Как найти формулу n ого члена

Арифметическая прогрессия — коротко о главном

Определение арифметической прогрессии:

Арифметическая прогрессия — это числовая последовательность, в которой разница между соседними числами одинакова и равна ( displaystyle d).

Например:

  • ( {{a}_{1}}=3)
  • ( displaystyle {{a}_{2}}=3+d=7~Rightarrow d=7-3=4)
  • ( displaystyle {{a}_{3}}=7+4=11) и т.д.

Арифметическая прогрессия бывает возрастающей (( displaystyle d>0)) и убывающей (( displaystyle d<0)).

Формула нахождения n-ого члена арифметической прогрессии:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right)) , где ( displaystyle n)– количество чисел в прогрессии.

Как найти член прогрессии, если известны его соседние члены:

( {{text{a}}_{text{n}}}=frac{{{text{a}}_{text{n}+1}}+{{text{a}}_{text{n}-1}}}{2}) — где ( displaystyle n) – количество чисел в прогрессии.

Сумма членов арифметической прогрессии:

1-й способ: ( {{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}), где ( displaystyle n) – количество значений.

2-й способ: ( displaystyle {{s}_{n}}=frac{2{{a}_{1}}+dleft( n-1 right)}{2}cdot n), где ( displaystyle n) – количество значений.

Числовая последовательность

Итак, сядем и начнем писать какие-нибудь числа. Например: ( displaystyle 4,text{ }7,text{ }-8,text{ }13,text{ }-5,text{ }-6,text{ }0,text{ }ldots )

Писать можно любые числа, и их может быть сколько угодно (в нашем случае их ( displaystyle 7)). Сколько бы чисел мы не написали, мы всегда можем сказать, какое из них первое, какое – второе и так далее до последнего, то есть, можем их пронумеровать.

Это и есть пример числовой последовательности.

Числовая последовательность – это множество чисел, каждому из которых можно присвоить уникальный номер.

Например, для нашей последовательности:

Присвоенный номер характерен только для одного числа последовательности. Иными словами, в последовательности нет трех вторых чисел. Второе число (как и ( displaystyle n)-ное число) всегда одно.

Число с номером ( displaystyle n) называется ( displaystyle n)-ным членом последовательности.

Всю последовательность мы обычно называем какой-нибудь буквой (например, ( displaystyle a)), и каждый член этой последовательности – той же буквой с индексом, равным номеру этого члена: ( displaystyle {{a}_{1}},text{ }{{a}_{2}},text{ }…,text{ }{{a}_{10}},text{ }…,text{ }{{a}_{n}}).

Арифметическая прогрессия — определения

Допустим, у нас есть числовая последовательность, в которой разница между соседствующими числами одинакова и равна d.

Например:

( begin{array}{l}{{a}_{1}}=3\{{a}_{2}}=3+d=7~~~Rightarrow ~d=7-3=4\{{a}_{3}}=7+4=11end{array})

Такая числовая последовательность называется арифметической прогрессией.

Термин «прогрессия» был введен римским автором Боэцием еще в 6 веке и понимался в более широком смысле, как бесконечная числовая последовательность.

Название «арифметическая» было перенесено из теории непрерывных пропорций, которыми занимались древние греки.

Арифметическая прогрессия – это числовая последовательность, каждый член которой равен предыдущему, сложенному с одним и тем же числом. Это число называется разностью арифметической прогрессии и обозначается d.

Попробуй определить, какие числовые последовательности являются арифметической прогрессией, а какие нет:

  • ( displaystyle 3;text{ }6;text{ }9;text{ }12;text{ }15;text{ }17ldots )
  • ( displaystyle 1;text{ }12;text{ }23;text{ }34;text{ }45text{ }ldots )
  • ( displaystyle -5;text{ }-1;text{ }3;text{ }7;text{ }11;text{ }15ldots )
  • ( displaystyle -6;text{ }5;text{ }17;text{ }28;text{ }39ldots )

Разобрался? Сравним наши ответы:

Является арифметической прогрессией – 2, 3.

Не является арифметической прогрессией – 1, 4.

Вернемся к заданной прогрессии (( displaystyle 3;text{ }7;text{ }11;text{ }15;text{ }19ldots )) и попробуем найти значение ее 6-го члена.

Существует два способа его нахождения.

Нахождения n-ого члена арифметической прогрессии

Способ I

Мы можем прибавлять к предыдущему значению числа прогрессии ( d=4) , пока не дойдем до ( displaystyle 6)-го члена прогрессии. Хорошо, что суммировать нам осталось немного – всего три значения:

( begin{array}{l}{{a}_{4}}=11+4=15\{{a}_{5}}=15+4=19\{{a}_{6}}=19+4=23end{array})

Итак, 6-ой член описанной арифметической прогрессии равен 23.

Способ II

А что если нам нужно было бы найти значение ( displaystyle 140)-го члена прогрессии? Суммирование заняло бы у нас не один час, и не факт, что мы не ошиблись бы при сложении чисел.

А теперь очень важно! Чтобы облегчить себе работу, нужно найти закономерность, потом описать ее формулой и потом пользоваться этой формулой, чтобы вычислять в разы быстрее.

Это и есть математика!

Важно научиться находить закономерности, а потом уже запоминать формулы. Потому что, даже если ты забудешь формулу, ты сможешь ее вывести. И, самое главное, ты сможешь проверить подходит та или иная формула для решения задачи, а не просто подставлять их как обезьянка. 

Давай попробуем вывести формулу. Это легко и тебе понравится! Чтобы найти закономерности, надо пользоваться тем, что мы знаем.

Что мы знаем?

  • У нас есть арифметическая прогрессия: 3, 7, 11, 15, 19 и т.д.
  • У нас есть номера прогрессии: 1, 2, 3, 4, 5, и т.д.
  • Мы все время прибавляем 4, значит разница прогрессии d = 4.

Чему равен 2-й член арифметической прогрессии? Попробуй сначала написать числами, а потом в более общем виде, заменив числа буквами.

7=3+4 или 7=3+d

Закономерности пока не видны. Ок. Идем дальше. Чему равен 3-й член арифметической прогрессии?

11=3+4+4 или 11=3+d+d

Похоже что вырисовывается закономерность! Чтобы узнать значение 2-го члена прогрессии, мы прибавляли одно d, а чтобы узнать 3-го — два d! Иными словами, нам надо прибавлять каждый раз на одно d меньше, чем номер члена прогрессии.

Давай проверим? Чему равен 4-й член арифметической прогрессии?

15=3+4+4+4 или 15=3+d+d+d

Бинго! Закономерность подтверждается. Теперь осталось описать закономерность формулой и пользоваться ею!

Если нам нужно найти значение числа прогрессии с порядковым номером n, мы прибавляем к первому члену арифметической прогрессии число d, которое на одно значение меньше порядкового номера искомого числа. 

А теперь запомни эту формулу и используй ее для быстрого счета. А если забудешь — то легко выведешь.

Например, посмотрим, из чего складывается значение ( displaystyle 4)-го члена данной арифметической прогрессии:

( begin{array}{l}{{a}_{4}}={{a}_{1}}+dleft( 4-1 right)\{{a}_{4}}=3+4left( 4-1 right)=15end{array})

Попробуй самостоятельно найти таким способом значение члена ( displaystyle n=6) данной арифметической прогрессии.

Рассчитал? Сравни свои записи с ответом:

( begin{array}{l}{{a}_{6}}={{a}_{1}}+dleft( 6-1 right)\{{a}_{6}}=3+4left( 6-1 right)=3+4cdot 5=3+20=23end{array})

Обрати внимание, что у тебя получилось точно такое же число, как и в предыдущем способе, когда мы последовательно прибавляли ( displaystyle d) к предыдущему значению членов арифметической прогрессии.

Попробуем «обезличить» данную формулу – приведем ее в общий вид и получим:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right)) – уравнение арифметической прогрессии.

Кстати, таким образом мы можем посчитать и ( displaystyle 140)-ой член данной арифметической прогрессии (да и ( displaystyle 169)-ый тоже можем, да и любой другой вычислить совсем несложно).

Попробуй посчитать значения ( displaystyle 140)-го и ( displaystyle 169)-го членов, применив полученную формулу.

( begin{array}{l}…\{{a}_{140}}={{a}_{1}}+dleft( 140-1 right)\{{a}_{140}}=3+4left( 140-1 right)=3+4cdot 139=3+556=559\{{a}_{169}}={{a}_{1}}+dleft( 169-1 right)\{{a}_{169}}=3+4left( 169-1 right)=3+4cdot 168=3+672=675end{array})

Возрастающие и убывающие арифметические прогрессии

Возрастающие – прогрессии, в которых каждое последующее значение членов больше предыдущего. 

Например:

( displaystyle begin{array}{l}4;text{ }6;text{ }8;text{ }10;text{ }12\-2;text{ }4;text{ }10;text{ }16;text{ }20end{array})

Убывающие – прогрессии, в которых каждое последующее значение членов меньше предыдущего. 

Например:

( displaystyle begin{array}{l}12;text{ }10;text{ }8;text{ }6;text{ }4\4;text{ }0;text{ }-4;text{ }-8;text{ }-12.end{array})

Выведенная формула применяется в расчете членов как в возрастающих, так и в убывающих членах арифметической прогрессии.

Проверим это на практике.

Нам дана арифметическая прогрессия, состоящая из следующих чисел: ( displaystyle 13;text{ }8;text{ }4;text{ }0;text{ }-4.)

Проверим, какое получится ( displaystyle 4)-ое число данной арифметической прогрессии, если при его расчете использовать нашу формулу:

( {{text{a}}_{text{n}}}={{text{a}}_{1}}+text{d}left( text{n}-1 right))

Заметим, что так как арифметическая прогрессия убывающая, то значение ( displaystyle d) будет отрицательным, ведь каждый последующий член меньше предыдущего.

( displaystyle d=8-13=-5)

( {{a}_{4}}={{a}_{1}}+dleft( 4-1 right))

Так как ( displaystyle d=-5), то:
( {{a}_{4}}=13-5left( 4-1 right)=13-15=-2)

Таким образом, мы убедились, что формула действует как в убывающей, так и в возрастающей арифметической прогрессии.

Попробуй самостоятельно найти ( displaystyle 140)-ой и ( displaystyle 169)-ый члены этой арифметической прогрессии.

