Как найти формулу суммы производных функций

Уважаемые студенты!
Заказать решение задач по 200+ предметам можно здесь всего за 10 минут.

Производная суммы функций

Определение
Производная суммы функций равна сумме производных каждой из функций: $$ (u+v)’=u’+v’ $$

В формуле стоит только два слагаемых, но она работает и в случае более двух, например:

$$ (u+v+g)’=u’+v’+g’ $$

Примеры решений

Пример 1
Найти производную суммы $ y = x^2+4x+3 $
Решение

Многочлен представляет собой сумму трёх функций. Тогда его производная по правилу производной суммы есть сумма производных от функций:

$$ y’ = (x^2+4x+3)’ = (x^2)’+(4x)’+(3)’ $$

Производная от первого слагаемого находится по правилу степенной функции $ (x^p)’=px^{p-1}:

$$ (x^2)’ = 2x $$

Чтобы найти производную второго слагаемого необходимо сначала вынести константу за знак производной по правилу $ (cx)’=c(x)’ $. Тогда как производная $ (x)’=1 $:

$$ (4x)’=4(x)’=4 $$

Третье слагаемое представляет собой константу, производная которой всегда равна нулю:

$$ (3)’=0 $$

В итоге записываем решение:

$$ y’=(x^2+4x+3)’=(x^2)’+(4x)’+(3)’=2x+4+0=2x+4 $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ y’=2x+4 $$
Пример 2
Найти производную функции $ y = x^3+sin x $
Решение

Находим производные каждого из слагаемых отдельно друг от друга:

$$ y’=(x^3+sin x)’=(x^3)’+(sin x)’ $$

Первая функция является степенной и её производная отыскивается по правилу $ (x^p)’=px^{p-1} $:

$$ (x^3)’=3x^2 $$

Вторая функция представляет собой синус, производная которого равна $ (sin x)’=cos x $:

$$ y’=(x^3+sin x)’ = (x^3)’+(sin x)’=3x^2 + cos x $$

Ответ
$$ y’=3x^2+cos x $$
  1. Формулы дифференцирования
  2. Производная суммы двух функций
  3. Производная функции с постоянным множителем
  4. Производная произведения двух функций
  5. Производная частного двух функций
  6. Производная степенной функции
  7. Примеры

п.1. Формулы дифференцирования

Нахождение производной называют дифференцированием.
Функция, которая имеет производную в точке (x_0), называется дифференцируемой в этой точке.
Функция, дифференцируемая в каждой точке некоторого промежутка, называется дифференцируемой на этом промежутке.

В примере 2 §42 данного справочника мы получили формулы производных для простейших функций. Обобщим их в таблице:

begin{gather*} C’=0\ x’=1\ (x^2) ‘=2x\ (x^3) ‘=3x^2\ left(frac1xright) ‘=-frac{1}{x^2}\ (kx+b) ‘=k\ (sqrt{x}) ‘=frac{1}{2sqrt{x}} end{gather*}

Теперь не нужно каждый раз использовать определение производной для поиска её уравнения или значения в данной точке. Достаточно помнить таблицу производных.

Например:
Найдем (f'(1)), если (f(x)=x^2)
По таблице производных (f'(x)=(x^2) ‘=2x). Поэтому (f'(1)=2cdot 1=2)

п.2. Производная суммы двух функций

Рассмотрим функцию (h(x)), которую можно представить в виде суммы двух других функций: (h(x)=f(x)+g(x)). Найдем её производную из общего алгоритма.
Пусть (triangle x) – некоторое приращение аргумента. Тогда приращение функции (h(x)): begin{gather*} triangle h=h(x+triangle x)-h(x)=(f(x+triangle x)+g(x+triangle x))-(f(x)+g(x))=\ =(f(x+triangle x)-f(x))+(g(x+triangle x)-g(x))=triangle f+triangle g end{gather*} где (triangle f) и (triangle g) – приращения каждой из функций-слагаемых.
Ищем производную: begin{gather*} h'(x)=lim_{triangle xrightarrow 0}frac{triangle h}{triangle x}=lim_{triangle xrightarrow 0}frac{triangle f+triangle g}{triangle x}= lim_{triangle xrightarrow 0}frac{triangle f}{triangle x}+lim_{triangle xrightarrow 0}frac{triangle g}{triangle x}=f'(x)+g'(x) end{gather*} Или: (left(f(x)+g(x)right)’=f'(x)+g'(x))

