Как найти формулу термодинамики

Основные формулы термодинамики и молекулярной физики, которые вам пригодятся. Еще один отличный день для практических занятий по физике. Сегодня мы соберем вместе формулы, которые чаще всего используются при решении задач в термодинамике и молекулярной физике.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Итак, поехали. Попытаемся изложить законы и формулы термодинамики кратко.

Идеальный газ

Идеальный газ – это идеализация, как и материальная точка. Молекулы такого газа являются материальными точками, а соударения молекул – абсолютно упругие. Взаимодействием же молекул на расстоянии пренебрегаем. В задачах по термодинамике реальные газы часто принимаются за идеальные. Так гораздо легче жить, и не нужно иметь дела с массой новых членов в уравнениях.

Итак, что происходит с молекулами идеального газа? Да, они движутся! И резонно спросить, с какой скоростью? Конечно, помимо скорости молекул нас интересует еще и общее состояние нашего газа. Какое давление P он оказывает на стенки сосуда, какой объем V занимает, какая у него температура T.

Для того, чтобы узнать все это, есть уравнение состояния идеального газа, или уравнение Клапейрона-Менделеева

Уравнение Клапейрона-Менделеева

Здесь m – масса газа, M – его молекулярная масса (находим по таблице Менделеева), R – универсальная газовая постоянная, равная 8,3144598(48) Дж/(моль*кг).

Универсальная газовая постоянная может быть выражена через другие константы (постоянная Больцмана и число Авогадро)

Универсальная газовая постоянная

Массу, в свою очередь, можно вычислить, как произведение плотности и объема.

Масса

Основное уравнение молекулярно-кинетической теории (МКТ)

Как мы уже говорили, молекулы газа движутся, причем, чем выше температура – тем быстрее. Существует связь между давлением газа и средней кинетической энергией E его частиц. Эта связь называется основным уравнением молекулярно-кинетической теории и имеет вид:

Уравнение МКТ

Здесь n – концентрация молекул (отношение их количества к объему), E – средняя кинетическая энергия. Найти их, а также среднюю квадратичную скорость молекул можно, соответственно, по формулам:

Формулы термодинамики

Подставим энергию в первое уравнение, и получим еще один вид основного уравнения МКТ

Уравнение МКТ

Первое начало термодинамики. Формулы для изопроцессов

Напомним Вам, что первый закон термодинамики гласит: количество теплоты, переданное газу, идёт на изменение внутренней энергии газа U и на совершение газом работы A. Формула первого закона термодинамики записывается так:

Первое начало термодинамики

Как известно, с газом что-то происходит, мы можем сжать его, можем нагреть. В данном случае нас интересуют такие процессы, которые протекают при одном постоянном параметре. Рассмотрим, как выглядит первое начало термодинамики в каждом из них.

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы

Изотермический процесс протекает при постоянной температуре. Тут работает закон Бойля-Мариотта: в изотермическом процессе давление газа обратно пропорционально его объёму. В изотермическом процессе:

Изотермический процесс

Изохорный процесс протекает при постоянном объеме. Для этого процесса характерен закон Шарля: При постоянном объеме давление прямо пропорционально температуре. В изохорном процессе все тепло, подведенное к газу, идет на изменение его внутренней энергии.

Изохорный процесс

Изобарный процесс идет при постоянном давлении. Закон Гей-Люссака гласит, что при постоянном давлении газа его объём прямо пропорционален температуре. При изобарном процессе тепло идет как на изменение внутренней энергии, так и на совершение газом работы.

Изобарный процесс

Адиабатный процесс. Адиабатный процесс – это такой процесс, который проходит без теплообмена с окружающей средой. Это значит, что формула первого закона термодинамики для адиабатного процесса выглядит так:

Адиабатный процесс

Внутренняя энергия одноатомного и двухатомного идеального газа

Внутренняя энергия

Теплоемкость

Удельная теплоемкость равна количеству теплоты, которое необходимо для нагревания одного килограмма вещества на один градус Цельсия.

Теплоемкость газа

Помимо удельной теплоемкости, есть молярная теплоемкость (количество теплоты, необходимое для нагревания одного моля вещества на один градус) при постоянном объеме, и молярная теплоемкость при постоянном давлении. В формулах ниже, i – число степеней свободы молекул газа. Для одноатомного газа i=3, для двухатомного – 5.

Молярная теплоемкость

Тепловые машины. Формула КПД в термодинамике

Тепловая машина, в простейшем случае, состоит из нагревателя, холодильника и рабочего тела. Нагреватель сообщает тепло рабочему телу, оно совершает работу, затем охлаждается холодильником, и все повторяется вновь. Типичным примером тепловой машины является двигатель внутреннего сгорания.

Коэффициент полезного действия тепловой машины вычисляется по формуле

КПД

Вот мы и собрали основные формулы термодинамики, которые пригодятся в решении задач. Конечно, это не все все формулы из темы термодинамика, но их знание действительно может сослужить хорошую службу. А если возникнут вопросы  – помните о студенческом сервисе, специалисты которого готовы в любой момент прийти на выручку.

Физическая дисциплина «Термодинамика», имеющая дословный перевод с греческого как θέρμη — «тепло», δύναμις — «сила», занимается изучением общих характеристик макросистем и обращения энергии внутри них. Эту науку относят к феноменологическому типу, хотя опирается она на факты, полученные опытным путем.

Термодинамическая система, рассматриваемая в данном ракурсе, имеет конкретные характеристики, не применимые к единичным атомам и молекулам. К ним относят температуру, энергию, объем, концентрацию растворов, давление.

Определение таких параметров происходит по формулам термодинамики.

Основные формулы

Источник: en.ppt-online.org

Основные формулы термодинамики

Особенностью термодинамики является то, что ее постулаты не касаются взаимодействия отдельных единиц (атомов, молекул), как в молекулярной физике. Предметом изучения предстают общие взаимопревращения энергии, образование теплоты, теплопередача и совершение работы.

Исходя из этого, выделяют основные формулы термодинамики, к которым относятся:

  1. Уравнение Менделеева-Клайперона: (PV=(m/M)*RT). Его смысл — в изменениях трех входящих величин, которые направлены на характеристику состояния идеального газа.
  2. Количество вещества, обозначаемое буквой (ν). (nu=N/NA=m/mu)

    Величина, выражающая, сколько одинаковых структурных компонентов (единиц) находится в веществе.