Сравним полученные результаты:

( begin{array}{l}{{a}_{140}}={{a}_{1}}+dleft( 140-1 right)\{{a}_{140}}=13-5left( 140-1 right)=13-5cdot 139=13-695=-682\{{a}_{169}}={{a}_{1}}+dleft( 169-1 right)\{{a}_{169}}=13-5left( 169-1 right)=13-5cdot 168=13-840=-827end{array})

Свойство арифметической прогрессии (или как найти n-й член прогрессии, зная соседние)

Усложним задачу — выведем свойство арифметической прогрессии.

Допустим, нам дано такое условие:

( displaystyle 4;text{ }x;text{ }12ldots ) — арифметическая прогрессия, найти значение ( displaystyle x).

Легко, скажешь ты и начнешь считать по уже известной тебе формуле:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right))

Пусть ( displaystyle {{a}_{1}}=4), а ( displaystyle {{a}_{3}}=12), тогда:

( displaystyle begin{array}{l}{{a}_{3}}={{a}_{1}}+dleft( 3-1 right)\12=4+2d~~Rightarrow ~d=frac{12-4}{2}=4\{{a}_{2}}=x={{a}_{1}}+d\{{a}_{2}}=x=4+4=8end{array})

Абсолютно верно.

Получается, мы сначала находим ( displaystyle d), потом прибавляем его к первому числу и получаем искомое ( displaystyle x).

Если прогрессия представлена маленькими значениями, то ничего сложного в этом нет, а если нам в условии даны числа ( displaystyle 4024;~x;6072)?

Согласись, есть вероятность ошибиться в вычислениях.

А теперь подумай, можно ли решить эту задачу в одно действие с использованием какой-либо формулы?

Конечно да, и именно ее мы попробуем сейчас вывести.

Обозначим искомый член арифметической прогрессии как ( {{text{a}}_{text{n}}}), формула его нахождения нам известна – это та самая формула, выведенная нами в начале:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right)), тогда:

  • предыдущий член прогрессии это ( {{a}_{n}}-d): ( {{a}_{n-1}}={{a}_{1}}+dleft( n-1 right)-d)
  • последующий член прогрессии это ( {{a}_{n}}+d): ( {{a}_{n+1}}={{a}_{1}}+dleft( n-1 right)+d)

Просуммируем предыдущий и последующий члены прогрессии:

( {{a}_{1}}+dleft( n-1 right)-d+{{{a}}_{1}}+text{d}left( text{n}-1 right)+text{d}=2left( {{a}_{1}}+dleft( n-1 right) right)text{ }!!~!!text{ })

Получается, что сумма предыдущего и последующего членов прогрессии – это удвоенное значение члена прогрессии, находящегося между ними.

Иными словами, чтобы найти значение члена прогрессии при известных предыдущих и последовательных значениях, необходимо сложить их и разделить на ( 2).

( {{a}_{n}}=frac{{{a}_{n+1}}+{{a}_{n-1}}}{2}) – свойство членов арифметической прогрессии.

Попробуем посчитать значение ( x), используя выведенную формулу:

( x=frac{4+12}{2}=8)

Все верно, мы получили это же число. Закрепим материал.

Посчитай значение ( x) для прогрессии ( displaystyle 4024;~x;6072) самостоятельно, ведь это совсем несложно.

( x=frac{4024+6072}{2}=5048)

Молодец! Ты знаешь о прогрессии почти все!

Осталось узнать только одну формулу, которую по легендам без труда вывел для себя один из величайших математиков всех времен, «король математиков» – Карл Гаусс…

Сумма первых n членов арифметической прогрессии

Когда Карлу Гауссу было 9 лет, учитель, занятый проверкой работ учеников других классов, задал на уроке следующую задачу:

«Сосчитать сумму всех натуральных чисел от ( displaystyle 1) до ( displaystyle 40) (по другим источникам до ( displaystyle 100)) включительно».

Каково же было удивление учителя, когда один из его учеников (это и был Карл Гаусс) через минуту дал правильный ответ на поставленную задачу, при этом, большинство одноклассников смельчака после долгих подсчетов получили неправильный результат…

Юный Карл Гаусс заметил некоторую закономерность, которую без труда заметишь и ты.

Допустим, у нас есть арифметическая прогрессия, состоящая из ( displaystyle 6)-ти членов: ( displaystyle 6;text{ }8;text{ }10;text{ }12;text{ }14;text{ }16…)

Нам необходимо найти сумму данных ( displaystyle 6) членов арифметической прогрессии.

Конечно, мы можем вручную просуммировать все значения, но что делать, если в задании необходимо будет найти сумму ( displaystyle 100) ее членов, как это искал Гаусс?

Изобразим заданную нам прогрессию. Присмотрись внимательно к выделенным числам и попробуй произвести с ними различные математические действия.

Попробовал? Что ты заметил? Правильно! Их суммы равны

А теперь ответь, сколько всего наберется таких пар в заданной нам прогрессии?

Конечно, ровно половина всех чисел, то есть ( frac{6}{2}=3).

Исходя из того, что сумма двух членов арифметической прогрессии равна ( 22), а подобных равных пар ( 3), мы получаем, что общая сумма равна:

( displaystyle Stext{ }=text{ }22cdot 3text{ }=text{ }66).

Таким образом, формула для суммы первых ( displaystyle n) членов любой арифметической прогрессии будет такой:

( displaystyle {{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}), где ( displaystyle n) – количество значений.

В некоторых задачах нам неизвестен ( displaystyle n)-й член, но известна разность прогрессии. Попробуй подставить в формулу суммы, формулу ( displaystyle n)-го члена. ( {{a}_{n}}={{a}_{1}}+dleft( n-1 right))

Что у тебя получилось?

( displaystyle {{S}_{n}}=frac{2{{a}_{1}}+dleft( n-1 right)}{2}cdot n), где ( displaystyle n) – количество значений.

Молодец! Теперь вернемся к задаче, которую задали Карлу Гауссу: посчитай самостоятельно, чему равна сумма ( displaystyle 40) чисел, начиная от ( displaystyle 1)-го, и сумма ( displaystyle 100) чисел начиная от ( displaystyle 1)-го.

Сколько у тебя получилось?

У Гаусса получилось, что сумма ( displaystyle 100 ) членов равна ( displaystyle 5050), а сумма ( displaystyle 40 ) членов ( displaystyle 820).

Так ли ты решал?

  • ( {{S}_{40}}=frac{left( 1+40 right)cdot 40}{2}=frac{41cdot 40}{2}=frac{1640}{2}=820)
  • ( {{S}_{100}}=frac{left( 1+100 right)cdot 100}{2}=frac{101cdot 100}{2}=5050)

На самом деле формула суммы членов арифметической прогрессии была доказана древнегреческим ученым Диофантом еще в 3 веке, да и на протяжении всего этого времени остроумные люди вовсю пользовались свойствами арифметической прогрессии.

Например, представь Древний Египет и самую масштабную стройку того времени – строительство пирамиды… На рисунке представлена одна ее сторона.

Где же здесь прогрессия скажешь ты? Посмотри внимательно и найди закономерность в количестве песчаных блоков в каждом ряде стены пирамиды.

Чем не арифметическая прогрессия? Посчитай, сколько всего блоков необходимо для строительства одной стены, если в основание кладется ( displaystyle 6) блочных кирпичей.

Надеюсь, ты не будешь считать, водя пальцем по монитору, ты же помнишь последнюю формулу и все, что мы говорили об арифметической прогрессии?

В данном случае прогрессия выглядит следующим образом:

( displaystyle 6;text{ }5;text{ }4;text{ }3;text{ }2; 1).

Разность арифметической прогрессии ( displaystyle ~=text{ }dtext{ }=text{ }-1).

Количество членов арифметической прогрессии ( displaystyle=6).

Подставим в последние формулы наши данные (посчитаем количество блоков 2 способами).

Разность арифметической прогрессии ( displaystyle ~=text{ }dtext{ }=text{ }-1).

Количество членов арифметической прогрессии ( displaystyle=6).

Подставим в последние формулы наши данные (посчитаем количество блоков 2 способами).

Способ 1.

( begin{array}{l}{{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}\~~{{S}_{6}}=frac{left( 6+1 right)cdot 6}{2}=frac{7cdot 6}{2}=21\~end{array})

Способ 2.

( displaystyle {{S}_{n}}=frac{2{{a}_{1}}+dleft( n-1 right)}{2}cdot n)

( {{S}_{n}}=frac{2cdot 6+1left( 6-1 right)}{2}cdot 6=frac{12+5cdot 6}{2}=frac{7cdot 6}{2}=frac{42}{2}=21)

А теперь можно и на мониторе посчитать: сравни полученные значения с тем количеством блоков, которое есть в нашей пирамиде.

Сошлось?

Молодец, ты освоил сумму ( displaystyle n)-ных членов арифметической прогрессии.

Конечно, из ( displaystyle 6) блоков в основании пирамиду не построишь, а вот из ( displaystyle 60)?

Попробуй рассчитать, сколько необходимо песчаных кирпичей, чтобы построить стену с таким условием.

Справился?

Верный ответ – ( displaystyle 1830) блоков:

( begin{array}{l}{{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}\{{S}_{60}}=frac{left( 60+1 right)cdot 60}{2}=frac{61cdot 60}{2}=61cdot 30=1830.end{array})

У этого термина существуют и другие значения, см. Прогрессия.

Арифмети́ческая прогре́ссия — числовая последовательность вида

{displaystyle a_{1}, a_{1}+d, a_{1}+2d, ldots , a_{1}+(n-1)d, ldots  ,}

то есть последовательность чисел (членов прогрессии), в которой каждое число, начиная со второго, получается из предыдущего добавлением к нему постоянного числа d (шага, или разности прогрессии):

{displaystyle a_{n}=a_{n-1}+d.}[1]

Любой член арифметической прогрессии равен первому её члену, сложенному с произведением разности прогрессии на число членов, предшествующих определяемому, т. е. он выражается формулой[2]:

{displaystyle a_{n}=a_{1}+(n-1)d.}

Арифметическая прогрессия является монотонной последовательностью. При d>0 она является возрастающей, а при d<0 — убывающей. Если d=0, то последовательность будет стационарной. Эти утверждения следуют из соотношения a_{n+1}-a_n=d для членов арифметической прогрессии.