Производная суммы двух функций равна сумме производных: $$ left(f(x)+g(x)right)’=f'(x)+g'(x) $$

Например:
(left(x^2+frac1xright)’=(x^2)’+left(frac1xright)’=2x-frac{1}{x^2})

п.3. Производная функции с постоянным множителем

Рассмотрим функцию (h(x)=kcdot f(x)), где k – некоторый действительный постоянный множитель. Найдем её производную из общего алгоритма.
Пусть (triangle x) – некоторое приращение аргумента. Тогда приращение функции (h(x)): begin{gather*} triangle h=h(x+triangle x)-h(x)=kcdot f(x+triangle x)-kcdot f(x)=kcdot (f(x+triangle x)-f(x))=kcdot triangle f end{gather*} где (triangle f) – функции (f(x)).
Ищем производную: begin{gather*} h'(x)=lim_{triangle xrightarrow 0}frac{triangle h}{triangle x}=lim_{triangle xrightarrow 0}frac{kcdot triangle f}{triangle x}=klim_{triangle xrightarrow 0}frac{triangle f}{triangle x}=kf'(x) end{gather*} Или: (left(kcdot f(x)right)’=kcdot f'(x))

Постоянный множитель можно вынести за знак производной: $$ left(kcdot f(x)right)’=kcdot f'(x) $$

Например:
((5x^3)’=5cdot (x^3)’=5cdot 3x^2=15x^2)

п.4. Производная произведения двух функций

Рассмотрим функцию (h(x)), которую можно представить в виде произведения двух других функций: (h(x)=f(x)cdot g(x)). Найдем её производную из общего алгоритма.
Пусть (triangle x) – некоторое приращение аргумента. Тогда приращение функции (h(x)): begin{gather*} triangle h=h(x+triangle x)-h(x)=(f(x+triangle x)cdot g(x+triangle x))-(f(x)cdot g(x)) end{gather*} Приращения каждого из множителей: begin{gather*} triangle f=f(x+triangle x)-f(x)Rightarrow f(x+triangle x)=triangle f+f(x)\ triangle g=g(x+triangle x)-g(x)Rightarrow g(x+triangle x)=triangle g+g(x) end{gather*} Подставим: begin{gather*} triangle h=(triangle f+f(x))cdot (triangle g+g(x))-f(x)cdot g(x)=\ =triangle fcdot triangle g+triangle fcdot g(x)+f(x)cdot triangle g+f(x)cdot g(x)-f(x)cdot g(x)=\ =triangle fcdot triangle g+triangle fcdot g(x)+f(x)cdot triangle g end{gather*} Ищем производную: begin{gather*} h'(x)=lim_{triangle xrightarrow 0}frac{triangle h}{triangle x}=lim_{triangle xrightarrow 0}frac{triangle fcdot triangle g+triangle fcdot g(x)+f(x)cdottriangle g}{triangle x}=\ =lim_{triangle xrightarrow 0}left(frac{triangle f}{triangle x}cdotfrac{triangle g}{triangle x}right)+lim_{triangle xrightarrow 0}frac{triangle f}{triangle x}cdot g(x)+f(x)cdotlim_{triangle xrightarrow 0}frac{triangle g}{triangle x}=\ =f'(x)cdot g'(x)cdot 0+f'(x)cdot g(x)+f(x)cdot g'(x)=f'(x)cdot g(x)+f(x)cdot g'(x) end{gather*} Или: (left(f(x)cdot g(x)right)’=f'(x)cdot g(x)+f(x)cdot g'(x))

