Уважаемые студенты!
Заказать решение задач по 200+ предметам можно здесь всего за 10 минут.
Производная суммы функций
Определение |
Производная суммы функций равна сумме производных каждой из функций: $$ (u+v)’=u’+v’ $$ |
В формуле стоит только два слагаемых, но она работает и в случае более двух, например:
$$ (u+v+g)’=u’+v’+g’ $$
Примеры решений
Пример 1 |
Найти производную суммы $ y = x^2+4x+3 $ |
Решение |
Многочлен представляет собой сумму трёх функций. Тогда его производная по правилу производной суммы есть сумма производных от функций: $$ y’ = (x^2+4x+3)’ = (x^2)’+(4x)’+(3)’ $$ Производная от первого слагаемого находится по правилу степенной функции $ (x^p)’=px^{p-1}: $$ (x^2)’ = 2x $$ Чтобы найти производную второго слагаемого необходимо сначала вынести константу за знак производной по правилу $ (cx)’=c(x)’ $. Тогда как производная $ (x)’=1 $: $$ (4x)’=4(x)’=4 $$ Третье слагаемое представляет собой константу, производная которой всегда равна нулю: $$ (3)’=0 $$ В итоге записываем решение: $$ y’=(x^2+4x+3)’=(x^2)’+(4x)’+(3)’=2x+4+0=2x+4 $$ Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ y’=2x+4 $$ |
Пример 2 |
Найти производную функции $ y = x^3+sin x $ |
Решение |
Находим производные каждого из слагаемых отдельно друг от друга: $$ y’=(x^3+sin x)’=(x^3)’+(sin x)’ $$ Первая функция является степенной и её производная отыскивается по правилу $ (x^p)’=px^{p-1} $: $$ (x^3)’=3x^2 $$ Вторая функция представляет собой синус, производная которого равна $ (sin x)’=cos x $: $$ y’=(x^3+sin x)’ = (x^3)’+(sin x)’=3x^2 + cos x $$ |
Ответ |
$$ y’=3x^2+cos x $$ |
- Формулы дифференцирования
- Производная суммы двух функций
- Производная функции с постоянным множителем
- Производная произведения двух функций
- Производная частного двух функций
- Производная степенной функции
- Примеры
п.1. Формулы дифференцирования
Нахождение производной называют дифференцированием.
Функция, которая имеет производную в точке (x_0), называется дифференцируемой в этой точке.
Функция, дифференцируемая в каждой точке некоторого промежутка, называется дифференцируемой на этом промежутке.
В примере 2 §42 данного справочника мы получили формулы производных для простейших функций. Обобщим их в таблице:
begin{gather*} C’=0\ x’=1\ (x^2) ‘=2x\ (x^3) ‘=3x^2\ left(frac1xright) ‘=-frac{1}{x^2}\ (kx+b) ‘=k\ (sqrt{x}) ‘=frac{1}{2sqrt{x}} end{gather*}
Теперь не нужно каждый раз использовать определение производной для поиска её уравнения или значения в данной точке. Достаточно помнить таблицу производных.
Например:
Найдем (f'(1)), если (f(x)=x^2)
По таблице производных (f'(x)=(x^2) ‘=2x). Поэтому (f'(1)=2cdot 1=2)
п.2. Производная суммы двух функций
Рассмотрим функцию (h(x)), которую можно представить в виде суммы двух других функций: (h(x)=f(x)+g(x)). Найдем её производную из общего алгоритма.
Пусть (triangle x) – некоторое приращение аргумента. Тогда приращение функции (h(x)): begin{gather*} triangle h=h(x+triangle x)-h(x)=(f(x+triangle x)+g(x+triangle x))-(f(x)+g(x))=\ =(f(x+triangle x)-f(x))+(g(x+triangle x)-g(x))=triangle f+triangle g end{gather*} где (triangle f) и (triangle g) – приращения каждой из функций-слагаемых.
Ищем производную: begin{gather*} h'(x)=lim_{triangle xrightarrow 0}frac{triangle h}{triangle x}=lim_{triangle xrightarrow 0}frac{triangle f+triangle g}{triangle x}= lim_{triangle xrightarrow 0}frac{triangle f}{triangle x}+lim_{triangle xrightarrow 0}frac{triangle g}{triangle x}=f'(x)+g'(x) end{gather*} Или: (left(f(x)+g(x)right)’=f'(x)+g'(x))
Производная суммы двух функций равна сумме производных: $$ left(f(x)+g(x)right)’=f'(x)+g'(x) $$
Например:
(left(x^2+frac1xright)’=(x^2)’+left(frac1xright)’=2x-frac{1}{x^2})
п.3. Производная функции с постоянным множителем
Рассмотрим функцию (h(x)=kcdot f(x)), где k – некоторый действительный постоянный множитель. Найдем её производную из общего алгоритма.