Свойства[править | править код]

Общий член арифметической прогрессии[править | править код]

Член арифметической прогрессии с номером n может быть найден по формулам

a_n=a_1+(n-1)d
{displaystyle a_{n}=a_{m}-(m-n)d}

где a_{1} — первый член прогрессии, d — её разность, a_m — член арифметической прогрессии с номером m.

Доказательство формулы общего члена арифметической прогрессии

Пользуясь соотношением a_{n+1}=a_n+d выписываем последовательно несколько членов прогрессии, а именно:

a_2=a_1+d

a_3=a_2+d=a_1+d+d=a_1+2d

a_4=a_3+d=a_1+2d+d=a_1+3d

a_5=a_4+d=a_1+3d+d=a_1+4d

Заметив закономерность, делаем предположение, что a_n=a_1+(n-1)d. С помощью математической индукции покажем, что предположение верно для всех n in mathbb N:

База индукции (n=1) :

a_1=a_1+(1-1)d=a_1 — утверждение истинно.

Переход индукции:

Пусть наше утверждение верно при n=k, то есть a_k=a_1+(k-1)d. Докажем истинность утверждения при n=k+1:

a_{k+1}=a_k+d=a_1+(k-1)d+d=a_1+kd

Итак, утверждение верно и при n=k+1. Это значит, что a_n=a_1+(n-1)d для всех n in mathbb N.

Отметим, что в формулах общего члена n-й член прогрессии есть линейная функция. Об этом говорит следующая теорема.

Для того чтобы последовательность {displaystyle left{a_{n}right}} являлась арифметической прогрессией, необходимо и достаточно, чтобы a_n являлась линейной функцией (от n)[3].

Доказательство

Необходимость. Пусть {displaystyle left{a_{n}right}} арифметическая прогрессия. Тогда, как было уже показано, a_n=a_1+(n-1)d, то есть {displaystyle a_{n}=nd+a_{1}-d}. Так как {displaystyle fleft(xright)=ax+b} есть линейная функция и {displaystyle xin mathbb {N} }, это значит, что {displaystyle a=d} и {displaystyle b=a_{1}-d}, т. е. a_n — линейная функция, где {displaystyle fleft(nright)=nd+a_{1}-d}.

Достаточность. Пусть a_n есть линейная функция, т. е. {displaystyle a_{n}=acdot x+b}. Так как {displaystyle xin mathbb {N} } и {displaystyle x=n}, то {displaystyle a_{n}=acdot n+b}, тогда {displaystyle a_{n+1}=acdot left(n+1right)+b}.
Рассмотрим {displaystyle a_{n+1}-a_{n}=left(acdot left(n+1right)+bright)-left(an+bright)}.
Отсюда следует, что {displaystyle a_{n+1}-a_{n}=a}, где a — величина постоянная. Тогда {displaystyle a_{n+1}=a_{n}+a}, а это значит по определению, что {displaystyle left{a_{n}right}} — арифметическая прогрессия.

Суммы членов арифметической прогрессии с равными суммами номеров равны, т. е. {displaystyle a_{n}+a_{m}=a_{k}+a_{l}Longleftrightarrow n+m=k+lquad vert ;forall left(n,,m,,k,,lin mathbb {N} right)}.

Характеристическое свойство арифметической прогрессии[править | править код]

Последовательность a_1, a_2, a_3, ldots есть арифметическая прогрессия Longleftrightarrow для любого её элемента выполняется условие

{displaystyle a_{n}={dfrac {a_{n-1}+a_{n+1}}{2}},ngeqslant 2.}

Доказательство характеристического свойства арифметической прогрессии

Необходимость.

Поскольку a_1, a_2, a_3, ldots — арифметическая прогрессия, то для n geqslant 2 выполняются соотношения:

a_n=a_{n-1}+d

a_n=a_{n+1}-d.

Сложив эти равенства и разделив обе части на 2, получим {displaystyle a_{n}={dfrac {a_{n-1}+a_{n+1}}{2}}}.

Достаточность.

Имеем, что для каждого элемента последовательности, начиная со второго, выполняется a_n=frac{a_{n-1}+a_{n+1}}2. Следует показать, что эта последовательность есть арифметическая прогрессия. Преобразуем эту формулу к виду a_{n+1}-a_n=a_n-a_{n-1}. Поскольку соотношения верны при всех n geqslant 2, с помощью математической индукции покажем, что a_2-a_1=a_3-a_2=ldots =a_n-a_{n-1}=a_{n+1}-a_n.

База индукции (n=2) :

a_2-a_1=a_3-a_2 — утверждение истинно.

Переход индукции:

Пусть наше утверждение верно при n=k, то есть a_2-a_1=a_3-a_2=ldots =a_k-a_{k-1}=a_{k+1}-a_k. Докажем истинность утверждения при n=k+1:

a_{k+1}-a_{k}=a_{k+2}-a_{k+1}

Но по предположению индукции следует, что a_2-a_1=a_3-a_2=ldots =a_k-a_{k-1}=a_{k+1}-a_k. Получаем, что a_2-a_1=a_3-a_2=ldots =a_k-a_{k-1}=a_{k+1}-a_k=a_{k+2}-a_{k+1}

Итак, утверждение верно и при n=k+1. Это значит, что a_n=frac{a_{n-1}+a_{n+1}}2, n geqslant 2 Rightarrow a_2-a_1=a_3-a_2=ldots =a_n-a_{n-1}=a_{n+1}-a_n.

Обозначим эти разности через d. Итак, a_2-a_1=a_3-a_2=ldots =a_n-a_{n-1}=a_{n+1}-a_n=d, а отсюда имеем a_{n+1}=a_n+d для n in mathbb N. Поскольку для членов последовательности a_1, a_2, a_3, ldots выполняется соотношение a_{n+1}=a_n+d, то это есть арифметическая прогрессия.

Тождество арифметической прогрессии[править | править код]

Пусть {displaystyle a_{k},a_{l},a_{m}} — соответственно k-й, l-й, m-й члены арифметической прогрессии, где {displaystyle k,,l,,min mathbb {N} }. Тогда для всякой такой тройки выполняется комплементарное свойство арифметической прогрессии[нет в источнике], называемое тождеством арифметической прогрессии:

{displaystyle (k-l)a_{m}+(m-k)a_{l}+(l-m)a_{k}=0.}

Доказательство тождества арифметической прогрессии

С помощью формулы общего члена выразим k-й, l-й, m-й члены:

{displaystyle a_{k}=a_{1}+(k-1)d,quad a_{l}=a_{1}+(l-1)d,quad a_{m}=a_{1}+(m-1)d.}

Вычитая почленно из первого равенства второе, а из второго третьего, получим:

{displaystyle a_{k}-a_{l}=(k-l)d,quad a_{l}-a_{m}=(l-m)d.}

Выражая из этих равенств d и приравнивая полученные выражения, получим:

{displaystyle {dfrac {a_{k}-a_{l}}{k-l}}={dfrac {a_{l}-a_{m}}{l-m}}.}

По основному свойству пропорции:

{displaystyle (l-m)(a_{k}-a_{l})=(k-l)(a_{l}-a_{m}).}

Откуда следует доказываемое тождество:

{displaystyle (k-l)a_{m}+(m-k)a_{l}+(l-m)a_{k}=0.}

Следствие 1. Всякий член арифметической прогрессии вырази́м[5] через любую пару других членов.

Доказательство

Преобразовав тождество арифметической прогрессии

{displaystyle (k-l)a_{m}+(m-k)a_{l}+(l-m)a_{k}=0}

к виду

{displaystyle a_{m}={dfrac {(l-m)a_{k}+(m-k)a_{l}}{l-k}},}

можно заметить, что m-й член есть линейная комбинация двух других членов (a_{{k}} и {displaystyle a_{l}}), поскольку оно равносильно

{displaystyle a_{m}={dfrac {l-m}{l-k}}a_{k}+{dfrac {m-k}{l-k}}a_{l}.}

Следствие 2. Для того, чтобы число {displaystyle a_{m}} являлось членом данной арифметической прогрессии с членами a_{{k}} и {displaystyle a_{l}}, необходимо и достаточно, чтобы было натуральным число

{displaystyle m={dfrac {(a_{l}-a_{m})k+(a_{m}-a_{k})l}{a_{l}-a_{k}}}.}

Формулировка ещё одного признака арифметической прогрессии.

Следствие 3 [критерий]. Числовая последовательность является арифметической прогрессией в том и только в том случае, если выполняется тождество арифметической прогрессии для всех членов данной последовательности. Другими словами, чтобы каждый член был вырази́м через любую пару остальных членов последовательности.

{displaystyle left{a_{n}right}~-~div Longleftrightarrow left(k-lright)a_{m}+left(m-kright)a_{l}+left(l-mright)a_{k}=0mid forall k,forall l,forall min mathbb {N} .}

Доказательство

Необходимость. Утверждение

{displaystyle left{a_{n}right}~-~div Rightarrow left(k-lright)a_{m}+left(m-kright)a_{l}+left(l-mright)a_{k}=0mid forall k,forall l,forall min mathbb {N} }

очевидно (см. доказательство тождества арифметической прогрессии).

Достаточность. Докажем, что

{displaystyle left{a_{n}right}~-~div Leftarrow left(k-lright)a_{m}+left(m-kright)a_{l}+left(l-mright)a_{k}=0mid forall k,forall l,forall min mathbb {N} .}

Равенство

{displaystyle (k-l)a_{m}+(m-k)a_{l}+(l-m)a_{k}=0}

можно преобразовать к виду

{displaystyle (l-m)(a_{k}-a_{l})=(k-l)(a_{l}-a_{m}).}

Если все три номера различны, тогда

{displaystyle {dfrac {a_{k}-a_{l}}{k-l}}={dfrac {a_{l}-a_{m}}{l-m}}.}

Обозначим выражение, например, в левой части равенства за d, то есть

{displaystyle d={dfrac {a_{k}-a_{l}}{k-l}}.}

Откуда можно прийти к следующему предложению:

{displaystyle a_{k}=a_{l}+{left(k-lright)}d.}

Наконец, методом математической индукции, например, по l нетрудно убедиться, что данное соотношение описывает именно арифметическую прогрессию.

