Как найти формулу обратной функции

  1. Функция, обратная данной
  2. Алгоритм вывода формулы функции, обратной данной
  3. Свойства взаимно обратных функций
  4. Примеры

Функция, обратная данной

По определению (см. §34 справочника для 7 класса)

Функция – это соответствие, при котором каждому значению независимой переменной соответствует единственное значение зависимой переменной.

Пусть некоторое соответствие задано таблицей:

x

-4

-3

-2

-1

0

1

2

3

4

y

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

Множество значений X = {-4;-3;…;4} отображается в множество значений Y = {-2;-1,5;…;2}: $X xrightarrow{f} Y$. При этом каждому значению x соответствует единственное значение y, т.е., данное соответствие f является функцией.

С другой стороны, мы можем рассмотреть обратное отображение $Y xrightarrow{g} X$, заданное той же таблицей. При этом каждому значению y соответствует единственное значение x, т.е., обратное соответствие $g = f^{-1}$ также является функцией.

Функцию $f: X xrightarrow{f} Y$ с областью определения X и областью значений Y называют обратимой, если обратное ей соответствие $g: Y xrightarrow{g} g X$ также является фунцией.

Если функция f обратима, то обратное ей соответствие $g = f^{-1}$ называют обратной функцией к f.

Например: аналитическое выражение для функции $X xrightarrow{f} Y$, заданной таблицей $y = f(x) = frac{x}{2}$. Обратное соответствие $Y xrightarrow{g} X$ также является функцией x = g(y) = 2y.

Функция g – обратная функция к f.

В общем случае формулы функций записывают в виде y(x). При такой записи, функции $y = frac{x}{2}$ и y=2x являются взаимно обратными.

Алгоритм вывода формулы функции, обратной данной

На входе: множества X и Y, для которых оба соответствия $X xrightarrow{f} Y$ и $Y xrightarrow{g} X$ являются функциями.

Шаг 1. В формуле для исходной функции заменить обозначения аргумента и значения: $x rightarrow y$, $y rightarrow x$.

Шаг 2. Из полученной формулы выразить y(x). Искомое выражение для обратной функции найдено.

Шаг 3. Учесть ограничения для области определения и области значений исходной и/или обратной функций.

Например:

1) Пусть исходная функция $y = frac{x}{2}$

Шаг 1. Меняем аргумент и значение: $x = frac{y}{2}$

Шаг 2. Находим y из полученной формулы: y = 2x – искомая обратная функция

Шаг 3. Ограничений на x и y нет

2) Пусть исходная функция y = -2x+3

Шаг 1. Меняем аргумент и значение: x = -2y+3

Шаг 2. Находим y из полученной формулы: $y = frac{-x+3}{2}$ – искомая обратная функция

Шаг 3. Ограничений на x и y нет

3) Пусть исходная функция $y = sqrt{x+1}$

Шаг 1. Меняем аргумент и значение: $x = sqrt{y+1}$

Шаг 2. Находим y из полученной формулы: $y = x^2-1$ – искомая обратная функция

Шаг 3. На исходную функцию накладываются ограничения

на $x:x+1 ge 0 Rightarrow x ge -1$, на $y:y ge 0$

Тогда исходная функция определяется на множествах $y ge -1$, $x ge 0$

4) Пусть исходная функция $y = 2x^2+1$

Шаг 1. Меняем аргумент и значение: $x = 2y^2+1$

Шаг 2. Находим y из полученной формулы: $y = sqrt{frac{x-1}{2}}$ – искомая обратная функция

Шаг 3. На обратную функцию накладываются ограничения

на $x:x-1 ge 0 Rightarrow x ge 1$, на $y:y ge 0$

Тогда исходная функция определяется на множествах $y ge 1$, $x ge 0$

Исходная функция — парабола получает ограничения из-за обратной функции; только в этом случаи функции будут взаимно обратными.

Свойства взаимно обратных функций

Пусть f и g – взаимно обратные функции. Тогда:

1. Область определения функции f является областью значений функции g, а область значений функции f является областью определения функции g.

2. Функции f и g либо одновременно возрастающие, либо одновременно убывающие.