Производная произведения двух функций равна сумме двух слагаемых:
производная первой функции на вторую плюс первая функция на производную второй:
$$ left(f(x)cdot g(x)right)’=f'(x)cdot g(x)+f(x)cdot g'(x) $$

Например:
( (x^2sqrt{x})’=(x^2)’cdotsqrt{x}+x^2cdot (sqrt{x})’=2xsqrt{x}+frac{x^2}{2sqrt{x}}=xsqrt{x}left(2+frac12right)=frac52xsqrt{x} )

п.5. Производная частного двух функций

Рассмотрим функцию (h(x)), которую можно представить в виде частного двух других функций: (h(x)=frac{f(x)}{g(x)}). Найдем её производную из общего алгоритма.
Пусть (triangle x) – некоторое приращение аргумента. Тогда приращение функции (h(x)): begin{gather*} triangle h=h(x+triangle x)-h(x)=frac{f(x+triangle x)}{g(x+triangle x)}-frac{f(x)}{g(x)} end{gather*} Приращения каждого из множителей: begin{gather*} triangle f=f(x+triangle x)-f(x)Rightarrow f(x+triangle x)=triangle f+f(x)\ triangle g=g(x+triangle x)-g(x)Rightarrow g(x+triangle x)=triangle g+g(x) end{gather*} Подставим: begin{gather*} triangle h=frac{triangle f+f(x)}{triangle g+g(x)}-frac{f(x)}{g(x)}=frac{triangle fcdot g(x)+f(x)cdot g(x)-f(x)cdot triangle g-f(x)cdot g(x)}{left(triangle g+g(x)right)cdot g(x)}=\ =frac{triangle fcdot g(x)-f(x)cdot triangle g}{left(triangle g+g(x)right)cdot g(x)}=frac{triangle fcdot g(x)-f(x)cdot triangle g}{g(x+triangle x)cdot g(x)} end{gather*} Ищем производную: begin{gather*} h'(x)=lim_{triangle xrightarrow 0}frac{triangle h}{triangle x}=lim_{triangle xrightarrow 0}frac{triangle fcdot g(x)-f(x)cdot triangle g}{triangle xcdot g(x+triangle x)cdot g(x)}=\ =frac{lim_{triangle xrightarrow 0}left(frac{triangle f}{triangle x}cdot g(x)right)-lim_{triangle xrightarrow 0}left(f(x)cdotfrac{triangle g}{triangle x}right)}{g(x+0)cdot g(x)}=frac{f'(x)cdot g(x)-f(x)cdot g'(x)}{g^2(x)} end{gather*} Или: ( left(frac{f(x)}{g(x)}right)’=frac{f'(x)cdot g(x)-f(x)cdot g'(x)}{g^2(x)} )

Производная частного двух функций равна дроби:
в числителе производная первой функции на вторую минус первая функция на производную второй, в знаменателе – квадрат второй функции:
$$ left(frac{f(x)}{g(x)}right)’=frac{f'(x)cdot g(x)-f(x)cdot g'(x)}{g^2(x)} $$

Например:
begin{gather*} left(frac{3x+2}{x^2}right)’=frac{(3x+2)’cdot x^2-(3x+2)cdot (x^2)’}{(x^2)^2}=frac{3x^2-(3x+2)cdot 2x}{x^4}=\ =frac{3x^2-6x^2-4x}{x^4}=frac{-3x^2-4x}{x^4}=-frac{x(3x+4)}{x^4}=-frac{3x+4}{x^3} end{gather*}