Действительно, при l=1 (база индукции) получаем формулу общего члена арифметической прогрессии:

{displaystyle a_{k}=a_{1}+{left(k-1right)}d.}

Предположим истинность утверждения (для l): формула {displaystyle a_{k}=a_{l}+{left(k-lright)}d} характеризует арифметическую прогрессию. Тогда покажем, что и при l+1 формула верна для арифметической прогрессии (переход, или шаг, индукции). Рассмотрим левую часть формулы

{displaystyle a_{k}=a_{l+1}+{left(k-left(l+1right)right)}d.}

По предположению индукции ({displaystyle a_{k}=a_{l}+{left(k-lright)}d}) заменим a_{k} на выражение {displaystyle a_{l}+{left(k-lright)}d}. Итак, получим следующее:

{displaystyle a_{l}+{left(k-lright)}d=a_{l+1}+{left(k-left(l+1right)right)}d.}

Методом тождественных преобразований имеем равносильное предложение

{displaystyle a_{l+1}=a_{l}+d.}

А это, в свою очередь, рекуррентное соотношение для арифметической прогрессии.

Значит, по принципу математической индукции можно утвердать, что для всякого l соотношение {displaystyle a_{k}=a_{l}+{left(k-lright)}d} верно только и только для членов арифметической прогрессии.

Аналогичные рассуждения проводятся для формулы {displaystyle d={dfrac {a_{l}-a_{m}}{l-m}}}.

Данное следствие целиком и полностью считается доказанным.

Сумма первых n членов арифметической прогрессии[править | править код]

Сумма первых n членов арифметической прогрессии {displaystyle S_{n}=sum _{i=1}^{n}a_{i}=a_{1}+a_{2}+ldots +a_{n}} может быть найдена по формулам

{displaystyle S_{n}={dfrac {a_{1}+a_{n}}{2}}cdot n} , где a_{1} — первый член прогрессии, a_n — член с номером n, n — количество суммируемых членов.
{displaystyle S_{n}={dfrac {a_{1}+a_{n}}{2}}cdot ({dfrac {a_{n}-a_{1}}{a_{2}-a_{1}}}+1)} — где a_{1} — первый член прогрессии, a_{2} — второй член прогрессии {displaystyle ,a_{n}} — член с номером n.
{displaystyle S_{n}={dfrac {2a_{1}+d(n-1)}{2}}cdot n} , где a_{1} — первый член прогрессии, d — разность прогрессии, n — количество суммируемых членов.
{displaystyle S_{n}=a_{frac {n+1}{2}}cdot n}, если n — нечётное натуральное число.
Доказательство
Запишем сумму двумя способами:

S_n=a_1+a_2+a_3+ ldots +a_{n-2}+a_{n-1}+a_n

S_n=a_n+a_{n-1}+a_{n-2}+ ldots +a_3+a_2+a_1 — та же сумма, только слагаемые идут в обратном порядке.

Теперь сложим оба равенства, последовательно складывая в правой части слагаемые, которые стоят на одной вертикали:

2S_n=(a_1+a_n)+(a_2+a_{n-1})+(a_3+a_{n-2})+ ldots +(a_{n-2}+a_3)+(a_{n-1}+a_2)+(a_n+a_1)

Покажем, что все слагаемые (все скобки) полученной суммы равны между собой. В общем виде каждое слагаемое можно подать в виде a_i+a_{n-i+1}, i=1,2,ldots,n. Воспользуемся формулой общего члена арифметической прогрессии:

a_i+a_{n-i+1}=a_1+(i-1)d+a_1+(n-i+1-1)d=2a_1+(n-1)d, i=1,2,ldots,n

Получили, что каждое слагаемое не зависит от i и равно 2a_1+(n-1)d. В частности, a_1+a_n=2a_1+(n-1)d. Поскольку таких слагаемых n, то

{displaystyle 2S_{n}=(a_{1}+a_{n})cdot nRightarrow S_{n}={dfrac {a_{1}+a_{n}}{2}}cdot n}

Третья формула для суммы получается подстановкой 2a_1+(n-1)d вместо a_1+a_n. Что и так непосредственно следует из выражения для общего члена.

Замечание:

Вместо a_1+a_n в первой формуле для суммы можно взять любое из других слагаемых a_i+a_{n-i+1}, i=2,3,ldots,n, так как они все равны между собой.

Формулировка ещё одного факта: для всякой арифметической прогрессии при любом n выполняется равенство:

{displaystyle S_{2n}=S_{n}+{dfrac {1}{3}}S_{3n}.}

Примечание: S_{k} — сумма k первых членов арифметической прогрессии.

Доказательство

1. Очевидно, что {displaystyle {dfrac {S_{2n}}{2n}}-{dfrac {S_{n}}{n}}={dfrac {a_{1}+a_{2n}-left(a_{1}+a_{n}right)}{2}}={dfrac {a_{2n}-a_{n}}{2}},} или {displaystyle S_{2n}-2S_{n}=ncdot (a_{2n}-a_{n}).}

Прибавим к обеим частям S_{n} и получим, что {displaystyle S_{2n}-S_{n}=S_{n}+ncdot (a_{2n}-a_{n}).}

2. Покажем, что {displaystyle S_{n}+ncdot (a_{2n}-a_{n})={dfrac {1}{3}}S_{3n}.}

Это так, поскольку можно написать верное равенство:

{displaystyle {dfrac {S_{3n}}{3n}}-{dfrac {S_{n}}{n}}={dfrac {a_{3n}-a_{n}}{2}}.} Из него следует, что {displaystyle {dfrac {S_{3n}}{3}}=S_{n}+{dfrac {a_{3n}-a_{n}}{2}}cdot n.}

3. Теперь докажем, что {displaystyle a_{2n}-a_{n}={dfrac {a_{3n}-a_{n}}{2}}.}
Перепишем последнее как {displaystyle a_{2n}={dfrac {a_{3n}+a_{n}}{2}}.}

Но гораздо лучше представить это равенство в виде {displaystyle a_{2n}={dfrac {a_{2n+1}+a_{2n-1}}{2}}.} Видно, что это характеристическое свойство арифметической прогрессии.
Значит, действительно {displaystyle a_{2n}-a_{n}={dfrac {a_{3n}-a_{n}}{2}}.}

4. А следовательно, {displaystyle S_{n}+ncdot (a_{2n}-a_{n})={dfrac {1}{3}}S_{3n}.}

5. Тем самым, {displaystyle S_{2n}=S_{n}+{dfrac {1}{3}}S_{3n},} что и требовалось доказать.

Предыдущее свойство имеет обобщение.

Для любых натуральных k, l, m выполняется комплементарное свойство сумм:

{displaystyle {dfrac {l-m}{k}}cdot S_{k}+{dfrac {m-k}{l}}cdot S_{l}+{dfrac {k-l}{m}}cdot S_{m}=0.}

Ещё один признак арифметической прогрессии.

Для того чтобы последовательность {displaystyle left{a_{n}right}} являлась арифметической прогрессией, необходимо и достаточно, чтобы сумма первых n членов последовательности была функцией не выше второй степени относительно n[6].

Сумма членов арифметической прогрессии от n-го до m-го[править | править код]

Сумма членов арифметической прогрессии с номерами от n до m {displaystyle S_{m,n}=sum _{i=n}^{m}a_{i}=a_{n}+a_{n+1}+ldots +a_{m}} может быть найдена по формулам

{displaystyle S_{m,n}={dfrac {a_{m}+a_{n}}{2}}cdot (m-n+1)} , где a_m — член с номером m, a_n — член с номером n, {displaystyle (m-n+1)} — количество суммируемых членов.

{displaystyle S_{m,n}={dfrac {2a_{n}+dleft(m-nright)}{2}}cdot left(m-n+1right),}

где a_n — член с номером n, d — разность прогрессии, {displaystyle (m-n+1)} — количество суммируемых членов.

Произведение членов арифметической прогрессии[править | править код]

Произведением первых n членов арифметической прогрессии {displaystyle left{a_{n}right}} называется произведение от a_{1} до a_n, то есть выражение вида {displaystyle prod limits _{i=1}^{n}a_{i}=a_{1}cdot a_{2}cdot a_{3}cdot ldots cdot a_{n-2}cdot a_{n-1}cdot a_{n}.} Обозначение: P_{n}.

Свойство произведения:

Число множителей-скобок {displaystyle {left(a_{frac {n+1}{2}}^{2}-{left[idright]}^{2}right)}} равно {displaystyle {dfrac {n-1}{2}}}, а в самом произведении {displaystyle a_{frac {n+1}{2}}cdot prod limits _{i=1}^{frac {n-1}{2}}{left(a_{frac {n+1}{2}}^{2}-{left[idright]}^{2}right)}} их составляет {displaystyle {dfrac {n+1}{2}}} «штук».[10]

Сходимость арифметической прогрессии[править | править код]

Арифметическая прогрессия a_1, a_2, a_3, ldots расходится при dne 0 и сходится при d=0. Причём

lim_{nrightarrowinfty} a_n=left{ begin{matrix} +infty, d>0 \ -infty, d<0  \ a_1, d=0 end{matrix} right.

Доказательство
Записав выражение для общего члена и исследуя предел lim_{nrightarrowinfty} (a_1+(n-1)d), получаем искомый результат.

Связь между арифметической и геометрической прогрессиями[править | править код]

Пусть a_1, a_2, a_3, ldots — арифметическая прогрессия с разностью d и число a>0. Тогда последовательность вида a^{a_1}, a^{a_2}, a^{a_3}, ldots есть геометрическая прогрессия со знаменателем a^d.

Доказательство
Проверим характеристическое свойство для образованной геометрической прогрессии:

sqrt{a^{a_{n-1}}cdot a^{a_{n+1}}}= a^{a_n}, ngeqslant 2

Воспользуемся выражением для общего члена арифметической прогрессии:

sqrt{a^{a_{n-1}}cdot a^{a_{n+1}}}=sqrt{a^{a_1+(n-2)d}cdot a^{a_1+nd}}=sqrt{a^{2a_1+2(n-1)d}}=sqrt{(a^{a_1+(n-1)d})^2}=a^{a_1+(n-1)d}=a^{a_n}, ngeqslant 2

Итак, поскольку характеристическое свойство выполняется, то a^{a_1}, a^{a_2}, a^{a_3}, ldots — геометрическая прогрессия. Её знаменатель можно найти, например, из соотношения q=frac{a^{a_2}}{a^{a_1}}=frac{a^{a_1+d}}{a^{a_1}}=a^d.