  3. Закон Дальтона: давление смеси газов на стенку сосуда равно сумме давлений каждого входящего в смесь элемента: (p=p1+p2+…pn.)
  4. Главное уравнение МКТ (молекулярно-кинетической теории): (p=2n/3<varepsilon>n=N/V). Выражает математическое соотношение таких параметров, как давление газа и микропараметров: массы молекул, их скорости движения, концентрации.
  5. Средняя кинетическая энергия поступательного движения молекулы газа. Для обозначения применяется (E_k),  выражается через формулу: (E_k=E_{моля}/NA=3/2ast RT/NA). Ее мерой является абсолютная температура идеального газа, поскольку потенциальная энергия (вследствие взаимодействия молекул друг с другом) равна нулю. Зная, что R/NA=k, получается формула: (E_k=3/2ast kT).
  6. Давление идеального газа прямо пропорционально концентрации и его температуре: (P=nkT.)
  7. Скорость молекул определяется по формулам:
    (V=surd(2kT/m_o)=surd(2RT/mu)) — наиболее вероятная;
    (<V>=surd(8kT/pi m_o)=surd(8RT/pimu)) — среднеарифметическая;
    (<Vкв>surd(3kT/m_o)=surd(3RT/mu)) — средняя квадратичная.
  8. Сумма кинетических энергий всех молекул определяет внутреннюю энергию всего идеального газа. Математически выражение выглядит так: (U=i/2ast(m/mu)ast RT.)
  9. Формула для определения работы, которую совершает идеальный газ при расширении:( A=P(V_2-V_1).)
  10. Формула первого закона термодинамики: (Q=Delta U+A.)
  11. Для определения удельной теплоемкости вещества применяется математическое выражение: (С=Delta Q/mdT.)
  12. Кроме удельной теплоемкости, существует понятие молярной теплоемкости. Для ее определения применяется формула: (C=cmu). Для изохорного процесса правильная формула принимает вид: (C_v=1/2ast R), для изобарного: (C_p=((i+2)/2)ast R).

Первое начало термодинамики

Согласно первому закону термодинамики, (Q) (количество внутренней теплоты), которое получил газ извне, расходуется на совершение работы (А) и изменение внутренней энергии (U). Формула закона: (Q=Delta U+A).

Первый закон термодинамики

Источник: obrazovaka.ru

На практике газ может быть нагрет либо охлажден. Однако в данном случае рассматривается изотермический процесс, в котором один из характеризующих параметров остается неизменным.

Если процесс изотермичен, в химии включается закон Бойля-Мариота. В нем говорится, что давление газа соотносится к изначальному объему, при стабильной температуре, обратно пропорционально.

(Q=A)

Когда процесс происходит при неизменном объеме, говорят об изохорности. Здесь вступает в действие закон Шарля. В обозначенных условиях то тепло, которое поступило к газу, расходуется на изменение внутренней энергии. Другими словами, (P) пропорционально (T).

(Q=Delta U)

Протекание процессов в идеальном газе при неизменном давлении носит характер изобарного. Здесь действует закон Гей-Люссака, который выражается уравнением:

(Q=Delta U=pDelta V)

Полная формулировка закона гласит: полученное тепло при изобарном процессе расходуется на совершение работы газом, а также изменяет его внутреннюю энергию.

Часть процессов происходят изолированно от внешней среды. Газ не получает дополнительной энергии. Такая ситуация носит название адиабатной и математически записывается: (Q=0). Работа (А) в таком случае выражается: (A=-Delta U.)

Уравнение идеального газа в термодинамике

Молекулы идеального газа постоянно движутся. От того насколько велика скорость их движения, зависит общее состояние газа, а также величина его воздействия, например, на стенки сосуда. Поэтому одним из основных уравнений термодинамики является Клайперона-Менделеева:

(PV=(m/M)ast RT)

В уравнении (m) — единица массы газа, (M) — его молекулярная масса, (R) — универсальная величина, называемая газовой постоянной. Ее значение = 8,3144598. Измеряется в Дж/(моль*кг).

В основе термодинамики лежат и другие газовые постоянные, например, число Авогадро, постоянная Больцмана. Таким образом, (R=kNA.)

Из уравнения Клайперона-Менделеева можно также вычислить массу. Она будет равна произведению плотности на объем: (m=rho V).

Основное уравнение молекулярно-кинетической теории (МКТ)

Решение части задач зависит от знания особенностей взаимосвязи между давлением газа и характеристикой кинетической энергии его молекул. Математическое выражение такой зависимости носит название основного уравнения МКТ:

(p=2/3ast nE)

В данном выражении кинетическая энергия обозначена буквой (Е), а концентрация молекул — (n). Каждую из этих величин физики можно найти исходя из соответствующих формул, после чего уравнение для молекулярно-кинетической теории (МКТ) приобретает вид:

(p=nkT)

Куб

Источник: encrypted-tbn0.gstatic.com

Формула теплоемкости и главная формула КПД в термодинамике

Когда теплообмен проявляется передачей телу определенного количества теплоты, его энергия, как и температура, меняются.

То количество теплоты, обозначаемое (Q), которое понадобится для того, чтобы 1 кг определенного вещества нагреется на 1 К, носит определение теплоемкости вещества и обозначается с.

Математическое выражение относительно переданного количества теплоты выглядит формулой:

(Q=cm(t_2-t_1)=cmDelta t)

Измеряется величина в Дж/(кг∙К).

При t2⟩t1, количество теплоты со знаком плюс, следовательно, вещество нагревается. Если наоборот, то Q — со знаком минус, и вещество остывает.

В физике, характеризуя свойства вещества, говорят о его теплоемкости. Это имеет значение, например, при выборе стройматериалов или сырья для изготовления нагревательных приборов. Теплоемкость равна произведению массы на удельную теплоемкость данного тела:

(C=cm)

Учитывая, что в величине теплоемкости уже отражена масса, то сокращенная формула для определения (Q) выглядит так:

 (Q=C(t_2-t_1))

С другой стороны, то количество теплоты, которое отдает источник, можно высчитать по формуле: 

(Q=Pt.)

В выражении буквой (P) обозначается мощность нагревателя, а (t) — время их контакта.

Конструкция, состоящая из нагревателя, тела-реципиента теплоты и охладителя, носит название тепловой машины. В качестве примера рассматривается двигатель внутреннего сгорания. Как и любой механизм, она имеет такую характеристику, как КПД — коэффициент полезного действия. Для его расчета применяется формула:

(eta=(Q_н-Q_x)/Q_н)

Внутренняя энергия одноатомного и двухатомного идеального газа

Характерной особенностью идеального газа является отсутствие у его составляющих частей потенциальной энергии. Вся внутренняя энергия — это сумма кинетических энергий всех молекул. Она является величиной, прямо пропорциональной температуре идеального газа:

(mw2/2=alpha T)

В этом уравнении:

(alpha T=3Rmu/2Nmu)

Исходя из приведенных формул, величина кинетической энергии поступательного движения идеального газа должна определяться исходя из выражения:

(mv2/2=(3Rmu/2Nmu)ast T)

Поступательное движение характеризуется тремя степенями свободы. На каждую из них приходится одна треть общей кинетической энергии.