Пусть (triangle x) – некоторое приращение аргумента. Тогда приращение функции (h(x)): begin{gather*} triangle h=h(x+triangle x)-h(x)=kcdot f(x+triangle x)-kcdot f(x)=kcdot (f(x+triangle x)-f(x))=kcdot triangle f end{gather*} где (triangle f) – функции (f(x)).
Ищем производную: begin{gather*} h'(x)=lim_{triangle xrightarrow 0}frac{triangle h}{triangle x}=lim_{triangle xrightarrow 0}frac{kcdot triangle f}{triangle x}=klim_{triangle xrightarrow 0}frac{triangle f}{triangle x}=kf'(x) end{gather*} Или: (left(kcdot f(x)right)’=kcdot f'(x))
Постоянный множитель можно вынести за знак производной: $$ left(kcdot f(x)right)’=kcdot f'(x) $$
Например:
((5x^3)’=5cdot (x^3)’=5cdot 3x^2=15x^2)
п.4. Производная произведения двух функций
Рассмотрим функцию (h(x)), которую можно представить в виде произведения двух других функций: (h(x)=f(x)cdot g(x)). Найдем её производную из общего алгоритма.
Пусть (triangle x) – некоторое приращение аргумента. Тогда приращение функции (h(x)): begin{gather*} triangle h=h(x+triangle x)-h(x)=(f(x+triangle x)cdot g(x+triangle x))-(f(x)cdot g(x)) end{gather*} Приращения каждого из множителей: begin{gather*} triangle f=f(x+triangle x)-f(x)Rightarrow f(x+triangle x)=triangle f+f(x)\ triangle g=g(x+triangle x)-g(x)Rightarrow g(x+triangle x)=triangle g+g(x) end{gather*} Подставим: begin{gather*} triangle h=(triangle f+f(x))cdot (triangle g+g(x))-f(x)cdot g(x)=\ =triangle fcdot triangle g+triangle fcdot g(x)+f(x)cdot triangle g+f(x)cdot g(x)-f(x)cdot g(x)=\ =triangle fcdot triangle g+triangle fcdot g(x)+f(x)cdot triangle g end{gather*} Ищем производную: begin{gather*} h'(x)=lim_{triangle xrightarrow 0}frac{triangle h}{triangle x}=lim_{triangle xrightarrow 0}frac{triangle fcdot triangle g+triangle fcdot g(x)+f(x)cdottriangle g}{triangle x}=\ =lim_{triangle xrightarrow 0}left(frac{triangle f}{triangle x}cdotfrac{triangle g}{triangle x}right)+lim_{triangle xrightarrow 0}frac{triangle f}{triangle x}cdot g(x)+f(x)cdotlim_{triangle xrightarrow 0}frac{triangle g}{triangle x}=\ =f'(x)cdot g'(x)cdot 0+f'(x)cdot g(x)+f(x)cdot g'(x)=f'(x)cdot g(x)+f(x)cdot g'(x) end{gather*} Или: (left(f(x)cdot g(x)right)’=f'(x)cdot g(x)+f(x)cdot g'(x))
Производная произведения двух функций равна сумме двух слагаемых:
производная первой функции на вторую плюс первая функция на производную второй: $$ left(f(x)cdot g(x)right)’=f'(x)cdot g(x)+f(x)cdot g'(x) $$
Например:
( (x^2sqrt{x})’=(x^2)’cdotsqrt{x}+x^2cdot (sqrt{x})’=2xsqrt{x}+frac{x^2}{2sqrt{x}}=xsqrt{x}left(2+frac12right)=frac52xsqrt{x} )
п.5. Производная частного двух функций
Рассмотрим функцию (h(x)), которую можно представить в виде частного двух других функций: (h(x)=frac{f(x)}{g(x)}). Найдем её производную из общего алгоритма.