п.6. Производная степенной функции

Из определения производной мы уже получили производные для квадрата и куба от x: $$ (x^2)’=2x, (x^3)’=3x^2 $$ Пользуясь свойством производной произведения, найдем производные для 4-й и 5-й степени от x: begin{gather*} (x^4)’=(xcdot x^3)’=(x)’cdot x^3+xcdot (x^3)’=1cdot x^3+xcdot 3x^2=4x^3\ (x^5)’=(xcdot x^4)’=(x)’cdot x^4+xcdot (x^4)’=1cdot x^4+xcdot 4x^3=5x^4 end{gather*} Мы видим закономерность, на основании которой можем предположить, что для любой целой степени: $$ (x^n)’=nx^{n-1} $$ Докажем это утверждения с помощью математической индукции (см. §25 справочника для 9 класса).
1) для базы индукции (n=1) производная ((x^1 )’=1cdot x^0=1) – верно
2) допустим, что при некотором n производная ((x^n)’=nx^{n-1}). Найдем ((x^{n+1})’): begin{gather*} (x^{n+1})’=(xcdot x^n)’=(x)’cdot x^n+xcdot (x^n)’=1cdot x^n+xcdot nx^{n-1}=\ =x^n(1+n)=(n+1)x^n end{gather*} т.е. для (x^{n+1}) формула также справедлива. Индуктивный переход выполняется.
Следовательно, по принципу математической индукции производная степенной функции ((x^n)’=nx^{n-1}, forall ninmathbb{N}). Что и требовалось доказать.

Производная степенной функции равна произведению показателя степени на основание в степени на 1 меньше: $$ (x^n)’=nx^{n-1} $$

Например:
begin{gather*} (x^{11})’=11x^{10} end{gather*} В §46 данного справочника будет показано, что выведенная формула справедлива также не только для натуральной, но и для любой действительной степени числа x.

п.7. Примеры

Пример 1. Найдите производную функции:
a) ( f(x)=3x^3-11 ) begin{gather*} f'(x)=(3x^3-11)’=3(x^3)’-(11)’=3cdot 3x^2-0=9x^2 end{gather*}

б) ( f(x)=x^2(1-x^5) ) begin{gather*} f'(x)=(x^2-x^7)’=(x^2)’-(x^7)’=2x-7x^6=x(2-7x^5) end{gather*}

в) ( f(x)=3x^2+5sqrt{x} ) begin{gather*} f'(x)=(3x^2+5sqrt{x})’=3(x^2)’+5(sqrt{x})’=3cdot 2x+frac{5}{2sqrt{x}}=6x+frac{5}{2sqrt{x}} end{gather*}

г) ( f(x)=frac{x+11}{x^3} ) begin{gather*} f'(x)=left(frac{x+11}{x^3}right)’=frac{(x+11)’cdot x^3-(x+11)cdot (x^3)’}{(x^3)^2}=frac{1cdot x^3-2x^2(x+11)}{x^6}=\ =frac{x^3-2x^3-22x^2}{x^6}=frac{-x^3-22x^2}{x^6}=-frac{x^2(x+22)}{x^6}=-frac{x+22}{x^4} end{gather*}

Пример 2. Найдите значение производной в точке (x_0), если:
a) ( f(x)=frac2x, x_0=4 ) begin{gather*} f'(x)=2cdotleft(frac1xright)’=2cdotleft(-frac{1}{x^2}right)=-frac{2}{x^2}\ f'(4)=-frac{2}{4^2}=-frac18 end{gather*}

б) ( f(x)=frac{x+2}{x}, x_0=1 ) begin{gather*} f'(x)=frac{(x+2)’x-(x+2)cdot x’}{x^2}=frac{1cdot x-(x+2)cdot 1}{x^2}=frac{x-x-2}{x^2}=-frac{2}{x^2}\ f'(x)=-frac{2}{1^2}=-2 end{gather*}

в) ( f(x)=frac{sqrt{x}}{x+1}, x_0=1 ) begin{gather*} f'(x)=frac{(sqrt{x})’cdot (x+1)-(sqrt{x})cdot(x+1)’}{(x+1)^2}=frac{frac{x+1}{2sqrt{x}}-sqrt{x}cdot 1}{(x+1)^2}=frac{x+1-2sqrt{x}cdotsqrt{x}cdot 1}{2sqrt{x}(x+1)^2}=\ =frac{x+1-2x}{2sqrt{x}(x_1)^2}=frac{1-x}{2sqrt{x}(x+1)^2}\ f'(4)=frac{1-1}{2cdot 1cdot 2^2}=0 end{gather*}