Следствие: если последовательность положительных чисел образует геометрическую прогрессию, то последовательность их логарифмов образует арифметическую прогрессию.

Арифметические прогрессии высших порядков[править | править код]

Арифметической прогрессией второго порядка называется такая последовательность чисел, что последовательность их разностей сама образует простую арифметическую прогрессию. Примером может служить последовательность квадратов натуральных чисел:

1, 4, 9, 16, 25, 36, …

разности которых образуют простую арифметическую прогрессию с разностью 2:

3, 5, 7, 9, 11, …

Треугольные числа {displaystyle 1,3,6,10,15,ldots } также образуют арифметическую прогрессию второго порядка, их разности образуют простую арифметическую прогрессию {displaystyle 2,3,4,5,ldots }

Тетраэдральные числа {displaystyle 1,4,10,20,35,ldots } образуют арифметическую прогрессию третьего порядка, их разности являются треугольными числами.

Аналогично определяются и прогрессии более высоких порядков. В частности, последовательность n-ных степеней образует арифметическую прогрессию n-го порядка.

Если left[a_{{i}}right]_{{1}}^{{n}} — арифметическая прогрессия порядка m, то существует многочлен P_{{m}}(i)=c_{{m}}i^{{m}}+...+c_{{1}}i+c_{{0}}, такой, что для всех iin left{1,....nright} выполняется равенство a_{{i}}=P_{{m}}(i)[11]

Примеры[править | править код]

{displaystyle T_{n}=sum _{i=1}^{n}i=1+2+3+ldots +n={frac {n(n+1)}{2}}}

Формула для разности[править | править код]

Если известны два члена арифметической прогрессии, а также их номера в ней, то можно найти разность как

{displaystyle {mathit {d={frac {a_{m}-a_{n}}{m-n}}}}}.

Сумма чисел от 1 до 100[править | править код]

Согласно легенде, школьный учитель математики юного Гаусса, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100. Гаусс заметил, что попарные суммы с противоположных концов одинаковы: 1+100=101, 2+99=101 и т. д., и мгновенно получил результат: 5050.
Действительно, легко видеть, что решение сводится к формуле

frac{n(n+1)}2

то есть к формуле суммы первых n чисел натурального ряда.

См. также[править | править код]

  • Геометрическая прогрессия
  • Арифметико-геометрическая прогрессия

Примечания[править | править код]

  1. Такое соотношение называют рекуррентным соотношением первого порядка. Поэтому арифметическая прогрессия есть множество последовательностей, задающихся именно таким образом.
  2. Фильчаков П. Ф. Глава II. Алгебра и элементарные функции. Функции натурального аргумента (§ 75. Арифметическая прогрессия) // Справочник по элементарной математике: для поступающих в вузы : книга / под ред. чл.-кор. АН УССР П. Ф. Фильчакова. — Киев : «Наукова думка», 1972. — С. 303. — 528 с. — 400 000 экз. — УДК 51 (08)(G).
  3. Шахмейстер А. Х. Прогрессии. Арифметическая прогрессия // Множества. Функции. Последовательности. Прогрессии : книга / А. Х. Шахмейстер, под общ. ред. Б. Г. Зива. — 2-е изд., испр. и доп. — СПб. : «Петроглиф» : «Виктория плюс» ; М. : Издательство МЦНМО, 2008. — С. 135. — 296 с. : илл. — (Математика. Элективные курсы). — 3000 экз. — ББК 22.141я71.6. — УДК 373.167.1:512(G). — ISBN 978-5-94057-423-1. — ISBN 978-5-98712-027-9. — ISBN 978-5-91673-006-7.
  4. Соотношение между любыми тремя членами арифметической прогрессии и их номерами (Мусинов В. А.) // Материалы студенческой научной сессии Института математики и информатики МПГУ. 2021–2022 учебный год : сборник статей / под общ. ред. Е. С. Крупицына. — М.: МПГУ, 2022. — С. 91—93. — 156 с. — ISBN 978-5-4263-1109-1, ББК 22.1я431+32.81я431+22.1р30я431+74.262.21я431+74.263.2я431.
  5. Это означает, что выражаемый член есть комбинация любых двух других членов данной последовательности, причём эта комбинация составлена с помощью арифметических операций и конечного набора символов. Для арифметической последовательности такая комбинация будет линейной.
  6. Шахмейстер А. Х. Прогрессии. Арифметическая прогрессия // Множества. Функции. Последовательности. Прогрессии : книга / А. Х. Шахмейстер, под общ. ред. Б. Г. Зива. — 2-е изд., испр. и доп. — СПб. : «Петроглиф» : «Виктория плюс» ; М. : Издательство МЦНМО, 2008. — С. 141. — 296 с. : илл. — (Математика. Элективные курсы). — 3000 экз. — ББК 22.141я71.6. — УДК 373.167.1:512(G). — ISBN 978-5-94057-423-1. — ISBN 978-5-98712-027-9. — ISBN 978-5-91673-006-7.
  7. Из доказательства необходимости следует, что {displaystyle S_{n}=an^{2}+bn}, поэтому, если {displaystyle S_{n}=an^{2}+bn+c}, то необходимо сделать проверку. Например, если {displaystyle S_{n}=2n^{2}-n-6} — сумма первых n членов последовательности, то такая последовательность НЕ является арифметической прогрессией. А последовательность, заданная суммой {displaystyle S_{n}=2n^{2}-n} первых n членов, будет арифметической прогрессией.
  8. При n=1 произведение P_{n} равно {displaystyle a_{frac {1+1}{2}}=a_{1}}, что безусловно верно.
  9. Эту формулу удобно использовать для выполнения итераций в программном коде, так как результат зависит от значения только двух величин: постоянного числа — разности, и члена, стоящего ровно по середине между первым и n-м членом.
  10. Пример применения формулы.
    Пусть {displaystyle div left{a_{n}right}:quad underbrace {27} _{a_{1}},;underbrace {20} _{a_{2}},;underbrace {13} _{a_{3}},;underbrace {6} _{a_{4}},;underbrace {-1} _{a_{5}}}, где {displaystyle d=-7}.

    По формуле {displaystyle P_{n}=a_{frac {n+1}{2}}cdot prod limits _{i=1}^{frac {n-1}{2}}{left(a_{frac {n+1}{2}}^{2}-{left[idright]}^{2}right)}} найдём произведение пяти первых членов. Количество сомножителей должно равняться {displaystyle {dfrac {5+1}{2}}=3}. Причём первым сомножителем будет {displaystyle a_{frac {5+1}{2}}=a_{3}=13}.

    Далее {displaystyle prod limits _{i=1}^{frac {5-1}{2}}{left(a_{frac {5+1}{2}}^{2}-{left[idright]}^{2}right)}=prod limits _{i=1}^{2}{left(a_{3}^{2}-{left[idright]}^{2}right)}=}{displaystyle ={left(a_{3}^{2}-{left[dright]}^{2}right)}cdot {left(a_{3}^{2}-{left[2dright]}^{2}right)}={left(169-49right)}cdot {left(169-4cdot 49right)}=}{displaystyle =120cdot {left(-27right)}}.

    Наконец, {displaystyle P_{n}=13cdot 120cdot {left(-27right)}=-42120}.
  11. Бронштейн, 1986, с. 139.

Литература[править | править код]

  • Бронштейн И. Н., Семендяев К. А. Справочник по математике для инженеров и учащихся втузов. — М.: Наука, 1986. — 544 с.

Ссылки[править | править код]

  • Арифметическая прогрессия // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890. — Т. II. — С. 98.

Арифметическая прогрессия — это числовая последовательность a1, a2, … , an, …, для которой для каждого натурального n выполняется равенство:

an+1 = an + d

где d – это разность арифметической прогрессии.

Пример: последовательность чисел 3, 7, 11, 15, 19, … является арифметической прогрессией с разностью d = 4.

Арифметическая прогрессия бывает трех видов:

  1. Возрастающая — арифметическая прогрессия, у которой разность является положительной

    Пример: последовательность чисел 2, 5, 8, 11, 14, … является возрастающей арифметической прогрессией, так как ее разность d = 3.

  2. Убывающая — арифметическая прогрессия, у которой разность является отрицательной

    Пример: последовательность чисел 100, 98, 96, 94, 92, … является убывающей арифметической прогрессией, так как ее разность d = –2.

  3. Стационарная — арифметическая прогрессия, у которой разность равно нулю

    Пример: последовательность чисел 23, 23, 23, 23, 23, … является стационарной арифметической прогрессией, так как ее разность d = 0.

Основные формулы арифметической прогрессии

Члены арифметической прогрессии

Общая формула для вычисления n-ого члена арифметической прогрессии по первому члену и разности:

an = a1 + d(n – 1)

Следующий член арифметической прогрессии можно найти по предыдущему члену и разности:

an+1 = an + d

Предыдущий член арифметической прогрессии можно найти по следующему члену и разности:

an-1 = an – d

Также член арифметической прогрессии можно найти, если известны следующий и предыдущий члены:

an = (an-1 + an+1) / 2, где n > 1

Сумма арифметической прогрессии

Сумма первых n членов арифметической прогрессии равна

Sn = (a1 + an) ⋅ n / 2

Также сумму можно вычислить, используя другую формулу:

Sn = (2a1 + d(n – 1)) ⋅ n / 2

Решение задач на арифметическую прогрессию

Рассмотрим несколько типичных задач, посвященных арифметической прогрессии.

Задача 1:

Доказать, что последовательность, заданная формулой an = 5 + 4n, является арифметической.

Решение:

Чтобы доказать, что последовательность является арифметической, достаточно получить следующий член этой последовательности и найти разность.

an+1 = 5 + 4(n + 1) = 5 + 4n + 4 = 9 + 4n

d = an+1 – an = 9 + 4n – (5 + 4n) = 9 + 4n – 5 – 4n = 4

Поскольку разность является числом, значит она будет одинакова для всех членов данной последовательности. Поэтому последовательность является арифметической прогрессией.