Пусть (triangle x) – некоторое приращение аргумента. Тогда приращение функции (h(x)): begin{gather*} triangle h=h(x+triangle x)-h(x)=frac{f(x+triangle x)}{g(x+triangle x)}-frac{f(x)}{g(x)} end{gather*} Приращения каждого из множителей: begin{gather*} triangle f=f(x+triangle x)-f(x)Rightarrow f(x+triangle x)=triangle f+f(x)\ triangle g=g(x+triangle x)-g(x)Rightarrow g(x+triangle x)=triangle g+g(x) end{gather*} Подставим: begin{gather*} triangle h=frac{triangle f+f(x)}{triangle g+g(x)}-frac{f(x)}{g(x)}=frac{triangle fcdot g(x)+f(x)cdot g(x)-f(x)cdot triangle g-f(x)cdot g(x)}{left(triangle g+g(x)right)cdot g(x)}=\ =frac{triangle fcdot g(x)-f(x)cdot triangle g}{left(triangle g+g(x)right)cdot g(x)}=frac{triangle fcdot g(x)-f(x)cdot triangle g}{g(x+triangle x)cdot g(x)} end{gather*} Ищем производную: begin{gather*} h'(x)=lim_{triangle xrightarrow 0}frac{triangle h}{triangle x}=lim_{triangle xrightarrow 0}frac{triangle fcdot g(x)-f(x)cdot triangle g}{triangle xcdot g(x+triangle x)cdot g(x)}=\ =frac{lim_{triangle xrightarrow 0}left(frac{triangle f}{triangle x}cdot g(x)right)-lim_{triangle xrightarrow 0}left(f(x)cdotfrac{triangle g}{triangle x}right)}{g(x+0)cdot g(x)}=frac{f'(x)cdot g(x)-f(x)cdot g'(x)}{g^2(x)} end{gather*} Или: ( left(frac{f(x)}{g(x)}right)’=frac{f'(x)cdot g(x)-f(x)cdot g'(x)}{g^2(x)} )
Производная частного двух функций равна дроби:
в числителе производная первой функции на вторую минус первая функция на производную второй, в знаменателе – квадрат второй функции: $$ left(frac{f(x)}{g(x)}right)’=frac{f'(x)cdot g(x)-f(x)cdot g'(x)}{g^2(x)} $$
Например:
begin{gather*} left(frac{3x+2}{x^2}right)’=frac{(3x+2)’cdot x^2-(3x+2)cdot (x^2)’}{(x^2)^2}=frac{3x^2-(3x+2)cdot 2x}{x^4}=\ =frac{3x^2-6x^2-4x}{x^4}=frac{-3x^2-4x}{x^4}=-frac{x(3x+4)}{x^4}=-frac{3x+4}{x^3} end{gather*}
п.6. Производная степенной функции
Из определения производной мы уже получили производные для квадрата и куба от x: $$ (x^2)’=2x, (x^3)’=3x^2 $$ Пользуясь свойством производной произведения, найдем производные для 4-й и 5-й степени от x: begin{gather*} (x^4)’=(xcdot x^3)’=(x)’cdot x^3+xcdot (x^3)’=1cdot x^3+xcdot 3x^2=4x^3\ (x^5)’=(xcdot x^4)’=(x)’cdot x^4+xcdot (x^4)’=1cdot x^4+xcdot 4x^3=5x^4 end{gather*} Мы видим закономерность, на основании которой можем предположить, что для любой целой степени: $$ (x^n)’=nx^{n-1} $$ Докажем это утверждения с помощью математической индукции (см. §25 справочника для 9 класса).
1) для базы индукции (n=1) производная ((x^1 )’=1cdot x^0=1) – верно
2) допустим, что при некотором n производная ((x^n)’=nx^{n-1}). Найдем ((x^{n+1})’): begin{gather*} (x^{n+1})’=(xcdot x^n)’=(x)’cdot x^n+xcdot (x^n)’=1cdot x^n+xcdot nx^{n-1}=\ =x^n(1+n)=(n+1)x^n end{gather*} т.е. для (x^{n+1}) формула также справедлива. Индуктивный переход выполняется.
Следовательно, по принципу математической индукции производная степенной функции ((x^n)’=nx^{n-1}, forall ninmathbb{N}). Что и требовалось доказать.
Производная степенной функции равна произведению показателя степени на основание в степени на 1 меньше: $$ (x^n)’=nx^{n-1} $$
Например:
begin{gather*} (x^{11})’=11x^{10} end{gather*} В §46 данного справочника будет показано, что выведенная формула справедлива также не только для натуральной, но и для любой действительной степени числа x.