г) ( f(x)=frac{x^3}{5-x}, x_0=7 ) begin{gather*} f'(x)=frac{(x^3)’cdot (5-x)-x^3cdot (5-x)’}{(5-x)^2}=frac{3x^2cdot (5-x)-x^3cdot (-1)}{(5-x)^2}=\ =frac{15x^2-3x^3+x^3}{(5-x)^2}=frac{15x^2-2x^3}{(5-x)^2}=frac{x^2(15-2x)}{(5-x)^2}\ f'(7)=frac{7^2(15-2cdot 7)}{(5-7)^2}=frac{49}{4}=12frac14 end{gather*}

Пример 3. Решите уравнение (f'(x)=0), если:
a) ( f(x)=x-12x^3 ) begin{gather*} f'(x)=x’-12(x^3)’=1-12cdot 3x^2=1-36x^2 end{gather*} Уравнение: begin{gather*} 1-36x^2=0Rightarrow x^2=frac{1}{36}Rightarrow x=pmsqrt{frac{1}{36}}=pmfrac16 end{gather*} Ответ: (left{pmfrac16right})

б) ( f(x)=-frac25x^5+frac13x^3+12 ) begin{gather*} f'(x)=-frac25cdot 5x^4+frac13cdot 3x^2+0=-2x^4+x^2=x^2(1-2x^2) end{gather*} Уравнение: begin{gather*} x^2(1-2x^2)=0Rightarrow left[ begin{array}{l} x=0\ 1-2x^2=0 end{array} right. Rightarrow left[ begin{array}{l} x=0\ x^2=frac12 end{array} right. Rightarrow left[ begin{array}{l} x=0\ x=pmfrac{1}{sqrt{2}} end{array} right. end{gather*} Ответ: (left{0;pmfrac{1}{sqrt{2}}right})

Правила вычисления производных

7 апреля 2011

  • Скачать все правила

Если следовать определению, то производная функции в точке — это предел отношения приращения функции Δy к приращению аргумента Δx:

Опеределение производной

Вроде бы все понятно. Но попробуйте посчитать по этой формуле, скажем, производную функции f(x) = x
2 + (2x + 3) · e

x
· sin x. Если все делать по определению, то через пару страниц вычислений вы просто уснете. Поэтому существуют более простые и эффективные способы.

Для начала заметим, что из всего многообразия функций можно выделить так называемые элементарные функции. Это относительно простые выражения, производные которых давно вычислены и занесены в таблицу. Такие функции достаточно просто запомнить — вместе с их производными.

Производные элементарных функций

Элементарные функции — это все, что перечислено ниже. Производные этих функций надо знать наизусть. Тем более что заучить их совсем несложно — на то они и элементарные.

Итак, производные элементарных функций:

Название Функция Производная
Константа f(x) = C, CR 0 (да-да, ноль!)
Степень с рациональным показателем f(x) = x

n
n · x

n − 1
Синус f(x) = sin x cos x
Косинус f(x) = cos x − sin x (минус синус)
Тангенс f(x) = tg x 1/cos2 x
Котангенс f(x) = ctg x − 1/sin2 x
Натуральный логарифм f(x) = ln x 1/x
Произвольный логарифм f(x) = log
a
x
1/(x · ln a)
Показательная функция f(x) = e

x
e

x
(ничего не изменилось)

Если элементарную функцию умножить на произвольную постоянную, то производная новой функции тоже легко считается:

(C · f)’ = C · f ’.

В общем, константы можно выносить за знак производной. Например:

(2x
3)’ = 2 · (x
3)’ = 2 · 3x
2 = 6x
2.