Задача 2:

Найти 20 член арифметической прогрессии и сумму первых десяти, если a1 = -18 и d = 5

Решение:

a20 = a1 + d ⋅ 19 = –18 + 5 ⋅ 19 = 77

S10 = (2 ⋅ (–18) + 5 ⋅ 9) ⋅ 10 / 2 = 45

Ответ: 77 и 45

Задача 3:

Число 85 является членом арифметической прогрессии 8, 15, 22, 29, … . Найти номер этого члена.

Решение:

Пусть n – номер, который нужно найти.

a1 = 8

d = a2 – a1 = 15 – 8 = 7

Применив формулу для вычисления n-ого члена арифметической прогрессии, можно получить n

8 + 7 ⋅ (n – 1) = 85

7 ⋅ n – 7 = 85 – 8

7 ⋅ n = 77 + 7

7 ⋅ n = 84

n = 12

Ответ: 12

Задача 4:

В арифметической прогрессии a8 = 22 и a14 = 34. Найти формулу для n-ого члена.

Решение:

Применив формулу для вычисления n-ого члена арифметической прогрессии по первому члену и разности находим:

a8 = a1 + d ⋅ 7

a14 = a1 + d ⋅ 13

Подставив в эти выражения a8 и a14 получаем систему уравнений:

a1 + 7d = 22

a1 + 13d = 34

Вычитая из первого уравнения второе, можно вычислить d:

Подставляем d в первое уравнение для получения a1:

Таким образом, формула для n-ого члена арифметической прогрессии выглядит так:

an = 8 + 2 ⋅ (n – 1) = 8 + 2n – 2 = 6 + 2n

Ответ: an = 6 + 2n

Задача 5:

Найти количество членов арифметической прогрессии 1, 3, 5, 7, … , если их сумма равна 81.

Решение:

Из заданной арифметической прогрессии получаем a1 и d:

И подставляем известные данные в формулу суммы:

(2 ⋅ 1 + 2 ⋅ (n – 1)) ⋅ n / 2 = 81

(2 + 2n – 2) ⋅ n = 81 ⋅ 2

2n² = 162

n² = 81

n = 9

Ответ: 9

        Формула n-го члена геометрической прогрессии — штука очень простая. Как по смыслу, так и по общему виду. Но задачки на формулу n-го члена встречаются всякие — от совсем примитивных до вполне себе серьёзных. И в процессе нашего знакомства мы обязательно рассмотрим и те и другие. Ну что, знакомимся?)

        Итак, для начала собственно сама формула n-го члена геометрической прогрессии.

        Вот она:

bn = b1·qn-1

       Формула как формула, ничего сверхъестественного. Выглядит даже проще и компактнее, чем аналогичная формула для арифметической прогрессии. Смысл формулы тоже прост, как валенок.

        Эта формула позволяет находить ЛЮБОЙ член геометрической прогрессии ПО ЕГО НОМЕРУ “n“.

        Как вы видите, по смыслу полная аналогия с арифметической прогрессией. Знаем номер n — можем посчитать и член, стоящий под этим номером. Какой хотим. Не умножая последовательно на “q” много-много раз. Вот и весь смысл.)

        Я понимаю, что на данном уровне работы с прогрессиями все входящие в формулу величины вам уже должны быть понятны, но считаю своим долгом всё-таки расшифровать каждую. На всякий случай.

        Итак, поехали:

        b1 — первый член геометрической прогрессии;

        q — знаменатель геометрической прогрессии;

        n — номер члена;

        bn — энный (n-й) член геометрической прогрессии.

        Эта формулка связывает четыре главных параметра любой геометрической прогрессии — bn, b1, q и n. И вокруг этих четырёх ключевых фигур и вертятся все-все задачки по прогрессии.

        “А как она выводится?” — слышу любопытный вопрос… Элементарно! Смотрите!

        Чему равен второй член прогрессии? Не вопрос! Прямо по смыслу геометрической прогрессии пишем:

       b2 = b1·q

        А третий член? Тоже не проблема! Второй член помножаем ещё раз на q.

        Вот так:

        b3 = b2·q

        Вспомним теперь, что второй член, в свою очередь, у нас равен b1·q и подставим это выражение в наше равенство:

        b3 = b2·q = (b1·q)·q = b1·q·q = b1·q2

        Получаем:

        b3 = b1·q2

       А теперь прочитаем нашу запись по-русски: третий член равен первому члену, умноженному на q во второй степени. Улавливаете? Пока нет? Хорошо, ещё один шаг.

        Чему равен четвёртый член? Всё то же самое! Умножаем предыдущий (т.е. третий член) на q:

        b4 = b3·q = (b1·q2)·q = b1·q2·q = b1·q3

        Итого:

        b4 = b1·q3

        И снова переводим на русский язык: четвёртый член равен первому члену, умноженному на q в третьей степени.

        И так далее. Ну и как? Уловили закономерность? Да! Для любого члена с любым номером количество одинаковых множителей q (т.е. степень знаменателя) всегда будет на единичку меньше, чем номер искомого члена n.

        Стало быть, наша формула будет, без вариантов:

        bn = b1·qn-1

        Вот и все дела.)

        Ну что, порешаем задачки, наверное?)

Решение задач на формулу n-го члена геометрической прогрессии.

        Начнём, как обычно, с прямого применения формулы. Вот типичная задачка:

        В геометрической прогрессии известно, что b1 = 512 и q = -1/2. Найдите десятый член прогрессии.

        Конечно, эту задачку можно вообще безо всяких формул решить. Прямо по смыслу геометрической прогрессии. Но нам ведь с формулой n-го члена размяться нужно, правда? Вот и разминаемся.

        Наши данные для применения формулы следующие.

        Известен первый член. Это 512.

        b1 = 512.

        Известен также знаменатель прогрессии: q = -1/2.

        Остаётся только сообразить, чему равен номер члена n. Не вопрос! Нас интересует десятый член? Вот и подставляем в общую формулу десятку вместо n.

        И аккуратно считаем арифметику:

        

       Ответ: -1

        Как видим, десятый член прогрессии оказался с минусом. Ничего удивительного: знаменатель прогрессии у нас -1/2, т.е. отрицательное число. А это говорит нам о том, что знаки у нашей прогрессии чередуются, да.)

        Здесь всё просто. А вот похожая задачка, но немного посложнее в плане вычислений.

        В геометрической прогрессии известно, что:

        b1 = 3

        

        Найдите тринадцатый член прогрессии.

        Всё то же самое, только в этот раз знаменатель прогрессии — иррациональный. Корень из двух. Ну и ничего страшного. Формула — штука универсальная, с любыми числами справляется.

        Работаем прямо по формуле:

        

        Формула, конечно, сработала как надо, но… вот тут некоторые и зависнут. Что дальше делать с корнем? Как возвести корень в двенадцатую степень?

        Как-как… Надо понимать, что любая формула, конечно, дело хорошее, но знание всей предыдущей математики при этом не отменяется! Как возвести? Да свойства степеней вспомнить! Превратим корень в степень с дробным показателем и — по формуле возведения степени в степень.

        Вот так:

        

        Ответ: 192

        И все дела.)

        В чём состоит основная трудность при прямом применении формулы n-го члена? Да! Основная трудность — это работа со степенями! А именно — возведение в степень отрицательных чисел, дробей, корней и тому подобных конструкций. Так что те, у кого с этим проблемы, настоятельная просьба повторить степени и их свойства! Иначе и в этой теме будете тормозить, да…)

        А теперь порешаем типовые задачки на поиск одного из элементов формулы, если даны все остальные. Для успешного решения таких задач рецепт един и прост до ужаса — пишем формулу n-го члена в общем виде! Прямо в тетрадке рядышком с условием. А затем из условия соображаем, что нам дано, а чего не хватает. И выражаем из формулы искомую величину. Всё!

        Например, такая безобидная задачка.

        Пятый член геометрической прогрессии со знаменателем 3 равен 567. Найдите первый член этой прогрессии.

        Ничего сложного. Работаем прямо по заклинанию.

        Пишем формулу n-го члена!

        bn = b1·qn-1

        Что нам дано? Во-первых, дан знаменатель прогрессии: q = 3.

        Кроме того, нам дан пятый член: b5 = 567.

        Всё? Нет! Ещё нам дан номер n! Это — пятёрка: n = 5.

        Надеюсь, вы уже понимаете, что в записи b5 = 567 скрыты сразу два параметра — это сам пятый член (567) и его номер (5). В аналогичном уроке по арифметической прогрессии я об этом уже говорил, но и здесь считаю не лишним напомнить.)

        Вот теперь подставляем наши данные в формулу:

        567 = b1·35-1

        Считаем арифметику, упрощаем и получаем простенькое линейное уравнение:

        81b1 = 567

        Решаем и получаем:

        b1 = 7

        Как вы видите, с поиском первого члена проблем никаких. А вот при поиске знаменателя q и номера n могут встречаться и сюрпризы. И к ним (к сюрпризам) тоже надо быть готовым, да.)

        Например, такая задачка:

        Пятый член геометрической прогрессии с положительным знаменателем равен 162, а первый член этой прогрессии равен 2. Найдите знаменатель прогрессии.

        В этот раз нам даны первый и пятый члены, а найти просят знаменатель прогрессии. Вот и приступаем.

        Пишем формулу n-го члена!

        bn = b1·qn-1

        Наши исходные данные будут следующими:

        b5 = 162

        b1 = 2

        n = 5

        Не хватает значения q. Не вопрос! Сейчас найдём.) Подставляем в формулу всё что нам известно.

        Получаем:

        162 = 2·q5-1

        2q4 = 162

        q4 = 81

        Простенькое уравнение четвёртой степени. А вот сейчас — аккуратно! На данном этапе решения многие ученики сразу же радостно извлекают корень (четвёртой степени) и получают ответ q=3.

        Вот так:

        q4 = 81

        

        q = 3

        Но вообще-то, это недоделанный ответ. Точнее, неполный. Почему? Дело в том, что ответ q = -3 тоже подходит: (-3)4 тоже будет 81!

        Всё из-за того, что степенное уравнение xn = a всегда имеет два противоположных корня при чётном n. С плюсом и с минусом:

        

        Оба подходят.