п.7. Примеры
Пример 1. Найдите производную функции:
a) ( f(x)=3x^3-11 ) begin{gather*} f'(x)=(3x^3-11)’=3(x^3)’-(11)’=3cdot 3x^2-0=9x^2 end{gather*}
б) ( f(x)=x^2(1-x^5) ) begin{gather*} f'(x)=(x^2-x^7)’=(x^2)’-(x^7)’=2x-7x^6=x(2-7x^5) end{gather*}
в) ( f(x)=3x^2+5sqrt{x} ) begin{gather*} f'(x)=(3x^2+5sqrt{x})’=3(x^2)’+5(sqrt{x})’=3cdot 2x+frac{5}{2sqrt{x}}=6x+frac{5}{2sqrt{x}} end{gather*}
г) ( f(x)=frac{x+11}{x^3} ) begin{gather*} f'(x)=left(frac{x+11}{x^3}right)’=frac{(x+11)’cdot x^3-(x+11)cdot (x^3)’}{(x^3)^2}=frac{1cdot x^3-2x^2(x+11)}{x^6}=\ =frac{x^3-2x^3-22x^2}{x^6}=frac{-x^3-22x^2}{x^6}=-frac{x^2(x+22)}{x^6}=-frac{x+22}{x^4} end{gather*}
Пример 2. Найдите значение производной в точке (x_0), если:
a) ( f(x)=frac2x, x_0=4 ) begin{gather*} f'(x)=2cdotleft(frac1xright)’=2cdotleft(-frac{1}{x^2}right)=-frac{2}{x^2}\ f'(4)=-frac{2}{4^2}=-frac18 end{gather*}
б) ( f(x)=frac{x+2}{x}, x_0=1 ) begin{gather*} f'(x)=frac{(x+2)’x-(x+2)cdot x’}{x^2}=frac{1cdot x-(x+2)cdot 1}{x^2}=frac{x-x-2}{x^2}=-frac{2}{x^2}\ f'(x)=-frac{2}{1^2}=-2 end{gather*}
в) ( f(x)=frac{sqrt{x}}{x+1}, x_0=1 ) begin{gather*} f'(x)=frac{(sqrt{x})’cdot (x+1)-(sqrt{x})cdot(x+1)’}{(x+1)^2}=frac{frac{x+1}{2sqrt{x}}-sqrt{x}cdot 1}{(x+1)^2}=frac{x+1-2sqrt{x}cdotsqrt{x}cdot 1}{2sqrt{x}(x+1)^2}=\ =frac{x+1-2x}{2sqrt{x}(x_1)^2}=frac{1-x}{2sqrt{x}(x+1)^2}\ f'(4)=frac{1-1}{2cdot 1cdot 2^2}=0 end{gather*}
г) ( f(x)=frac{x^3}{5-x}, x_0=7 ) begin{gather*} f'(x)=frac{(x^3)’cdot (5-x)-x^3cdot (5-x)’}{(5-x)^2}=frac{3x^2cdot (5-x)-x^3cdot (-1)}{(5-x)^2}=\ =frac{15x^2-3x^3+x^3}{(5-x)^2}=frac{15x^2-2x^3}{(5-x)^2}=frac{x^2(15-2x)}{(5-x)^2}\ f'(7)=frac{7^2(15-2cdot 7)}{(5-7)^2}=frac{49}{4}=12frac14 end{gather*}
Пример 3. Решите уравнение (f'(x)=0), если:
a) ( f(x)=x-12x^3 ) begin{gather*} f'(x)=x’-12(x^3)’=1-12cdot 3x^2=1-36x^2 end{gather*} Уравнение: begin{gather*} 1-36x^2=0Rightarrow x^2=frac{1}{36}Rightarrow x=pmsqrt{frac{1}{36}}=pmfrac16 end{gather*} Ответ: (left{pmfrac16right})
б) ( f(x)=-frac25x^5+frac13x^3+12 ) begin{gather*} f'(x)=-frac25cdot 5x^4+frac13cdot 3x^2+0=-2x^4+x^2=x^2(1-2x^2) end{gather*} Уравнение: begin{gather*} x^2(1-2x^2)=0Rightarrow left[ begin{array}{l} x=0\ 1-2x^2=0 end{array} right. Rightarrow left[ begin{array}{l} x=0\ x^2=frac12 end{array} right. Rightarrow left[ begin{array}{l} x=0\ x=pmfrac{1}{sqrt{2}} end{array} right. end{gather*} Ответ: (left{0;pmfrac{1}{sqrt{2}}right})
Правила вычисления производных
7 апреля 2011
- Скачать все правила
Если следовать определению, то производная функции в точке — это предел отношения приращения функции Δy к приращению аргумента Δx:
Вроде бы все понятно. Но попробуйте посчитать по этой формуле, скажем, производную функции f(x) = x
2 + (2x + 3) · e
x
· sin x. Если все делать по определению, то через пару страниц вычислений вы просто уснете. Поэтому существуют более простые и эффективные способы.