3. Если f – нечётная, то и g – нечётная.

4. Графики f и g симметричны относительно биссектрисы 1-й четверти y = x.

5. Справедливы тождества f(g(x) ) = x и g(f(x) ) = x.

Например:

Графики пар взаимно обратных функций, найденных выше:

Примеры

Пример 1. Задайте формулой функцию, обратную данной.

а) y = 5x-4

Меняем аргумент и значение: x = 5y-4

Получаем: $y = frac{x+4}{5}$ – искомая обратная функция

б) y = -3x+2

Меняем аргумент и значение: x = -3y+2

Получаем: $y = frac{-x+2}{3}$ – искомая обратная функция

в) y = 4x+1, где $-1 le x le 5$

Меняем аргумент и значение: x = 4y+1

Получаем: $y = frac{x-1}{4}$

Требуем, чтобы: $-1 le y le 5 Rightarrow -1 le frac{x-1}{4} le 5 Rightarrow -4 le x-1 le 20 Rightarrow -3 le x le 21$

Итак, искомая обратная функция: $y = frac{x-1}{4}$, где -3 $le x le 21$

г) $y=- frac{1}{2} x+7$, где $2 le x le 9$

Меняем аргумент и значение: $x=-frac{1}{2} y+7$

Получаем: y = 2(-x+7) = -2x+14

Требуем, чтобы: $2 le y le 9 Rightarrow 2 le -2x+14 le 9 Rightarrow -12 le -2x le -5 Rightarrow$

$6 ge x ge 2,5 Rightarrow 2,5 le x le 6$

$y = -2x+14,где 2,5 le x le 6$ – искомая обратная функция

Пример 2. Найдите функцию, обратную данной.

Постройте график исходной и обратной функции в одной системе координат.

а) $y=x^2,x le 0$

Обратная функция

$x = y^2 Rightarrow y = pm sqrt{x}$

При этом $y le 0$

Поэтому выбираем

$y = – sqrt{x}$ – искомая обратная функция

Пример 2. а)

б) y = x-3, $-1 le x le 4$

Обратная функция

$x = y-3 Rightarrow y = x+3$

При этом $-1 le y le 4 Rightarrow -1 le x+3 le 4$

$Rightarrow -4 le x le 1$

y = x+3, $-4 le x le 1$ – искомая обратная

функция

Пример 2. б)

в) $y = frac{1}{x+1} $

Обратная функция

$x = frac{1}{y+1} Rightarrow y = frac{1}{x} -1$

Пример 2. в)

г) $y = 1+ sqrt{x-3}$

Область определения: $x ge 3$

Область значений: $y ge 1$

Обратная функция:

$x = 1+ sqrt{y-3} Rightarrow y = (x-1)^2+3$

Область определения: $x ge 1$

Область значений: $y ge 3$

Пример 2. г)

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 июля 2022 года; проверки требуют 13 правок.

Функция f и обратная ей функция f^{-1}. Если f(a)=3, то f^{-1}(3)=a

Обра́тная фу́нкция — функция, обращающая зависимость, выражаемую данной функцией. Например, если функция от x даёт y, то обратная ей функция от y даёт x. Обратная функция функции f обычно обозначается f^{-1}, иногда также используется обозначение f^{mathrm{inv}}.

Функция, имеющая обратную, называется обратимой.

Определение[править | править код]

Функция g:Yto X называется обратной к функции f:Xto Y, если выполнены следующие тождества:

Связанные определения[править | править код]

Существование[править | править код]

Чтобы найти обратную функцию, нужно решить уравнение y = f(x) относительно x. Если оно имеет более чем один корень, то функции, обратной к f не существует. Таким образом, функция f(x) обратима на интервале (a;b) тогда и только тогда, когда на этом интервале она взаимно-однозначна.

Для непрерывной функции F(y) выразить y из уравнения x - F(y) = 0 возможно в том и только том случае, когда функция F(y) строго монотонна (см. теорема о неявной функции). Тем не менее, непрерывную функцию всегда можно обратить на промежутках её строгой монотонности. Например, sqrt{x} является обратной функцией к x^{2} на [0, +infty), хотя на промежутке (-infty, 0] обратная функция другая: -sqrt{x}.

