*x+y+11=0)

то есть y= x*x+3*x-11

Что и требовалось доказать  в качестве правильности расчетов  нашего бота.


Теперь пусть у нас есть всего лишь три точки

С координатами x=1,2,3 и y=-7,-1,7

Логично, что это тоже самое уравнение параболы  что мы разбирали в первом примере. НО! при трех точках такое решение не единственное.

Давайте попробуем задать боту  всего три координаты и скажем ему какого вида уравнение мы хотим получить.

Например:

a2*y^2+a3*x*y+a4*x+a6 = 0

Это частное уравнение кривой второго порядка в котором коэффициенты а1 и а5 равны нулю

Скажем об этом боту

kp2 0 1:-7 2:-1 3:7 0 1

где 0- показывает какие коэффициенты нам НЕ надо  учитывать, а 1 – это постоянный коэффициент, то есть его находить нет необходимости. Он известен.

Видим что не учитываем 1 и 5 коэффициент.

получим

Кривая второго порядка a1*x*x+a2*y*y+a3*x*y+a4*x+a5*y+a6 = 0

Коэффициент a2 при y*y равен -0.00621100

Коэффициент a3 при x*y равен 0.03312600

Коэффициент a4 при x равен -0.46376800

Коэффициент a6 равен 1

То есть есть еще одна кривая которая проходит через заданные три точки

это

-0.00621100*y^2+0.03312600*x*y-0.46376800*x+1 = 0

Кто желает может проверить. Но уверяю что все правильно.

Как по точкам найти функцию

Во многих случаях данные статистики или измерений какого-либо процесса бывают представлены в виде набора дискретных значений. Но для того, чтобы на их основе построить непрерывный график, нужно по этим точкам найти функцию. Сделать это можно путем интерполяции. Для этого хорошо подходит полином Лагранжа.

Как по точкам найти функцию

Вам понадобится

  • – бумага;
  • – карандаш.

Инструкция

Определите степень полинома, который будет использован для интерполирования. Он имеет вид: Кn*Х^n + К(n-1)*Х^(n-1) +… + К0*Х^0. Число n здесь на 1 меньше количества известных точек с различными Х, через которые должна проходить результирующая функция. Поэтому просто пересчитайте точки и отнимите от полученного значения единицу.

Определите общей вид искомой функции. Поскольку Х^0 = 1, то она примет вид: f(Хn) = Кn*Х^n + К(n-1)*Х^ (n-1) +… + К1*Х + К0, где n – найденное на первом шаге значение степени полинома.

Начните составление системы линейных алгебраических уравнений с целью нахождения коэффициентов интерполирующего полинома. Исходный набор точек задает ряд соответствий значений координат Хn искомой функции по оси абсцисс и оси ординат f(Хn). Поэтому поочередная подстановка величин Хn в полином, значение которого будет равно f(Хn), позволяет получить нужные уравнения:
Кn*Хn^n + К(n-1)*Хn^ (n-1) +… + К1*Хn + К0 = f(Хn)
Кn*Х(n-1)^n + К(n-1)*Х(n-1)^ (n-1) +… + К1*Х(n-1) + К0 = f(Х(n-1))

Кn*Х1n + К(n-1)*Х1^ (n-1) + … + К1*Х1 + К0 = f(Х1).

Представьте систему линейных алгебраических уравнений в удобном для решения виде. Вычислите значения Хn^n… Х1^2 и Х1…Хn, а затем подставьте их в уравнения. При этом значения (также известные) перенесите в левую часть уравнений. Получится система вида:
Сnn*Кn + Сn(n-1)*К(n-1) +… + Сn1*К1 + К0 – Сn = 0
С(n-1)n*Кn + С(n-q)(n-1)*К(n-1) +… + С(n-1)1*К1 + К0 – С(n-1) = 0

С1n*Кn + С1(n-1)*К(n-1) +… + С11*К1 + К0 – С1 = 0
Здесь Сnn = Хn^n, а Сn = f(Хn).

Решите систему линейных алгебраических уравнений. Используйте любой известный способ. Например, метод Гаусса или Крамера. В результате решения будут получены значения коэффициентов полинома Кn…К0.

Найдите функцию по точкам. Подставьте коэффициенты Кn…К0, найденные в предыдущем шаге, в полином Кn*Х^n + К(n-1)*Х^ (n-1) +… + К0*Х^0. Данное выражение и будет являться уравнением функции. Т.е. искомая f(Х) = Кn*Х^n + К(n-1)*Х^ (n-1) +… + К0*Х^0.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Добавить комментарий