Для начала заметим, что из всего многообразия функций можно выделить так называемые элементарные функции. Это относительно простые выражения, производные которых давно вычислены и занесены в таблицу. Такие функции достаточно просто запомнить — вместе с их производными.
Производные элементарных функций
Элементарные функции — это все, что перечислено ниже. Производные этих функций надо знать наизусть. Тем более что заучить их совсем несложно — на то они и элементарные.
Итак, производные элементарных функций:
Название | Функция | Производная |
Константа | f(x) = C, C ∈ R | 0 (да-да, ноль!) |
Степень с рациональным показателем |
f(x) = x n |
n · x n − 1 |
Синус | f(x) = sin x | cos x |
Косинус | f(x) = cos x | − sin x (минус синус) |
Тангенс | f(x) = tg x | 1/cos2 x |
Котангенс | f(x) = ctg x | − 1/sin2 x |
Натуральный логарифм | f(x) = ln x | 1/x |
Произвольный логарифм |
f(x) = log a x |
1/(x · ln a) |
Показательная функция |
f(x) = e x |
e x (ничего не изменилось) |
Если элементарную функцию умножить на произвольную постоянную, то производная новой функции тоже легко считается:
(C · f)’ = C · f ’.
В общем, константы можно выносить за знак производной. Например:
(2x
3)’ = 2 · (x
3)’ = 2 · 3x
2 = 6x
2.
Очевидно, элементарные функции можно складывать друг с другом, умножать, делить — и многое другое. Так появятся новые функции, уже не особо элементарные, но тоже дифференцируемые по определенным правилам. Эти правила рассмотрены ниже.
Производная суммы и разности
Пусть даны функции f(x) и g(x), производные которых нам известны. К примеру, можно взять элементарные функции, которые рассмотрены выше. Тогда можно найти производную суммы и разности этих функций:
- (f + g)’ = f ’ + g ’
- (f − g)’ = f ’ − g ’
Итак, производная суммы (разности) двух функций равна сумме (разности) производных. Слагаемых может быть больше. Например, (f + g + h)’ = f ’ + g ’ + h ’.
Строго говоря, в алгебре не существует понятия «вычитание». Есть понятие «отрицательный элемент». Поэтому разность f − g можно переписать как сумму f + (−1) · g, и тогда останется лишь одна формула — производная суммы.
Задача. Найти производные функций: f(x) = x
2 + sin x; g(x) = x
4 + 2x
2 − 3.
Функция f(x) — это сумма двух элементарных функций, поэтому:
f ’(x) = (x
2 + sin x)’ = (x
2)’ + (sin x)’ = 2x + cos x;
Аналогично рассуждаем для функции g(x). Только там уже три слагаемых (с точки зрения алгебры):
g ’(x) = (x
4 + 2x
2 − 3)’ = (x
4 + 2x
2 + (−3))’ = (x
4)’ + (2x
2)’ + (−3)’ = 4x
3 + 4x + 0 = 4x · (x
2 + 1).
Ответ:
f ’(x) = 2x + cos x;
g ’(x) = 4x · (x
2 + 1).
Производная произведения
Математика — наука логичная, поэтому многие считают, что если производная суммы равна сумме производных, то производная произведения strike“>равна произведению производных. А вот фиг вам! Производная произведения считается совсем по другой формуле. А именно:
(f · g) ’ = f ’ · g + f · g ’
Формула несложная, но ее часто забывают. И не только школьники, но и студенты. Результат — неправильно решенные задачи.
Задача. Найти производные функций: f(x) = x
3 · cos x; g(x) = (x
2 + 7x − 7) · e
x
.