Очевидно, элементарные функции можно складывать друг с другом, умножать, делить — и многое другое. Так появятся новые функции, уже не особо элементарные, но тоже дифференцируемые по определенным правилам. Эти правила рассмотрены ниже.

Производная суммы и разности

Пусть даны функции f(x) и g(x), производные которых нам известны. К примеру, можно взять элементарные функции, которые рассмотрены выше. Тогда можно найти производную суммы и разности этих функций:

  1. (f + g)’ = f ’ + g
  2. (fg)’ = f ’ − g

Итак, производная суммы (разности) двух функций равна сумме (разности) производных. Слагаемых может быть больше. Например, (f + g + h)’ = f ’ + g ’ + h ’.

Строго говоря, в алгебре не существует понятия «вычитание». Есть понятие «отрицательный элемент». Поэтому разность fg можно переписать как сумму f + (−1) · g, и тогда останется лишь одна формула — производная суммы.

Задача. Найти производные функций: f(x) = x
2 + sin x; g(x) = x
4 + 2x
2 − 3.

Функция f(x) — это сумма двух элементарных функций, поэтому:

f ’(x) = (x
2 + sin x)’ = (x
2)’ + (sin x)’ = 2x + cos x;

Аналогично рассуждаем для функции g(x). Только там уже три слагаемых (с точки зрения алгебры):

g ’(x) = (x
4 + 2x
2 − 3)’ = (x
4 + 2x
2 + (−3))’ = (x
4)’ + (2x
2)’ + (−3)’ = 4x
3 + 4x + 0 = 4x · (x
2 + 1).

Ответ:
f ’(x) = 2x + cos x;
g ’(x) = 4x · (x
2 + 1).

Производная произведения

Математика — наука логичная, поэтому многие считают, что если производная суммы равна сумме производных, то производная произведения strike“>равна произведению производных. А вот фиг вам! Производная произведения считается совсем по другой формуле. А именно:

(f · g) ’ = f ’ · g + f · g

Формула несложная, но ее часто забывают. И не только школьники, но и студенты. Результат — неправильно решенные задачи.

Задача. Найти производные функций: f(x) = x
3 · cos x; g(x) = (x
2 + 7x − 7) · e

x
.

Функция f(x) представляет собой произведение двух элементарных функций, поэтому все просто:

f ’(x) = (x
3 · cos x)’ = (x
3)’ · cos x + x
3 · (cos x)’ = 3x
2 · cos x + x
3 · (− sin x) = x
2 · (3cos xx · sin x)

У функции g(x) первый множитель чуть посложней, но общая схема от этого не меняется. Очевидно, первый множитель функции g(x) представляет собой многочлен, и его производная — это производная суммы. Имеем:

g ’(x) = ((x
2 + 7x − 7) · e

x
)’ = (x
2 + 7x − 7)’ · e

x
+ (x
2 + 7x − 7) · (e

x
)’ = (2x + 7) · e

x
+ (x
2 + 7x − 7) · e

x
= e

x
· (2x + 7 + x
2 + 7x −7) = (x
2 + 9x) · e

x
= x(x + 9) · e

x
.

Ответ:
f ’(x) = x
2 · (3cos xx · sin x);
g ’(x) = x(x + 9) · e

x
.

Обратите внимание, что на последнем шаге производная раскладывается на множители. Формально этого делать не нужно, однако большинство производных вычисляются не сами по себе, а чтобы исследовать функцию. А значит, дальше производная будет приравниваться к нулю, будут выясняться ее знаки и так далее. Для такого дела лучше иметь выражение, разложенное на множители.

Производная частного

Если есть две функции f(x) и g(x), причем g(x) ≠ 0 на интересующем нас множестве, можно определить новую функцию h(x) = f(x)/g(x). Для такой функции тоже можно найти производную:

Производная частного

Неслабо, да? Откуда взялся минус? Почему g
2? А вот так! Это одна из самых сложных формул — без бутылки не разберешься. Поэтому лучше изучать ее на конкретных примерах.