        Например, решая неполное квадратное уравнение (т.е. второй степени)

        x2 = 9

        вы же почему-то не удивляетесь появлению двух корней x=±3? Вот и тут то же самое. И с любой другой чётной степенью (четвёртой, шестой, десятой и т.д.) будет так же. Подробности — в теме про арифметический корень n-й степени.

        Поэтому правильное решение будет таким:

        q4 = 81

         

        q = ±3

        Хорошо, со знаками разобрались. Какой же из них правильный — плюс или минус? Что ж, читаем ещё раз условие задачи в поисках дополнительной информации. Её, конечно, может и не быть, но в данной задаче такая информация имеется. У нас в условии прямым текстом сказано, что дана прогрессия с положительным знаменателем.

        Поэтому ответ очевиден:

        q = 3

        Здесь-то всё просто. А как вы думаете, что было бы, если бы формулировка задачи была бы вот такой:

        Пятый член геометрической прогрессии равен 162, а первый член этой прогрессии равен 2. Найдите знаменатель прогрессии.

        В чём отличие? Да! В условии ничего не сказано про знак знаменателя. Ни прямо, ни косвенно. И вот тут задачка уже имела бы два решения!

        q = 3 и q = -3

        Да-да! И с плюсом и с минусом.) Математически сей факт означал бы, что существуют две прогрессии, которые подходят под условие задачи. И для каждой — свой знаменатель. Ради интереса, потренируйтесь и выпишите первые пять членов каждой из них.)

        А теперь потренируемся номер члена находить. Эта задачка самая сложная, да. Но зато и более творческая.)

        Дана геометрическая прогрессия:

        3; 6; 12; 24; …

        Под каким номером в этой прогрессии стоит число 768?

        Первый шаг всё тот же: пишем формулу n-го члена!

        bn = b1·qn-1

        А теперь, как обычно, подставляем в неё известные нам данные. Гм… не подставляется! Где первый член, где знаменатель, где всё остальное?!

        Где-где… А глазки нам зачем? Ресницами хлопать? В этот раз прогрессия задана нам напрямую в виде последовательности. Первый член видим? Видим! Это — тройка (b1 = 3). А знаменатель? Пока не видим, но он очень легко считается. Если, конечно, понимать, что такое знаменатель геометрической прогрессии.

        Вот и считаем. Прямо по смыслу геометрической прогрессии: берём любой её член (кроме первого) и делим на предыдущий.

        Хотя бы вот так:

        q = 24/12 = 2

        Что ещё нам известно? Нам ещё известен некоторый член этой прогрессии, равный 768. Под каким-то номером n:

        bn = 768

        Номер его нам неизвестен, но наша задача как раз и состоит в том, чтобы его отыскать.) Вот и ищем. Все необходимые данные для подстановки в формулу мы уже скачали. Незаметно для себя.)

        Вот и подставляем:

        768 = 3·2n-1

        Делаем элементарные тождественные преобразования — делим обе части на тройку и переписываем уравнение в привычном виде: неизвестное слева, известное – справа.

        Получаем:

        2n-1 = 256

        Вот такое интересное уравнение. Надо найти “n”. Что, непривычно? Да, я не спорю. Вообще-то, это простейшее показательное уравнение. Оно так называется из-за того, что неизвестное (в данном случае это — номер n) стоит в показателе степени.

        На этапе знакомства с геометрической прогрессией (это девятый класс) показательные уравнения решать не учат, да… Это тема старших классов. Но страшного ничего нет. Даже если вы не в курсе, как решаются такие уравнения, попробуем найти наше n, руководствуясь простой логикой и здравым смыслом.

        Начинаем рассуждать. Слева у нас стоит двойка в какой-то степени. Мы пока не знаем, что это конкретно за степень, но это и не страшно. Но зато мы твёрдо знаем, что эта степень равна 256! Вот и вспоминаем, в какой же степени двойка даёт нам 256. Вспомнили? Да! В восьмой степени!

        256 = 28

        Если не вспомнили или с распознаванием степеней проблемы, то тоже ничего страшного: просто последовательно возводим двойку в квадрат, в куб, в четвёртую степень, пятую и так далее. Подбор, фактически, но на данном уровне — вполне прокатит.

        Так или иначе, мы получим:

        2n-1 = 28

        А дальше что напрашивается? Правильно, просто убрать одинаковые основания (двойки) и приравнять показатели! Это можно, математика позволяет. Убираем двойки и получаем:

        n-1 = 8

        n = 9

        Итак, 768 — это девятый член нашей прогрессии. Всё, задача решена.)

        Ответ: 9

        Что? Скучно? Надоела элементарщина? Согласен. И мне тоже. Шагаем на следующий уровень.)

Более сложные задачи.

        А теперь решаем задачки покруче. Не то чтобы совсем уж сверхкрутые, но над которыми предстоит немного поработать, чтобы добраться до ответа.

        Например, такая.

        Найдите второй член геометрической прогрессии, если четвёртый её член равен -24, а седьмой член равен 192.

        Это классика жанра. Известны какие-то два разных члена прогрессии, а найти надо ещё какой-то член. Причём все члены НЕ соседние. Что и смущает поначалу, да…

        Как и в уроке по арифметической прогрессии, для решения таких задач рассмотрим два способа. Первый способ — универсальный. Алгебраический. Работает безотказно и с любыми исходными данными. Поэтому именно с него и начнём.)

        Расписываем каждый член по формуле n-го члена!

        Всё точь-в-точь как с арифметической прогрессией. Только в этот раз работаем с другой общей формулой. Вот и всё.) Но суть та же самая: берём и поочерёдно подставляем в формулу n-го члена наши исходные данные. Для каждого члена — свои.

        Для четвёртого члена записываем:

        b4 = b1·q3

        -24 = b1·q3

        Есть. Одно уравнение готово.

        Для седьмого члена пишем:

        b7 = b1·q6

        192 = b1·q6

        Итого получили два уравнения для одной и той же прогрессии.

        Собираем из них систему:

        

        Несмотря на её грозный вид, системка совсем простая. Самый очевидный способ решения — обычная подстановка. Выражаем b1 из верхнего уравнения и подставляем в нижнее:

        

        Немного повозившись с нижним уравнением (сократив степени и поделив на -24), получим:

        q3 = -8

        К этому же уравнению, между прочим, можно прийти и более простым путём! Каким? Сейчас я вам продемонстрирую ещё один секретный, но оч-чень красивый, мощный и полезный способ решения подобных систем. Таких систем, в уравнениях которых сидят только произведения. Хотя бы в одном. Называется метод почленного деления одного уравнения на другое.

        Итак, перед нами система:

        

        В обоих уравнениях слева — произведение, а справа — просто число. Это очень хороший знак.) Давайте возьмём и… поделим, скажем, нижнее уравнение на верхнее! Что значит, поделим одно уравнение на другое? Очень просто. Берём левую часть одного уравнения (нижнего) и делим её на левую часть другого уравнения (верхнего). С правой частью аналогично: правую часть одного уравнения делим на правую часть другого.

        Весь процесс деления выглядит так:

        

        Теперь, сократив всё, что сокращается, получим:

        q3 = -8

        Чем хорош этот способ? Да тем, что в процессе такого деления всё нехорошее и неудобное может благополучно сократиться и остаться вполне безобидное уравнение! Именно поэтому так важно наличие только умножения хотя бы в одном из уравнений системы. Нету умножения — нечего и сокращать, да…

        А вообще, этот способ (как и многие другие нетривиальные способы решения систем) даже заслуживает отдельного урока. Обязательно его разберу поподробнее. Когда-нибудь…

        Впрочем, неважно, как именно вы решаете систему, в любом случае теперь нам надо решить получившееся уравнение:

        q3 = -8

        Никаких проблем: извлекаем корень (кубический) и — готово!

        

        Прошу заметить, что здесь при извлечении ставить плюс/минус не нужно. Нечётной (третьей) степени у нас корень. И ответ — тоже один, да.)

        Итак, знаменатель прогрессии найден. Минус два. Отлично! Процесс идёт.)

        Для первого члена (скажем, из верхнего уравнения) мы получим:

        

        Отлично! Знаем первый член, знаем знаменатель. И теперь у нас появилась возможность найти любой член прогрессии. В том числе и второй.)

        Для второго члена всё совсем просто:

        b2 = b1·q = 3·(-2) = -6

        Ответ: -6

        Итак, алгебраический способ решения задачи мы с вами разложили по полочкам. Сложно? Не очень, согласен. Долго и нудно? Да, безусловно. Но иногда можно существенно сократить объём работы. Для этого есть графический способ. Старый добрый и знакомый нам по задачкам на арифметическую прогрессию.)

        Рисуем задачу!

        Да! Именно так. Снова изображаем нашу прогрессию на числовой оси. Не обязательно по линеечке, не обязательно выдерживать равные интервалы между членами (которые, кстати, и не будут одинаковыми, т.к. прогрессия – геометрическая!), а просто схематично рисуем нашу последовательность.

        У меня получилось вот так:

        

        А теперь смотрим на картинку и соображаем. Сколько одинаковых множителей “q” разделяют четвёртый и седьмой члены? Верно, три!   

        Стало быть, имеем полное право записать:

        -24·q3 = 192

        Отсюда теперь легко ищется q:

        q3 = -8

        q = -2

        Вот и отлично, знаменатель у нас уже в кармане. А теперь снова смотрим на картинку: сколько таких знаменателей сидит между вторым и четвёртым членами? Два! Стало быть, для записи связи между этими членами знаменатель будем возводить в квадрат.

        Вот и пишем:

        b2·q2 = -24, откуда b2 = -24/q2

        Подставляем наш найденный знаменатель в выражение для b2, считаем и получаем:

        

        Ответ: -6

        Как видим, всё гораздо проще и быстрее, чем через систему. Более того, здесь нам вообще даже не понадобилось считать первый член! Совсем.)

        Вот такой простой и наглядный способ-лайт. Но есть у него и серьёзный недостаток. Догадались? Да! Он годится только для очень коротких кусочков прогрессии. Таких, где расстояния между интересующими нас членами не очень большие. А вот во всех остальных случаях картинку рисовать уже затруднительно, да… Тогда решаем задачу аналитически, через систему.) А системы — штука универсальная. С любыми числами справляются.

        Ещё одна эпичная задачка:

        Второй член геометрической прогрессии на 10 больше первого, а третий член на 30 больше второго. Найдите знаменатель прогрессии.