Функция f(x) представляет собой произведение двух элементарных функций, поэтому все просто:
f ’(x) = (x
3 · cos x)’ = (x
3)’ · cos x + x
3 · (cos x)’ = 3x
2 · cos x + x
3 · (− sin x) = x
2 · (3cos x − x · sin x)
У функции g(x) первый множитель чуть посложней, но общая схема от этого не меняется. Очевидно, первый множитель функции g(x) представляет собой многочлен, и его производная — это производная суммы. Имеем:
g ’(x) = ((x
2 + 7x − 7) · e
x
)’ = (x
2 + 7x − 7)’ · e
x
+ (x
2 + 7x − 7) · (e
x
)’ = (2x + 7) · e
x
+ (x
2 + 7x − 7) · e
x
= e
x
· (2x + 7 + x
2 + 7x −7) = (x
2 + 9x) · e
x
= x(x + 9) · e
x
.
Ответ:
f ’(x) = x
2 · (3cos x − x · sin x);
g ’(x) = x(x + 9) · e
x
.
Обратите внимание, что на последнем шаге производная раскладывается на множители. Формально этого делать не нужно, однако большинство производных вычисляются не сами по себе, а чтобы исследовать функцию. А значит, дальше производная будет приравниваться к нулю, будут выясняться ее знаки и так далее. Для такого дела лучше иметь выражение, разложенное на множители.
Производная частного
Если есть две функции f(x) и g(x), причем g(x) ≠ 0 на интересующем нас множестве, можно определить новую функцию h(x) = f(x)/g(x). Для такой функции тоже можно найти производную:
Неслабо, да? Откуда взялся минус? Почему g
2? А вот так! Это одна из самых сложных формул — без бутылки не разберешься. Поэтому лучше изучать ее на конкретных примерах.
Задача. Найти производные функций:
В числителе и знаменателе каждой дроби стоят элементарные функции, поэтому все, что нам нужно — это формула производной частного:
По традиции, разложим числитель на множители — это значительно упростит ответ:
Ответ:
Производная сложной функции
Сложная функция — это не обязательно формула длиной в полкилометра. Например, достаточно взять функцию f(x) = sin x и заменить переменную x, скажем, на x
2 + ln x. Получится f(x) = sin (x
2 + ln x) — это и есть сложная функция. У нее тоже есть производная, однако найти ее по правилам, рассмотренным выше, не получится.
Как быть? В таких случаях помогает замена переменной и формула производной сложной функции:
f ’(x) = f ’(t) · t ’, если x заменяется на t(x).
Как правило, с пониманием этой формулы дело обстоит еще более печально, чем с производной частного. Поэтому ее тоже лучше объяснить на конкретных примерах, с подробным описанием каждого шага.
Задача. Найти производные функций: f(x) = e
2x + 3; g(x) = sin (x
2 + ln x)
Заметим, что если в функции f(x) вместо выражения 2x + 3 будет просто x, то получится элементарная функция f(x) = e
x
. Поэтому делаем замену: пусть 2x + 3 = t, f(x) = f(t) = e
t
. Ищем производную сложной функции по формуле:
f ’(x) = f ’(t) · t ’ = (e
t
)’ · t ’ = e
t
· t ’
А теперь — внимание! Выполняем обратную замену: t = 2x + 3. Получим:
f ’(x) = e
t
· t ’ = e
2x + 3 · (2x + 3)’ = e
2x + 3 · 2 = 2 · e
2x + 3
Теперь разберемся с функцией g(x). Очевидно, надо заменить x
2 + ln x = t. Имеем:
g ’(x) = g ’(t) · t ’ = (sin t)’ · t ’ = cos t · t ’
Обратная замена: t = x
2 + ln x. Тогда:
g ’(x) = cos (x
2 + ln x) · (x
2 + ln x)’ = cos (x
2 + ln x) · (2x + 1/x).
Вот и все! Как видно из последнего выражения, вся задача свелась к вычислению производной суммы.
Ответ:
f ’(x) = 2 · e
2x + 3;
g ’(x) = (2x + 1/x) · cos (x
2 + ln x).
Очень часто на своих уроках вместо термина «производная» я использую слово «штрих». Например, штрих от суммы равен сумме штрихов. Так понятнее? Ну, вот и хорошо.