Задача. Найти производные функций:

Дробно-рациональные функции

В числителе и знаменателе каждой дроби стоят элементарные функции, поэтому все, что нам нужно — это формула производной частного:

Производная дробно-рациональной функции f

Производная дробно-рациональной функции g

По традиции, разложим числитель на множители — это значительно упростит ответ:

Вынесение множителей за скобку

Ответ:

Производные частного

Производная сложной функции

Сложная функция — это не обязательно формула длиной в полкилометра. Например, достаточно взять функцию f(x) = sin x и заменить переменную x, скажем, на x
2 + ln x. Получится f(x) = sin (x
2 + ln x) — это и есть сложная функция. У нее тоже есть производная, однако найти ее по правилам, рассмотренным выше, не получится.

Как быть? В таких случаях помогает замена переменной и формула производной сложной функции:

f ’(x) = f ’(t) · t ’, если x заменяется на t(x).

Как правило, с пониманием этой формулы дело обстоит еще более печально, чем с производной частного. Поэтому ее тоже лучше объяснить на конкретных примерах, с подробным описанием каждого шага.

Задача. Найти производные функций: f(x) = e
2x + 3; g(x) = sin (x
2 + ln x)

Заметим, что если в функции f(x) вместо выражения 2x + 3 будет просто x, то получится элементарная функция f(x) = e

x
. Поэтому делаем замену: пусть 2x + 3 = t, f(x) = f(t) = e

t
. Ищем производную сложной функции по формуле:

f ’(x) = f ’(t) · t ’ = (e

t
)’ · t ’ = e

t
· t

А теперь — внимание! Выполняем обратную замену: t = 2x + 3. Получим:

f ’(x) = e

t
· t ’ = e
2x + 3 · (2x + 3)’ = e
2x + 3 · 2 = 2 · e
2x + 3

Теперь разберемся с функцией g(x). Очевидно, надо заменить x
2 + ln x = t. Имеем:

g ’(x) = g ’(t) · t ’ = (sin t)’ · t ’ = cos t · t

Обратная замена: t = x
2 + ln x. Тогда:

g ’(x) = cos (x
2 + ln x) · (x
2 + ln x)’ = cos (x
2 + ln x) · (2x + 1/x).

Вот и все! Как видно из последнего выражения, вся задача свелась к вычислению производной суммы.

Ответ:
f ’(x) = 2 · e
2x + 3;
g ’(x) = (2x + 1/x) · cos (x
2 + ln x).

Очень часто на своих уроках вместо термина «производная» я использую слово «штрих». Например, штрих от суммы равен сумме штрихов. Так понятнее? Ну, вот и хорошо.

Таким образом, вычисление производной сводится к избавлению от этих самых штрихов по правилам, рассмотренным выше. В качестве последнего примера вернемся к производной степени с рациональным показателем:

(x

n
)’ = n · x

n − 1

Немногие знают, что в роли n вполне может выступать дробное число. Например, корень — это x
0,5. А что, если под корнем будет стоять что-нибудь навороченное? Снова получится сложная функция — такие конструкции любят давать на контрольных работах и экзаменах.

Задача. Найти производную функции:

Производная сложной функции

Для начала перепишем корень в виде степени с рациональным показателем:

f(x) = (x
2 + 8x − 7)0,5.

Теперь делаем замену: пусть x
2 + 8x − 7 = t. Находим производную по формуле:

f ’(x) = f ’(t) · t ’ = (t
0,5)’ · t ’ = 0,5 · t
−0,5 · t ’.

Делаем обратную замену: t = x
2 + 8x − 7. Имеем:

f ’(x) = 0,5 · (x
2 + 8x − 7)−0,5 · (x
2 + 8x − 7)’ = 0,5 · (2x + 8) · (x
2 + 8x − 7)−0,5.