Внутренняя энергия газа

Источник: cf.ppt-online.org

Двух- и более атомные молекулы газа характеризуются степенями свободы, касающимися вращательного движения.

Если обозначить число молекул в одном киломоле за (Nμ), то внутренняя энергия идеального газа будет измеряться по формуле:

(Umu=1/2(Rmu Ti))

В формуле (i) — число степеней свобод.

Если газ одноатомный, (i=3), двуатомный — 5, трех- и более — 6.

Внутренняя энергия газа 2

Источник: uslide.ru

Задачи на термодинамику характеризуют распространенные физические процессы, поэтому часть включаются в программы экзаменов. Если для их решения не хватает времени, можно обратиться за помощью в Феникс.Хелп. На профильном сайте вам помогут справиться с любой, даже запутанной задачей, экономя ваши время и силы.

  1. Термодинамическая формула идеального газа
  2. Первое начало термодинамики. Формулы для изопроцессов
  3. Уравнение теплоёмкости и основное уравнение коэффициента полезного действия в термодинамике
  4. Формула состояния и её функции

В термодинамике осуществляется изучение всеобщих законов и материальных явлений изменения внутренней энергии. В то же время принято, каждый физический объект обладает тепловой энергией U, зависящей от температурных показателей данного объекта. До рассмотрения ключевых термодинамических уравнений требуется определить формулировку термодинамики.

Определение 1

Термодинамика является широким раздел физики, который изучает более всеобщие характеристики макроскопических структур, а также методы передачи и изменения энергии в данных структурах. Термодинамика описывает процессы, которые происходят в системах и их состояния.

Данная наука основывается на всеобщих и распространённых фактах, полученные путём экспериментальных методов. Процессы, которые происходят в термодинамических системах представляются благодаря применению макроскопических значений. В данный перечень входят следующие показатели:

  • Температурные показатели.
  • Давление.
  • Мольный объём.
  • Показатели плотности.
  • Концентрация.
  • Энергия.

Отдельно к молекулам эти свойства не имеют никакого отношения, а выражаются в развёрнутом описании структуры, по её существу. Большое количество реализованных результатов, основанных на законах термодинамики, возможно наблюдать в области электрической энергетики и теплотехники. Это подтверждает восприятие фазовых переходов, химических явлений и процессов переноса. В определённой степени термодинамические законы взаимодействуют с законами квантовой динамики.

Термодинамическая формула идеального газа

Работа газа в термодинамике определяется следующей формулой:

(A` = p (V2 – V1) = pΔV)

Работа внешних сил приравнивается работе газа с противоположным знаком:

(A = – A`)

Определение 2.

Идеальный газ является теоретической моделью, которая широко применяется для описания характеристик и поведения фактических газов при ограниченных показателях давления и температурных параметров.

В данной модели, полагается, что создающие газ частицы не воздействуют один на одного, т.е. их величины являются пренебрежительно малыми, по данной причине, в объеме, который занят идеальным газом, не присутствует ударение элементов. Элементы идеального газа испытывают ударения исключительно со стенками ёмкости.

Молекулы такой модели считаются физическими точками, а ударения элементов являются полностью упругими. В термодинамических задачах фактические газы периодически принимают идеальные. Таким образом, намного проще создавать уравнения, и нет необходимости иметь дело с большим числом различных значений в формулах.

banner

Сложно разобраться самому?

Попробуйте обратиться за помощью к преподавателям

Молекулы идеального газа осуществляют перемещения, и осталось определить с какой скоростью и массой, они это осуществляют. Для этого требуется применить формулу состояния идеального газа Клапейрона-Менделеева: (PV = {mover M}RT,)

где     m – масса исследуемого газа.

M– его первоначальная молекулярная масса.

R – универсальная константа, которая равна 8,3144598 Дж/(моль*кг).

Массу идеального газа возможно рассчитать, как умножение объёма и плотности (m = pV.)

Присутствует определённая взаимосвязь меж средней кинетической энергией (E) и давлением газа. Данная связь именуется в физике главной формулой молекулярно-кинетической теории. Описывается данная формула следующим образом (p = {2over 3}nE,)

где (n) – концентрация перемещающихся молекул относительно всеобщего объёма.
(E) – коэффициент средней кинетической энергии.

Первое начало термодинамики. Формулы для изопроцессов

Уравнение состояния идеального газа выглядит следующим образом: (F (P, V, T) = 0). Соотношение, которое даёт взаимосвязь между параметрами какого-либо объекта, именуется уравнением состояния данного объекта.

Рисунок 1. Закон Бойля-Мариотта.

Первый термодинамический закон говорит: число внутренней теплоты, которое передано газу, идет исключительно на преобразование всеобщей энергии газа U, а также на осуществление газом работы (A). Уравнение первого закона термодинамики выглядит следующим образом: (Q = ΔU + A). Естественно, что в газовой структуре постоянно что-то осуществляется, так как, газ возможно сжать либо нагреть.

В этой ситуации требуется рассмотрение таких явлений, которые происходят при одном постоянном показателе. Первый закон термодинамики в изотермическом случае, протекающем при константе температурного показателя, использует закон Бойля-Мариотта. По итогу изотермического процесса давление газа обратно пропорционально его первоначальному объему: (Q = A.)

Изохорный процесс рассматривается при величине объёма равном постоянной составляющей. Для данного процесса применяется закон Шарля, в согласовании с которым, давление прямо пропорционально всеобщему температурному показателю. В изохорном явлении всё подведённое к газу тепло идёт на преобразование внутреннего энергетического потенциала, и в математической форме выглядит следующим образом: (Q=ΔA.)

Изобарное явление осуществляется при величине давления равной постоянной составляющей. Закон Гей-Люссака полагает, что при постоянном давлении идеального газа, его изначальный объем прямо пропорционален результирующему температурному показателю. При изобарном явлении тепло идёт на осуществление работы газом и на преобразование внутренней энергии, и в математической форме выглядит следующим образом: (Q = ΔU + pΔV.)

Уравнение теплоёмкости и основное уравнение коэффициента полезного действия в термодинамике

Количество теплоты – это часть внутреннего энергетического потенциала, которую объект получает либо, теряет при тепловой передаче.

Рисунок 2. Количество теплоты.

Замечание 1

Удельная тепловая ёмкость в структуре термодинамики постоянно приравнивается числу теплоты, выделяемом для нагрева 1 кг существующего вещества на 1°С.

Формула тепловой ёмкости в математической форме выглядит следующим образом: (c = {Q over mΔt})). Кроме вышеуказанного показателя, присутствует и молярная тепловая ёмкость, работающая при стабильном объёме и давлении. Её функционирование просматривается в следующем уравнении: (Cv = {i over 2} R), где (i) – число степеней свободы молекул газа.