Для существования обратной функции не являются необходимыми ни непрерывность, ни монотонность исходной функции. Пример: функция {displaystyle y=x+D(x),} где D(x) — функция Дирихле, разрывна и не монотонна, однако обратная для неё существует[2]: {displaystyle x=y-D(y).}

Примеры[править | править код]

Свойства[править | править код]

Графики функции и обратной ей

Графики функции и обратной ей

y = F(x) Leftrightarrow x = F^{-1}(y)

или

Fleft(F^{-1}(y)right) = y,; forall y in Y,
F^{-1}(F(x)) = x,; forall x in X,

или короче

 F circ F^{-1} = mathrm{id}_Y,
 F^{-1} circ F = mathrm{id}_X,

где circ означает композицию функций, а mathrm{id}_X, mathrm{id}_Y — тождественные отображения на X и Y соответственно.

left(F^{-1}right)^{-1} = F.

Теорема. Композиция любых двух обратимых функций является обратимой функцией, то есть {displaystyle {left(fcirc gright)}^{-1}=g^{-1}circ f^{-1}}.

Доказательство
Поскольку {displaystyle alpha circ {alpha }^{-1}={alpha }^{-1}circ alpha =e} и {displaystyle alpha circ e=ecirc alpha =alpha } для любой обратимой функции alpha , где e — тождественное преобразование, то можно записать следующие равенства.

Имеем: {displaystyle e=eLongleftrightarrow e=fcirc f^{-1}Longleftrightarrow e=fcirc gcirc g^{-1}circ f^{-1}Longleftrightarrow e=left(fcirc gright)circ left(g^{-1}circ f^{-1}right).}

Подействуем слева функцией {displaystyle {left(fcirc gright)}^{-1}} и получим: {displaystyle {left(fcirc gright)}^{-1}circ mid e=left(fcirc gright)circ left(g^{-1}circ f^{-1}right)Longleftrightarrow {left(fcirc gright)}^{-1}circ e={left(fcirc gright)}^{-1}circ left(fcirc gright)circ left(g^{-1}circ f^{-1}right)Longleftrightarrow {left(fcirc gright)}^{-1}=ecirc left(g^{-1}circ f^{-1}right)Longleftrightarrow {left(fcirc gright)}^{-1}=g^{-1}circ f^{-1}.}
Теорема доказана.

Это утверждение легко запомнить так: «Пиджак надевают после рубашки, а снимают раньше».

Разложение в степенной ряд[править | править код]

Обратная функция аналитической в некоторой окрестности точки x_{0} функции может быть представлена в виде степенного ряда:

{displaystyle f^{-1}(y)=sum _{k=0}^{infty }A_{k}(x_{0}){frac {(y-f(x_{0}))^{k}}{k!}},}

где функции A_k задаются рекурсивной формулой:

{displaystyle A_{n}(x)={begin{cases}x;,;n=0\{frac {A_{n-1}'(x)}{f'(x)}};,;n>0end{cases}}}

См. также[править | править код]

  • Теорема Лагранжа об обращении рядов
  • Обратные тригонометрические функции
  • Обратимая функция

Примечания[править | править код]

  1. Куликов Л.Я. “Алгебра и теория чисел: Учебное пособие для педагогических институтов”
  2. Шибинский В. М. Примеры и контрпримеры в курсе математического анализа. Учебное пособие. — М.: Высшая школа, 2007. — С. 29—30. — 543 с. — ISBN 978-5-06-005774-4.

Нахождение формулы для функции, обратной данной

Пользуясь формулой (y = f(x)), следует выразить (x) через (y), а в полученной формуле (x = g(y)) заменить (x) на (y), а (y) на (x).

Пример:

найти функцию, обратную для функции 

y=x2,x∈0;+∞)

.