Таким образом, вычисление производной сводится к избавлению от этих самых штрихов по правилам, рассмотренным выше. В качестве последнего примера вернемся к производной степени с рациональным показателем:
(x
n
)’ = n · x
n − 1
Немногие знают, что в роли n вполне может выступать дробное число. Например, корень — это x
0,5. А что, если под корнем будет стоять что-нибудь навороченное? Снова получится сложная функция — такие конструкции любят давать на контрольных работах и экзаменах.
Задача. Найти производную функции:
Для начала перепишем корень в виде степени с рациональным показателем:
f(x) = (x
2 + 8x − 7)0,5.
Теперь делаем замену: пусть x
2 + 8x − 7 = t. Находим производную по формуле:
f ’(x) = f ’(t) · t ’ = (t
0,5)’ · t ’ = 0,5 · t
−0,5 · t ’.
Делаем обратную замену: t = x
2 + 8x − 7. Имеем:
f ’(x) = 0,5 · (x
2 + 8x − 7)−0,5 · (x
2 + 8x − 7)’ = 0,5 · (2x + 8) · (x
2 + 8x − 7)−0,5.
Наконец, возвращаемся к корням:
Ответ:
Смотрите также:
- Вводный урок по вычислению производных степенной функции
- Уравнение касательной к графику функции
- Тест к параграфу «Что такое логарифм» (легкий)
- Комбинаторика в задаче B6: легкий тест
- Задача B2: лекарство и таблетки
- Задача B4 про шерсть и свитер
Содержание:
- Формула
- Примеры вычисления производной суммы функций
Формула
$$(u(x)+v(x))^{prime}=u^{prime}(x)+v^{prime}(x)$$
Производная суммы равна сумме производных.
Примеры вычисления производной суммы функций
Пример
Задание. Найти производную функции $y(x)=3x+2$
Решение. Производная суммы равна сумме производных, тогда
$$y^{prime}(x)=(3 x+2)^{prime}=(3 x)^{prime}+(2)^{prime}$$
В первом слагаемом из под знака производной выносим тройку, а производная
второго слагаемого равна нулю, как производная константы. Тогда будем иметь
$$y^{prime}(x)=3 cdot(x)^{prime}+0=3 cdot 1=3$$
Ответ. $y^{prime}(x)=3=3$
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Пример
Задание. Вычислить производную функции $y(x)=sin x+cos x$
Решение. Искомая производная
$$y^{prime}(x)=(sin x+cos x)^{prime}$$
Производная суммы равна сумме производных, тогда получаем:
$$y^{prime}(x)=(sin x)^{prime}+(cos x)^{prime}=cos x+(-sin x)=cos x-sin x$$
Ответ. $y^{prime}(x)=cos x-sin x$
Читать дальше: производная разности (u-v)’.
Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная – одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Геометрический и физический смысл производной
Пусть есть функция f(x), заданная в некотором интервале (a, b). Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0. Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:
Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.
Иначе это можно записать так:
Какой смысл в нахождении такого предела? А вот какой:
Геометрический смысл производной: производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.
Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.
Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t. Средняя скорость за некоторый промежуток времени:
Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:
Кстати, о том, что такое пределы и как их решать, читайте в нашей отдельной статье.
Приведем пример, иллюстрирующий практическое применение производной. Пусть тело движется то закону:
Нам нужно найти скорость в момент времени t=2c. Вычислим производную:
Правила нахождения производных
Сам процесс нахождения производной называется дифференцированием. Функция, которая имеет производную в данной точке, называется дифференцируемой.
Как найти производную? Согласно определению, нужно составить отношение приращения функции и аргумента, а затем вычислить предел при стремящемся к нулю приращении аргумента. Конечно, можно вычислять все производные так, но на практике это слишком долгий путь. Все уже давно посчитано до нас. Ниже приведем таблицу с производными элементарных функций, а затем рассмотрим правила вычисления производных, в том числе и производных сложных функций с подробными примерами.
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Правило первое: выносим константу
Константу можно вынести за знак производной. Более того – это нужно делать. При решении примеров по математике возьмите за правило – если можете упростить выражение, обязательно упрощайте.
Пример. Вычислим производную:
Правило второе: производная суммы функций
Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.
Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.
Найти производную функции:
Решение:
Правило третье: производная произведения функций
Производная произведения двух дифференцируемых функций вычисляется по формуле:
Пример: найти производную функции:
Решение:
Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.
В вышеуказанном примере мы встречаем выражение:
В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.
Правило четвертое: производная частного двух функций
Формула для определения производной от частного двух функций:
Пример:
Решение:
Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.
С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис. За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.