Тепловая оборудование, в самом примитивном случае, слагается из холодильной, нагревательной и рабочей части физического объекта. Нагревательная часть оборудования первоначально передаёт тепло материальному объекту и осуществляет определённую работу, и после чего со временем осуществляется охлаждение холодильной частью оборудования. Далее, всё осуществляется повторно вкруговую. Классическим образом теплового оборудования является двигатель внутреннего сгорания. Расчёт коэффициента полезного действия теплового оборудования производится согласно уравнению:

(n = {Qh-Qxover Qh})

banner

Не нашли то, что искали?

Попробуйте обратиться за помощью к преподавателям

Во время исследования термодинамических основ и формул необходимо воспринять, что сегодня присутствует две методики представления материальных явлений, которые происходят в макроскопических физических объектах:

  • Статистическая методика.
  • Термодинамическая методика.

Термодинамические методики и её уравнения предоставляют возможность обнаружить, развернуть и осуществить описание сущности опытных обоснований в виде закона Менделеева-Клапейрона. Важнейшим является понимание, что в термодинамических системах, в отличие от структур молекулярной физики, не исследуются определённые взаимные воздействия, которые происходят с определёнными молекулами либо атомами. Здесь исследуются устойчивые взаимные превращения и взаимосвязи различных типов теплоты, энергии и работы.

Формула состояния и её функции

Рисунок 3. Термодинамические формулы состояния.

При изучении макроскопических состояний используются функции состояния, предполагающие параметры, которые демонстрируют определенные равновесные состояния термодинамики. Данные параметры не зависят от предыстории системы и методики ее перехода в абсолютное состояние. Ключевыми функциями состояния при правильном термодинамическом строении считаются:

  • Температурные показатели.
  • Внутренняя энергия.
  • Энтропия.
  • Потенциалы термодинамики.

Но термодинамические функции состояния не считаются в полной мере свободными. Для однородной структуры каждый принцип термодинамики имеет возможность быть определён, как уравнение двух отдельных переменных. Данные функциональные взаимные связи именуются формулами всеобщего состояния. Сегодня различаются следующие типы формул:

  • Термические формулы состояния. Данные формулы определяют взаимосвязь меж давлением, объемом и температурными показателями.
  • Калорические формулы состояния. Данные формулы выражают внутреннюю энергию, как функцию от объема и температурных показателей.
  • Канонические формулы состояния. Данные формулы записываются в роли термодинамического потенциала в определённых переменных.

Сведения о формулах состояния являются довольно существенными для практического применения всеобщих принципов термодинамики. Для любой определённой термодинамической системы данные формулы устанавливаются из экспериментальных данных либо методами статистической механики, и в границах термодинамики они являются заданными при первоначальном определении системы.

Термодинамикой называют обширный раздел физики, посвященный многочисленным процессам, которые происходят в системах, а также их состояниям. Основой для данного научного направления являются обобщенные факты, полученные в ходе проведения опытов и экспериментов. Для описания явлений, происходящих в термодинамических процессах, используются макроскопические величины.

Что изучает термодинамика

Объектом изучения термодинамики являются тепловые свойства тел, а также систем, которые находятся в состоянии теплового равновесия. Оно объясняется законом сохранения энергии, при этом не учитывается внутреннее строение тел, включенных в систему.

В термодинамике не рассматриваются такие микроскопические величины, как размеры молекул и атомов, их количество и масса. Этот раздел физики рассматривает процессы в большом масштабе

Благодаря созданию законов термодинамики удалось установить связь между несколькими наблюдаемыми физическими величинами, которые характеризуют состояние системы. К ним относится следующие параметры:

  • объем;
  • давление;
  • концентрация;
  • температура;
  • энергия.

Указанные параметры не применимы к отдельным молекулам, поскольку используются для детального описания систем в общем виде. Решения, основанные на термодинамических законах, встречаются в различных сферах, в том числе теплотехнике и электроэнергетике. Это свидетельствует о важности понимания химических процессов и фазовых переносов. Принципы термодинамики тесно связаны с квантовой механикой. Эти независимые теории обращаются к физическим явлениям материи и света.

Уравнение идеального газа в термодинамике

Понятие «Идеальный газ» в термодинамике используется для обозначения некой идеализации по аналогии с материальной точкой.

Молекулы элемента в этом случае являются материальными точками. При этом соударения частиц признаются абсолютно упругими и постоянными. Для решения многих задач в термодинамике реальные газы целесообразно принимать за идеальные.

Благодаря этому появляется возможность составлять формулы в упрощенном виде, поскольку не приходится вводить в уравнение большое количество новых величин.

Итак, все молекулы идеального газа находятся в движении. Для того чтобы определить с какой скоростью и массой они движутся, можно применить уравнение состояния идеального тела.

Формула

Формула Клайперона-Менделеева имеет следующий вид:

[boldsymbol{P} V=frac{m}{M} R T]

Где:

m – масса исследуемого газа;

R – универсальная постоянная, равная 8,3144598 Дж/(моль*кг)

M – начальная молекулярная масса.

Для вычисления точной массы идеального газа используется произведение его объема и плотности. Формула выглядит так:

[boldsymbol{m=pV}]

Между давлением газа и средней кинетической энергией существует некая взаимосвязь. В термодинамике ее называют основным уравнением молекулярно-кинетической теории и представляют в следующем виде:

[p=frac{2}{3} n E]

Где:

n – концентрация молекул, находящихся в движении, по отношению к объему газа;

E – коэффициент средней кинетической энергии.

Первое начало термодинамики. Формулы для изопроцессов

Один из основных законов, который используется для конкретизации общефизического закона сохранения энергии для термодинамических систем, называют первым началом термодинамики. Он учитывает химические, массобменные и термические процессы, происходящие в этих системах. Часто его формулируют как невозможность появления вечного двигателя первого рода, поскольку при совершении работы исчерпывается энергия какого-либо источника.

Итак, первый закон термодинамики звучит следующим образом: количество внутренней теплоты, которое передается газу, расходуется только на совершение работы А и изменение общей энергии газа U.

Формула

Формула первого начала термодинамики имеет следующий вид:

[Q=Delta U+A]

Поскольку газ при необходимости можно нагревать или сжимать, в системе с ним постоянно происходят какие-то изменения. Рассмотрим вариант, когда протекание процессов происходит при одном стабильном параметре, величина которого не меняется.

В изотермическом случае, когда постоянным остается температурный параметр, первое начало термодинамики задействует закон Бойля-Мариотта. Это экспериментальный газовый закон, использующийся для описания тенденции увеличения давления газа при уменьшении его объема.  

При изотермическом процессе давление газа будет обратно пропорционально его начальному объему:

[Q=A]

В случае с изохорным процессом, когда постоянным остается только объем, применяется закон Шарля. Он описывает соотношение давления и температуры для идеального газа.

Согласно закону, давление газа прямо пропорционально его общей температуре. Изохорный процесс отличается тем, что все количество тепла, подведенного к газу, расходуется на изменение внутренней энергии.