Наконец, возвращаемся к корням:

Производная степени с рациональным показателем

Ответ:

Дробно-рациональная функция с корнем

Смотрите также:

  1. Вводный урок по вычислению производных степенной функции
  2. Уравнение касательной к графику функции
  3. Тест к параграфу «Что такое логарифм» (легкий)
  4. Комбинаторика в задаче B6: легкий тест
  5. Задача B2: лекарство и таблетки
  6. Задача B4 про шерсть и свитер

Содержание:

  • Формула
  • Примеры вычисления производной суммы функций

Формула

$$(u(x)+v(x))^{prime}=u^{prime}(x)+v^{prime}(x)$$

Производная суммы равна сумме производных.

Примеры вычисления производной суммы функций

Пример

Задание. Найти производную функции $y(x)=3x+2$

Решение. Производная суммы равна сумме производных, тогда

$$y^{prime}(x)=(3 x+2)^{prime}=(3 x)^{prime}+(2)^{prime}$$

В первом слагаемом из под знака производной выносим тройку, а производная
второго слагаемого равна нулю, как производная константы. Тогда будем иметь

$$y^{prime}(x)=3 cdot(x)^{prime}+0=3 cdot 1=3$$

Ответ. $y^{prime}(x)=3=3$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Вычислить производную функции $y(x)=sin x+cos x$

Решение. Искомая производная

$$y^{prime}(x)=(sin x+cos x)^{prime}$$

Производная суммы равна сумме производных, тогда получаем:

$$y^{prime}(x)=(sin x)^{prime}+(cos x)^{prime}=cos x+(-sin x)=cos x-sin x$$

Ответ. $y^{prime}(x)=cos x-sin x$

Читать дальше: производная разности (u-v)’.

Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная – одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Геометрический и физический смысл производной

Пусть есть функция f(x), заданная в некотором интервале (a, b). Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0. Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:

Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.

производная объяснение для чайников

Иначе это можно записать так:

высшая математика для чайников производные

Какой смысл в нахождении такого предела? А вот какой:

Геометрический смысл производной: производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.

Геометрический смысл производной

 

Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.

Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t. Средняя скорость за некоторый промежуток времени:

смысл производной

Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:

производная для чайников в практическом применении

Кстати, о том, что такое пределы и как их решать, читайте в нашей отдельной статье.

Приведем пример, иллюстрирующий практическое применение производной. Пусть тело движется то закону:

производная для чайников в практическом применении

Нам нужно найти скорость в момент времени t=2c. Вычислим производную:

производная для чайников в практическом применении

Правила нахождения производных

Сам процесс нахождения производной называется дифференцированием. Функция, которая имеет производную в данной точке, называется дифференцируемой.

Как найти производную? Согласно определению, нужно составить отношение приращения функции и аргумента, а затем вычислить предел при стремящемся к нулю приращении аргумента. Конечно, можно вычислять все производные так, но на практике это слишком долгий путь. Все уже давно посчитано до нас. Ниже приведем таблицу с производными элементарных функций, а затем рассмотрим правила вычисления производных, в том числе и производных сложных функций с подробными примерами.

Таблица производных

 

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Правило первое: выносим константу

Константу можно вынести за знак производной. Более того – это нужно делать. При решении примеров по математике возьмите за правило – если можете упростить выражение, обязательно упрощайте.

Пример. Вычислим производную:

найти производную функции для чайников

Правило второе: производная суммы функций

Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.

как найти производную для чайников

Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.

Найти производную функции:

как найти производную для чайников

Решение:

как найти производную для чайников

Правило третье: производная произведения функций

Производная произведения двух дифференцируемых функций вычисляется по формуле:

как считать производные для чайников

Пример: найти производную функции:

как считать производные для чайников

Решение:Производная сложной функции

Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.

В вышеуказанном примере мы встречаем выражение:

производная сложной функции для чайников

В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.

Правило четвертое: производная частного двух функций

Формула для определения производной от частного двух функций:

производная определение для чайников

Пример:

производная определение для чайников

Решение:

производная определение для чайников

Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.

С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис. За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.

Добавить комментарий