        Что, круто? Вовсе нет! Всё то же самое. Снова переводим условие задачи в чистую алгебру.

        1) Расписываем каждый член по формуле n-го члена!

        Второй член: b2 = b1·q

        Третий член: b3 = b1·q2

        2) Записываем связь между членами из условия задачи.

        Читаем условие: “Второй член геометрической прогрессии на 10 больше первого”. Стоп, это ценно!

        Так и пишем:

        b2 = b1+10

        Читаем дальше: “…третий член на 30 больше второго”.

        И эту фразу переводим в чистую математику:

        b3 = b2+30

        Получили два уравнения. Объединяем их в систему:

        

        Система на вид простенькая. Но что-то уж много различных индексов у буковок. Подставим-ка вместо второго и третьего членов их выражения через первый член и знаменатель! Зря, что ли, мы их расписывали?

        Получим:

        

        А вот такая система — уже не подарок, да… Как такое решать? К сожалению, универсального секретного заклинания на решение сложных нелинейных систем в математике нет и быть не может. Это фантастика! Но первое что должно приходить вам в голову при попытке разгрызть подобный крепкий орешек — это прикинуть, а не сводится ли одно из уравнений системы к красивому виду, позволяющему, например, легко выразить одну из переменных через другую?

        Вот и прикинем. Первое уравнение системы явно проще второго. Его и подвергнем пыткам.) А не попробовать ли из первого уравнения что-то выразить через что-то? Раз уж мы хотим найти знаменатель q, то выгоднее всего нам было бы выразить b1 через q.

        Вот и попробуем проделать эту процедуру с первым уравнением, применяя старые добрые тождественные преобразования:

        b1q = b1+10

        b1q — b1 = 10

        b1(q-1) = 10

        

        Всё! Вот мы и выразили ненужную нам переменную (b1) через нужную (q). Да, не самое простое выражение получили. Дробь какую-то… Но и система у нас приличного уровня, да.)

        А дальше дело техники. Обычный метод подстановки. Подставляем наше полученное выражение для b1 в нижнее уравнение:

        

        Типичное дробно-рациональное уравнение. Что делать — знаем.

        Пишем ОДЗ (обязательно!):

        q ≠ 1

        Умножаем всё на знаменатель (q-1) и сокращаем все дроби:

        10q2 = 10q + 30(q-1)

        Делим всё на десятку, раскрываем скобки, собираем всё слева:

        q2 — 4q + 3 = 0

        Решаем получившееся квадратное уравнение и получаем два корня:

        q1 = 1

        q2 = 3

        И что дальше? И какой из корней нам выбрать? Так, стоп! Чего же я туплю-то? А ОДЗ зачем мы выписывали? Для красоты?) Единица никак не катит! В отвал единицу!

        Окончательный ответ один: q = 3.

        Ответ: 3

        Как вы видите, путь решения большинства задач на формулу n-го члена геометрической прогрессии всегда един: читаем внимательно условие задачи и с помощью формулы n-го члена переводим всю полезную информацию в чистую алгебру.

        А именно:

        1) Расписываем отдельно каждый данный в задаче член по формуле n-го члена.

         2)  Из условия задачи переводим связь между членами в математическую форму. Составляем уравнение или систему уравнений.

         3) Решаем полученное уравнение или систему уравнений, находим неизвестные параметры прогрессии.

         4) В случае неоднозначного ответа читаем внимательно условие задачи в поисках дополнительной информации (если таковая присутствует). Также сверяем полученный ответ с условиями ОДЗ (если таковые имеются).

        А теперь перечислим основные проблемы, наиболее часто приводящие к ошибкам в процессе решения задач на геометрическую прогрессию.

        1. Элементарная арифметика. Действия с дробями и отрицательными числами.

        2. Действия со степенями и действия с корнями. Возведение в степень дробей, корней, отрицательных чисел. Извлечение корней n-й степени при решении уравнений.

        3. Решение уравнений и (особенно!) систем уравнений. Тождественные преобразования уравнений.

        Если хотя бы с одним из этих трёх пунктов проблемы, то неизбежно будете ошибаться и в этой теме. К сожалению… Так что не ленитесь и повторите то о чём упомянуто выше. И по ссылочкам — сходите. Иногда помогает.)

        Видоизменённые и рекуррентные формулы.

        А теперь рассмотрим парочку типичных экзаменационных задачек с менее привычной подачей условия. Да-да, вы угадали! Это видоизменённые и рекуррентные формулы n-го члена. С такими формулами мы уже с вами сталкивались и работали в соответствующем уроке по арифметической прогрессии. Здесь всё аналогично. Суть та же.

        Например, такая задачка из ОГЭ:

        Геометрическая прогрессия задана формулой bn = 3·2n. Найдите сумму первого и четвёртого её членов.

        В этот раз прогрессия нам задана не совсем привычно. В виде какой-то формулы. Ну и что? Эта формула — тоже формула n-го члена! Мы же с вами знаем, что формулу n-го члена можно записать как в общем виде, через буквы, так и для конкретной прогрессии. С конкретными первым членом и знаменателем.

        В нашем случае нам, на самом деле, задана формула общего члена для геометрической прогрессии вот с такими параметрами:

        b1 = 6

        q = 2

        Проверим?) Запишем формулу n-го члена в общем виде и подставим в неё b1 и q. Получим:

        bn = b1·qn-1

        bn = 6·2n-1

        Упрощаем, используя разложение на множители и свойства степеней, и получаем:

        bn = 6·2n-1 = 3·2·2n-1 = 3·2n-1+1 = 3·2n

        Как видите, всё честно. Но наша с вами цель — не продемонстрировать вывод конкретной формулы. Это так, лирическое отступление. Чисто для понимания.) Наша цель – решить задачу по той формуле, что дана нам в условии. Улавливаете?) Вот и работаем с видоизменённой формулой напрямую.

        Считаем первый член. Подставляем n=1 в общую формулу:

        b1 = 3·21 = 3·2 = 6

        Вот так. Кстати, не поленюсь и ещё раз обращу ваше внимание на типовой ляп с подсчётом первого члена. НЕ НАДО, глядя на формулу bn = 3·2n, сразу бросаться писать, что первый член — тройка! Это — грубейшая ошибка, да…)

        Продолжаем. Подставляем n=4 и считаем четвёртый член: 

        b4 = 3·24 = 3·16 = 48

        Ну и наконец, считаем требуемую сумму:

        b1 + b4 = 6+48 = 54

        Ответ: 54

        Ещё задачка.

        Геометрическая прогрессия задана условиями:

        b1 = -7;

        bn+1 = 3bn

        Найдите четвёртый член прогрессии.

        Здесь прогрессия задана рекуррентной формулой. Ну и ладно.) Как работать с такой формулой — тоже знаем.

        Вот и действуем. По шагам.

        1) Считаем два последовательных члена прогрессии.

        Первый член нам уже задан. Минус семь. А вот следующий, второй член, легко можно посчитать по рекуррентной формуле. Если понимать принцип её работы, конечно.)

        Вот и считаем второй член по известному первому:

        b2 = 3b1 = 3·(-7) = -21

        2) Считаем знаменатель прогрессии

        Тоже никаких проблем. Прямо по смыслу геометрической прогрессии, делим второй член на первый.

        Получаем:

        q = -21/(-7) = 3

        3) Пишем формулу n-го члена в привычном виде и считаем нужный член.

        Итак, первый член знаем, знаменатель — тоже. Вот и пишем:

        bn = -7·3n-1

        Осталось лишь посчитать четвёртый член:

        b4 = -7·33 = -7·27 = -189

        Ответ: -189

        Как вы видите, работа с такими формулами для геометрической прогрессии ничем по своей сути не отличается от таковой для прогрессии арифметической. Важно лишь понимать общую суть и смысл этих формул. Ну и смысл геометрической прогрессии тоже надо понимать, да.) И тогда глупых ошибок не будет.

        Ну что, порешаем самостоятельно?)

        Совсем элементарные задачки, для разминки:

        1. Дана геометрическая прогрессия, в которой b1 = 243, а q = -2/3. Найдите шестой член прогрессии.

        2. Общий член геометрической прогрессии задан формулой bn = 5∙2n+1. Найдите номер последнего трёхзначного члена этой прогрессии.

        3. Геометрическая прогрессия задана условиями:

        b1 = -3;

        bn+1 = 6bn

        Найдите пятый член прогрессии.

        Чуть посложнее:

        4. Дана геометрическая прогрессия:

        b1=2048; q=-0,5

        Чему равен шестой отрицательный её член?

        Что, кажется суперсложно? Вовсе нет. Спасёт логика и понимание смысла геометрической прогрессии. Ну и формула n-го члена, само собой.

        5. Третий член геометрической прогрессии равен -14, а восьмой член равен 112. Найдите знаменатель прогрессии.

        6. Сумма первого и второго членов геометрической прогрессии равна 75, а сумма второго и третьего членов равна 150. Найдите шестой член прогрессии.

        Ответы (в беспорядке): 6; -3888; -1; 800; -32; 448.

        Вот почти и всё. Осталось лишь научиться нам считать сумму n первых членов геометрической прогрессии да открыть для себя бесконечно убывающую геометрическую прогрессию и её сумму. Очень интересную и необычную штуку, между прочим! Об этом — в следующих уроках.)

Для нахождения любого члена (его часто называют n-й член) арифметической прогрессии используют универсальную формулу:

Формула n-го члена арифметической прогресии

{a_n=a_1+(n-1)cdot d}

a1 – первый член прогрессии,

d – разность прогрессии (разница между членами прогрессии),

n – номер члена.

Пример нахождения члена арифметической прогрессии

Задача 1

Найдите 10-й член арифметической прогрессии 1; 3; 5…

Решение

Первый член прогрессии a1 = 1.

Разность прогрессии можно найти, если вычесть из второго члена первый. В нашем случае d = a2 – a1 = 3 – 1 = 2.

Искомый член прогрессии имеет номер 10, т. е. n = 10. Подставим значения в формулу и получим результат:

a_n=a_1+(n-1)cdot d = 1+(10-1)cdot 2 = 1+18 = 19

Ответ: 19

Ответ легко проверить с помощью калькулятора – проверить . А чтобы найти сумму членов прогрессии используйте калькулятор.

Добавить комментарий