Формула

формула закона Шарля:

[Q=Delta A]

Процесс, происходящий при постоянном давлении, называется изобарным. К нему применяется закон Гей-Люсакка, который гласит, что начальный объем идеального газа прямо пропорционален конечной температуре при условии, что давление остается неизменным. Этот закон применим ко всем газам, а также парам летучих жидкостей, когда их температура выше точки кипения.

При изобарном процессе все тепло расходуется на совершение газом работы, а также изменение внутреннего энергетического потенциала. Формула для этого изопроцесса записывается в следующем виде:

[Q=Delta U+p Delta V]

Этот закон является подтверждением того, что одинаковые объемы газов при постоянном давлении и температуре содержат одинаковое количество молекул.

Второй и третий законы термодинамики

Второй закон термодинамики гласит, что прохождение процесса будет невозможным, если единственным его результатом будет передача энергии с помощью теплообмена к телу с более высокой температурой от тела с низкой. Этот закон позволяет объяснить некоторые явления, которые не противоречат первому началу. Формула второго закона термодинамики используется для определения возрастания энтропии в изолированных системах.

В отличие от первого закона термодинамики, третий позволяет определить, как будет вести себя термодинамическая система около абсолютного нуля температур. Третье начало термодинамики называют теоремой Нернста — Планка.

Нет времени решать самому?

Наши эксперты помогут!

Формула теплоемкости и определение КПД в термодинамике

Удельной теплоемкостью в термодинамике называют теплоемкость образца вещества, поделенную на общую массу образца. Иногда этот термин используется для обозначения массовой теплоемкости.

В термодинамической системе удельная теплоемкость всегда равна количеству, выделенному при нагревании на один градус Цельсия одного килограмма вещества.

Формула

Уравнение теплоемкости в термодинамике зависит от теплоты и определяется по формуле:

[c=Q m Delta t]

Когда в системе остаются неизменными давление и объем, используется показатель – молярная теплоемкость. Ее действие отражается следующей формулой:

[C v=Q i 2 R]

Где:

i – число степеней свободы молекул газа.

В самом простейшем варианте тепловая машина состоит из таких элементов, как нагреватель, холодильник и материальное тело.

Тепло передается от нагревателя физическому веществу, за счет чего совершается определенная работа. Затем оно охлаждается с помощью холодильника и процесс повторяется заново.

Наиболее наглядный пример тепловой машины – это двигатель внутреннего сгорания.

Формула

В термодинамике для определения КПД этого устройства, используется формула:

[mathbf{n}=mathbf{Q h}-mathbf{Q} times mathbf{Q h}]

Изучая основы и уравнения термодинамики, очень важно понять, к настоящему моменту разработано два метода, позволяющих описать физические процессы, которые происходят в макроскопических телах. Это статистический и термодинамический методы.

Представленные в виде формул термодинамики, они позволяют раскрыть смысл экспериментальных закономерностей в виде уравнения идеального газа (закон Менделеева-Клайперона).

Важным отличием термодинамических концепций от систем молекулярной физики является то, что они не предусматривают изучение конкретных взаимодействий, которые происходят с отдельными атомами или молекулами. В термодинамике рассматриваются только постоянные взаимопревращения, а также связь различных видов теплоты, работы и энергии.

Основные функции состояния

Функции состояния применяются в термодинамике для исследования макросостояний. В них используются показатели, отражающие определенные состояния термодинамического равновесия. Они не зависят от предыстории концепции метода, а также не связаны с переходом в абсолютное состояние.

К основным функциям состояния, которые применяются для газов в термодинамике, относятся:

  • температура;
  • энтропия;
  • внутренняя энергия;
  • термодинамические потенциалы.

Следует отметить, что все перечисленные функции состояния не являются абсолютно независимыми. В случае с однородными системами любой термодинамический принцип можно записать в виде выражения с двумя самостоятельными переменными. Таким образом уравнениями общего состояния называют функциональные взаимосвязи термодинамических систем.

В настоящее время используется несколько видов таких уравнений:

  • Термическое уравнение состояния – применяется для определения связей между, объемом, температурой и давлением.
  • Каноническое уравнение – записывается в виде термодинамического потенциала с использованием соответствующих переменных.
  • Калорическое уравнение состояния – соответствует внутреннему энергетическому потенциалу, выраженному в виде функции от объема и температуры.

Знание принципов термодинамики позволяет применять уравнения состояния на практике при возникновении такой необходимости. Для различных термодинамических концепций выражения могут определяться из опыта или с применением способов статистической механики. В пределах термодинамики выражение будет считаться заданным, если система определена изначально.

Термодинамика

Термодинамика – это раздел физики, изучающий тепловые свойства макроскопических тел и систем тел, находящихся в состоянии теплового равновесия, на основе закона сохранения энергии, без учета внутреннего строения тел, составляющих систему.

Термодинамика не рассматривает микроскопические величины – размеры атомов и молекул, их массы и количество.

Законы термодинамики устанавливают связи между непосредственно наблюдаемыми физическими величинами, характеризующими состояние системы, такими как давление ​( p )​, объем ​( V )​, температура ​( T )​.

Содержание

  • Внутренняя энергия
  • Тепловое равновесие
  • Теплопередача
  • Количество теплоты. Удельная теплоемкость вещества
  • Работа в термодинамике
  • Уравнение теплового баланса
  • Первый закон термодинамики
  • Второй закон термодинамики
  • КПД тепловой машины
  • Принципы действия тепловых машин
  • Проблемы энергетики и охрана окружающей среды

Внутренняя энергия

Внутренняя энергия – это физическая величина, равная сумме кинетической энергии теплового движения частиц тела и потенциальной энергии их взаимодействия друг с другом.

Обозначение – ​( U )​, в СИ единица измерения – Джоуль (Дж).

В термодинамике внутренняя энергия зависит от температуры и объема тела.

Внутренняя энергия тел зависит от их температуры, массы и агрегатного состояния. С ростом температуры внутренняя энергия увеличивается. Наибольшая внутренняя энергия у вещества в газообразном состоянии, наименьшая – в твердом.

Внутренняя энергия идеального газа представляет собой только кинетическую энергию теплового движения его частиц; потенциальная энергия взаимодействия частиц равна нулю.

Внутренняя энергия идеального газа прямо пропорциональна его температуре, а от объема не зависит (молекулы идеального газа не взаимодействуют друг с другом):

где ​( i )​ – коэффициент, равный числу степеней свободы молекулы, ​( nu )​ – количество вещества, ​( R )​ – универсальная газовая постоянная, ​( T )​ – абсолютная температура.

Число степеней свободы равно числу возможных движений частицы.

Важно!
Для одноатомных газов коэффициент ​( i )​ = 3, для двухатомных газов ​( i )​ = 5.