Функция

y=x2

 возрастает на промежутке

0;+∞)

. Делаем вывод, что обратная функция существует. Если значения (x) принадлежат промежутку

0;+∞)

, то 

x=y

. Заменим (x) на (y), а (y) на (x), получим обратную функцию

y=x,x∈0;+∞)

. Обратная функция определена на промежутке

0;+∞)

 и её график симметричен графику функции

y=x2,x∈0;+∞)

 относительно прямой (y=x).

obratnaja.png


Загрузить PDF


Загрузить PDF

Математические функции, обычно обозначаемые как f(x) или g(x), можно представить как порядок выполнения математических операций, которые позволяют прийти от «x» к «y». Обратная функция f(x) записывается как f-1(x).[1]
В случае простых функций найти обратную функцию несложно.

Шаги

  1. Изображение с названием Algebraically Find the Inverse of a Function Step 01

    1

    Полностью перепишите функцию, заменив f(x) на y. При этом «у» должна находиться на одной стороне функции, а «x» — на другой. Если вам дана функция вида 2 + y = 3x2, вам необходимо изолировать «у» на одной стороне, а «x» — на другой.

    • Пример. Перепишем данную функцию f(x) = 5x – 2 как y = 5x – 2. f(x) и «y» взаимозаменяемы.
    • f(x) — это стандартная запись функции, но если вы имеете дело с несколькими функциями, то каждой из них нужно будет присвоить свою букву, чтобы их было легче отличать друг от друга. Например, часто функции обозначают как g(x) и h(x).
  2. Изображение с названием Algebraically Find the Inverse of a Function Step 02

    2

    Найдите «x». Другими словами, выполните математические операции, необходимые для изолирования «x» по одну сторону от знака равенства. Основные алгебраические принципы: если «x» имеет числовой коэффициент, то разделите обе стороны функции на этот коэффициент; если к члену с «x» прибавляется некоторый свободный член, вычтите его с обеих сторон функции (и так далее).

    • Помните, что вы можете применять любую операцию по отношению к одной из сторон уравнения только в том случае, если вы применяете ту же операцию по отношению ко всем членам по обе стороны от знака равенства.[2]
    • В нашем примере добавьте 2 к обеим частям уравнения. Вы получите y + 2 = 5x. Затем разделите обе части уравнения на 5 и получите (y + 2)/5 = x. И, наконец, перепишите уравнение с «x» в левой части: x = (y + 2)/5.
  3. Изображение с названием Algebraically Find the Inverse of a Function Step 03

    3

    Поменяйте переменные, заменив «x» на «y» и наоборот. Результатом будет функция, обратная исходной. Другими словами, если мы подставим значение «x» в исходное уравнение и найдем значение «у», то, подставив это значение «у» в обратную функцию, мы получим значение «x».

    • В нашем примере получим y = (x + 2)/5.
  4. Изображение с названием Algebraically Find the Inverse of a Function Step 04

    4

    Замените «у» на f-1(x). Обратные функции обычно записывают в виде f-1(x) = (члены с «x»). Следует отметить, что в данном случае -1 — это не показатель степени; это просто обозначение обратной функции.

    • Так как «x» в -1 степени равно 1/x, то f-1(x) — это форма записи 1/f(x), что также обозначает функцию, обратную f(x).
  5. Изображение с названием Algebraically Find the Inverse of a Function Step 05

    5

    Проверьте работу, вместо «x» подставив постоянное значение в исходную функцию. Если вы правильно нашли обратную функцию, подставив в нее значение «у», вы найдете подставленное значение «x».

    • Например, подставьте x = 4. Вы получите f(x) = 5(4) – 2 или f(x) = 18.
    • Теперь подставьте 18 в обратную функцию и получите y = (18 + 2)/5 = 20/5 = 4. То есть у = 4. Это подставленное значение «x», поэтому вы правильно нашли обратную функцию.

    Реклама

Советы

  • Когда вы выполняете алгебраические операции над функциями, вы можете свободно заменять f(x) = y и f^(-1)(x) = y в обоих направлениях. Но прямая запись обратной функции может привести к путанице, поэтому придерживайтесь записи f(x) или f^(-1)(x), которая поможет вам отличить их друг от друга.
  • Обратите внимание, что обратная функция обычно (но не всегда) является функциональной зависимостью.[3]

Реклама

Об этой статье

Эту страницу просматривали 63 447 раз.

Была ли эта статья полезной?

Добавить комментарий