На практике часто важно уметь находить изменение внутренней энергии:

При решении задач можно записать формулу для вычисления внутренней энергии, используя уравнение Менделеева–Клапейрона:

где ​( p )​ – давление, ​( V )​ – объем газа.

Внутренняя энергия реальных газов зависит как от температуры, так и от объема.

Изменить внутреннюю энергию можно за счет изменения температуры (при теплопередаче) и за счет изменения давления и объема (при совершении работы).

Тепловое равновесие

Тепловое равновесие – это состояние системы, при котором все ее макроскопические параметры остаются неизменными сколь угодно долго.

Величины, характеризующие состояние макроскопических тел без учета их молекулярного строения, называются макроскопическими параметрами. К ним относятся давление и температура, объем, масса, концентрация отдельных компонентов смеси газа и др. В состоянии теплового равновесия отсутствует теплообмен с окружающими телами, отсутствуют переходы вещества из одного агрегатного состояния в другое, не меняются температура, давление, объем.

Любая термодинамическая система переходит самопроизвольно в состояние теплового равновесия. Каждому состоянию теплового равновесия, в которых может находиться термодинамическая система, соответствует определенная температура.

Важно!
В состоянии теплового равновесия объем, давление могут быть различными в разных частях термодинамической системы, и только температура во всех частях термодинамической системы, находящейся в состоянии теплового равновесия, является одинаковой. Микроскопические процессы внутри тела не прекращаются и при тепловом равновесии: меняются положения молекул, их скорости при столкновениях.

Теплопередача

Теплопередача – процесс изменения внутренней энергии тела без совершения работы.

Существуют три вида теплопередачи: теплопроводность, конвекция и излучение (лучистый теплообмен). Теплопередача происходит между телами, имеющими разную температуру. Тепло передается от тела с более высокой температурой к телу с более низкой температурой.

Теплопроводность – это процесс переноса энергии от более нагретых тел (частей тела) к менее нагретым в результате движения и взаимодействия частиц тела. Высокую теплопроводность имеют металлы – так, лучшие проводники тепла – медь, золото, серебро. Теплопроводность жидкостей меньше, а газы являются плохими проводниками тепла. Пористые тела плохо проводят тепло, так как в порах содержится воздух. Вещества с низкой теплопроводностью используют в качестве теплоизоляторов. Теплопроводность невозможна в вакууме. При теплопроводности не происходит переноса вещества.

Явление теплопроводности газов аналогично явлению диффузии. Быстрые молекулы из слоя с более высокой температурой перемещаются в более холодный слой, а молекулы из холодного слоя перемещаются в более нагретый. За счет этого средняя кинетическая энергия молекул более теплого слоя уменьшается, и его температура становится ниже.

В жидкостях и твердых телах при повышении температуры какого-либо участка твердого тела или жидкости его частицы начинают колебаться сильнее. Соударяясь с соседними частицами, где температура ниже, эти частицы передают им часть своей энергии, и температура этого участка возрастает.

Конвекция – перенос энергии потоками жидкости или газа.

Объяснить механизм конвекции можно на основе теплового расширения тел и закона Архимеда. При нагревании объем жидкости увеличивается, а плотность уменьшается. Нагретый слой под действием силы Архимеда поднимается вверх, а холодный опускается вниз. Это естественная конвекция. Она возникает при неравномерном нагревании жидкости или газа снизу в поле тяготения.

При вынужденной конвекции перемещение вещества происходит под действием насосов, лопастей вентилятора. Такая конвекция применяется в состоянии невесомости. Интенсивность конвекции зависит от разности температур слоев среды и агрегатного состояния вещества. Конвекционные потоки поднимаются вверх. При конвекции происходит перенос вещества.

В твердых телах конвекция невозможна, так как частицы не могут из-за сильного взаимодействия покидать свои места. В вакууме конвекция также невозможна.

Примером конвективных потоков в природе являются ветры (бризы дневной и ночной, муссоны).

Излучение (лучистый теплообмен) – перенос энергии электромагнитными волнами. Перенос тепла излучением возможен в вакууме. Источником излучения является любое тело, температура которого отлична от нуля К. При поглощении энергия теплового излучения переходит во внутреннюю энергию. Темные тела быстрее нагреваются излучением, чем тела с блестящей поверхностью, но и остывают быстрее. Мощность излучения зависит от температуры тела. С увеличением температуры тела энергия излучения увеличивается. Чем больше площадь поверхности тела, тем интенсивнее излучение.

Количество теплоты. Удельная теплоемкость вещества

Количество теплоты – это скалярная физическая величина, равная энергии, которую тело получило или отдало при теплопередаче.

Обозначение – ​( Q )​, в СИ единица измерения – Дж.

Удельная теплоемкость – это скалярная физическая величина, численно равная количеству теплоты, которое тело массой 1 кг получает или отдает при изменении его температуры на 1 К.

Обозначение – ​( c )​, в СИ единица измерения – Дж/(кг·К).

Удельная теплоемкость определяется не только свойствами вещества, но и тем, в каком процессе осуществляется теплопередача. Поэтому выделяют удельную теплоемкость газа при постоянном давлении – ​( c_P )​ и удельную теплоемкость газа при постоянном объеме – ​( c_V )​. Для нагревания газа на 1 К при постоянном давлении требуется большее количество теплоты, чем при постоянном объеме – ​( c_P > c_V )​.

Формула для вычисления количества теплоты, которое получает тело при нагревании или отдает при охлаждении:

где ​( m )​ – масса тела, ​( c )​ – удельная теплоемкость, ​( T_2 )​ – конечная температура тела, ​( T_1 )​ – начальная температура тела.

Важно!
При решении задач на расчет количества теплоты при нагревании или охлаждении можно не переводить температуру в кельвины. Так как 1К=1°С, то​( Delta T=Delta t )​.

Работа в термодинамике

Работа в термодинамике равна изменению внутренней энергии тела.

Обозначение работы газа – ​( A’ )​, единица измерения в СИ – джоуль (Дж). Обозначение работы внешних сил над газом – ​( A )​.

Работа газа ​( A’ =-A )​.

Работой расширения идеального газа называют работу, которую газ совершает против внешнего давления.

Работа газа положительна при расширении и отрицательна при его сжатии. Если объем газа не изменяется (изохорный процесс), то работы газ не совершает.

Графически работа газа может быть вычислена как площадь фигуры под графиком зависимости давления от объема в координатных осях ​( (p,V) )​, ограниченная графиком, осью ​( V )​ и перпендикулярами, проведенными из точек начального и конечного значений объема.

Формула для вычисления работы газа:

в изобарном процессе ​( A’=pcdotDelta V. )

в изотермическом процессе ( A’=frac{m}{M}RTlnfrac{V_2}{V_1}. )

Уравнение теплового баланса

Если система тел является теплоизолированной, то ее внутренняя энергия не будет изменяться несмотря на изменения, происходящие внутри системы. Если ​( A )​ = 0, ​( Q )​ = 0, то и ​( Delta U )​ = 0 .

При любых процессах, происходящих в теплоизолированной системе, ее внутренняя энергия не изменяется (закон сохранения внутренней энергии).

Рассмотрим теплоизолированную систему из двух тел с разными температурами. При контакте между ними будет проходить теплообмен. Тело с большей температурой будет отдавать некоторое количество теплоты, а тело с меньшей температурой – получать, пока температуры тел не станут равными. Так как суммарная внутренняя энергия не должна изменяться, то, на сколько уменьшится внутренняя энергия более нагретого тела, на столько должна увеличиться внутренняя энергия второго тела. Так как работа не совершается, то изменение внутренней энергии равно количеству теплоты.

Количество теплоты, отданное при теплообмене телом с большей температурой, равно по модулю количеству теплоты, полученному телом с меньшей температурой:

Другая формулировка: если тела образуют замкнутую систему и между ними происходит только теплообмен, то алгебраическая сумма отданных ​( Q_{отд} )​ и полученных ( Q_{пол} ) количеств теплоты равна нулю:

Первый закон термодинамики

Закон сохранения и превращения энергии, распространенный на тепловые явления, называется первым законом (началом) термодинамики.

Можно дать формулировку этого закона исходя из способов изменения внутренней энергии.

Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:

Если рассматривать работу самой системы над внешними телами, то закон может быть сформулирован так:

количество теплоты, переданное системе, идет на изменение ее внутренней энергии и совершение системой работы над внешними телами:

Если система изолирована и над ней не совершается работа и нет теплообмена с внешними телами, то в этом случае внутренняя энергия не изменяется. Если к системе не поступает теплота, то работа системой может совершаться только за счет уменьшения внутренней энергии. Это значит, что невозможно создать вечный двигатель – устройство, способное совершать работу без каких-либо затрат топлива.

Первый закон термодинамики для изопроцессов

Изотермический процесс: ( Q=A’,(T=const, Delta U=0) )
Физический смысл: все переданное газу тепло идет на совершение работы.

Изобарный процесс: ( Q=Delta U+A’ )
Физический смысл: подводимое к газу тепло идет на увеличение его внутренней энергии и на совершение газом работы.

Изохорный процесс: ( Q=Delta U,(V=const, A’=0) )
Физический смысл: внутренняя энергия газа увеличивается за счет подводимого тепла.

Адиабатный процесс: ​( Delta U=-A’ )​ или ​( A=Delta U,mathbf{(Q=0)} )
Физический смысл: внутренняя энергия газа уменьшается за счет совершения газом работы. Температура газа при этом понижается.

Задачи об изменении внутренней энергии тел

Такие задачи можно разделить на группы:

  • При взаимодействии тел изменяется их внутренняя энергия без совершения работы над внешней средой.
  • Рассматриваются явления, связанные с превращением одного вида энергии в другой при взаимодействии двух тел. В результате происходит изменение внутренней энергии одного тела вследствие совершенной им или над ним работы.

При решении задач первой группы:

  • установить, у каких тел внутренняя энергия уменьшается, а у каких – возрастает;
  • составить уравнение теплового баланса ​( (Delta U=0) ), при записи которого в выражении ​( Q =cm(t_2 – t_1) )​ для изменения внутренней энергии нужно вычитать из конечной температуры тела начальную и суммировать члены с учетом получающегося знака;
  • решить полученное уравнение относительно искомой величины;
  • проверить решение.

При решении задач второй группы:

  • убедиться, что в процессе взаимодействия тел теплота извне к ним не подводится, т.е. действительно ли ​( Q = 0 )​;
  • установить, у какого из двух взаимодействующих тел изменяется внутренняя энергия и что является причиной этого изменения – работа, совершенная самим телом, или работа, совершенная над телом;
  • записать уравнение ​( Q = Delta U + A )​ для тела, у которого изменяется внутренняя энергия, учитывая знак перед работой и КПД рассматриваемого процесса;
  • если работа совершается за счет уменьшения внутренней энергии одного из тел, то ​( А= -Delta U )​, а если внутренняя энергия тела увеличивается за счет работы, совершенной над телом, то ​( A=Delta U )​;
  • найти выражения для ​( Delta U )​ и ​( A )​;
  • подставить в исходное уравнение вместо ( Delta U ) и ( A ) выражения для них, получить окончательное соотношение для определения искомой величины;
  • решить полученное уравнение относительно искомой величины;
  • проверить решение.

Второй закон термодинамики

Все процессы в природе протекают только в одном направлении. В обратном направлении самопроизвольно они протекать не могут. Необратимым называется процесс, обратный которому может протекать только как составляющая более сложного процесса.

Примеры необратимых процессов:

  • переход тепла от более нагретого тела к менее нагретому телу;
  • переход механической энергии во внутреннюю энергию.

Первый закон термодинамики ничего не говорит о направлении процессов в природе.

Второй закон термодинамики выражает необратимость процессов, происходящих в природе. Существует несколько его формулировок.

Второй закон термодинамики (формулировка Клаузиуса):
невозможно перевести тепло от более холодной системы к более горячей при отсутствии одновременных изменений в обеих системах или окружающих телах.

Второй закон термодинамики (формулировка Кельвина):
невозможно осуществить такой периодический процесс, единственным результатом которого было бы получение работы за счет теплоты, взятой от одного источника.

Эта формулировка говорит также и о том, что невозможно построить вечный двигатель второго рода, то есть двигатель, совершающий работу за счет охлаждения какого-либо одного тела.

Важно!
В формулировке второго закона термодинамики большое значение имеют слова «единственным результатом». Если процессы, о которых идет речь, не являются единственными, то запреты снимаются. Например, в холодильнике происходит передача тепла от более холодного тела к нагретому и при этом осуществляется компенсирующий процесс превращения механической энергии окружающих тел во внутреннюю энергию.

Второй закон термодинамики выполняется для систем с огромным числом частиц. В системах с малым количеством частиц возможны флуктуации – отклонения от равновесия.

КПД тепловой машины

Коэффициентом полезного действия (КПД) тепловой машины (двигателя) называется отношение работы ​( A )​, совершаемой двигателем за цикл, к количеству теплоты ​( Q_1 )​, полученному за цикл от нагревателя:

Тепловая машина с максимальным КПД была создана Карно. В машине осуществляется круговой процесс (цикл Карно), при котором после ряда преобразований система возвращается в начальное состояние.

Цикл Карно состоит из четырех стадий:

  1. Изотермическое расширение (на рисунке — процесс 1–2). В начале процесса рабочее тело имеет температуру ​( T_1 )​, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передает ему количество теплоты ​( Q_1 )​. При этом объем рабочего тела увеличивается.
  2. Адиабатное расширение (на рисунке — процесс 2–3). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника ​( T_2 )​.
  3. Изотермическое сжатие (на рисунке — процесс 3–4). Рабочее тело, имеющее к тому времени температуру ​( T_2 )​, приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты ​( Q_2 )​.
  4. Адиабатное сжатие (на рисунке — процесс 4–1). Рабочее тело отсоединяется от холодильника. При этом его температура увеличивается до температуры нагревателя ​( T_1 )​.

КПД цикла Карно:

Отсюда видно, что КПД цикла Карно с идеальным газом зависит только от температуры нагревателя ​( (T_1) )​ и холодильника ( (T_2) ).

Из уравнения следуют выводы:

  • для повышения КПД тепловой машины нужно увеличить температуру нагревателя и уменьшить температуру холодильника;
  • КПД тепловой машины всегда меньше 1.

Цикл Карно обратим, так как все его составные части являются равновесными процессами.

КПД тепловых двигателей: двигатель внутреннего сгорания — 30%, дизельный двигатель — 40%, паровая турбина — 40%, газовая турбина — 25–30%.

Принципы действия тепловых машин

Тепловым двигателем называют устройство, преобразующее внутреннюю энергию топлива в механическую энергию.

Основные части теплового двигателя:

  • Нагреватель – тело с постоянной температурой, преобразующее внутреннюю энергию топлива в энергию газа. В каждом цикле работы двигателя нагреватель передает рабочему телу некоторое количество теплоты.
  • Рабочее тело – это газ, совершающий работу при расширении.
  • Холодильник – тело с постоянной температурой, которому рабочее тело передает часть тепла.

Любая тепловая машина получает от нагревателя некоторое количество теплоты ​( Q_1 )​ и передает холодильнику количество теплоты ​( Q_2 )​. Так как ​( Q_1 > Q_2 )​, то совершается работа ​( A’ = Q_1 – Q_2 )​.

Тепловой двигатель должен работать циклически, поэтому расширение рабочего тела должно сменяться его сжатием. Работа расширения газа должна быть больше работы сжатия, совершаемой внешними силами (условие совершения полезной работы). Температура газа при расширении должна быть выше, чем температура при сжатии. Тогда давление газа во всех промежуточных состояниях при сжатии будет меньше, чем при расширении.

В реальных тепловых машинах нагревателем является камера сгорания. В них рабочее тело нагревается за счет тепла, выделяющегося при сгорании топлива. Количество теплоты, выделяющееся при сгорании топлива, вычисляется по формуле:

где ​( q )​ – удельная теплота сгорания топлива, ​( m )​ – масса топлива.

Холодильником чаще всего у реальных двигателей служит атмосфера.

Виды тепловых двигателей:

  • паровой двигатель;
  • турбина (паровая, газовая);
  • двигатель внутреннего сгорания (карбюраторный, дизельный);
  • реактивный двигатель.

Тепловые двигатели широко используются на всех видах транспорта: на автомобилях – двигатели внутреннего сгорания; на железнодорожном транспорте – дизельные двигатели (на тепловозах); на водном транспорте – турбины; в авиации – турбореактивные и реактивные двигатели. На тепловых и атомных электростанциях тепловые двигатели приводят в движение роторы генераторов переменного тока.

Проблемы энергетики и охрана окружающей среды

Тепловые двигатели широко применяются на транспорте и в энергетике (тепловые и атомные электростанции). Использование тепловых двигателей сильно влияет на состояние биосферы Земли. Можно выделить следующие вредные факторы:

  • при сжигании топлива используется кислород из атмосферы, что приводит к снижению содержания кислорода в воздухе;
  • при сгорании топлива в атмосферу выделяется углекислый газ. Концентрация углекислого газа в атмосфере повышается. Это изменяет прозрачность атмосферы, так как молекулы углекислого газа поглощают инфракрасное излучение, что ведет к повышению температуры (парниковый эффект);
  • при сжигании угля в атмосферу поступают азотные, серные соединения и соединения свинца, вредные для здоровья человека.

Решение проблемы охраны окружающей среды от вредного воздействия предприятий тепловой энергетики требует комплексного подхода. Массовыми загрязнителями при работе тепловых электростанций являются летучая зола, диоксид серы и оксиды азота. Методы сокращения выбросов зависят от свойств топлива и условия его сжижения. Предотвращение загрязнения летучей золой достигается очисткой всего объема продуктов сгорания твердого топлива в высокоэффективных золоуловителях. Сокращение выбросов оксидов азота с продуктами сгорания топлива на тепловых электростанциях, а также в парогазовых и газотурбинных установках обеспечивается, главным образом, технологией сжигания топлива. Уменьшение выброса диоксида серы может быть достигнуто различными методами облагораживания и переработки топлива вне тепловых электростанций либо непосредственно на тепловых электростанциях, а также очисткой дымовых газов.

Контроль за выбросом вредных веществ электростанций осуществляется специальными приборами.

В ряде случаев достаточно эффективным решением вопросов очистки выбросов в атмосферу остается сооружение фильтров-уловителей и дымовых труб. У дымовой трубы два назначения: первое — создавать тягу и тем самым заставлять воздух — обязательный участник процесса горения — в нужном количестве и с должной скоростью входить в топку; второе — отводить продукты горения (вредные газы и имеющиеся в дыме твердые частицы) в верхние слои атмосферы. Благодаря непрерывному турбулентному движению вредные газы и твердые частицы уносятся далеко от источника их возникновения и рассеиваются.

Для рассеивания сернистого ангидрида, содержащегося в дымовых трубах тепловых электростанций, сооружаются дымовые трубы высотой 180, 250 и 320 м. Тепловые электростанции России, работающие на твердом топливе, за год выбрасывают в отвалы около 100 млн т золы и шлаков. Зола и шлаки занимают большие площади земель, неблагоприятно влияют на окружающую среду.

Более половины всех загрязнений создает транспорт. Один из путей решения проблемы защиты окружающей среды заключается в переходе на дизельные двигатели, электродвигатели, повышение КПД.

Алгоритм решения задач раздела «Термодинамика»:

  • выделить систему тел и определить ее тип (замкнутая, адиабатически замкнутая, замкнутая в механическом смысле, незамкнутая);
  • выяснить, как изменяются параметры состояния ​( (p,V,T) )​ и внутренняя энергия каждого тела системы при переходе из одного состояния в другое;
  • записать уравнения, связывающие параметры двух состояний системы, формулы для расчета изменения внутренней энергии каждого тела системы при переходе из одного состояния в другое;
  • определить изменение механической энергии системы и работу внешних сил по изменению ее объема;
  • записать формулу первого закона термодинамики или закона сохранения и превращения энергии;
  • решить систему уравнений относительно искомой величины;
  • проверить решение.

Основные формулы раздела «Термодинамика»

Термодинамика

3 (60.69%) 203 votes

Добавить комментарий