Расчётные формулы
Показатель | Формула | Значение величины, входящей в формулу | ||
---|---|---|---|---|
Обоз. | Наименование, единица измерения | |||
1. Время свободного развития пожара (мин) τсв | τсв. = τд.с. + τсб. + τсл. + τб.р. | τд.с. | Время до сообщения о пожаре равно времени от начала возникновения пожара до сообщения о нем в пожарную часть. При наличии АПС на объекте – 5 мин При отсутствии АПС на объекте – 10 мин |
|
τсб. | Время сбора личного состава по тревоге – 1 мин | |||
τсл. | Время следования, мин | |||
τб.р. | Время боевого развертывания — по нормативам ПСП или: 3 мин — для летнего периода, 6 – 8 мин — для зимнего периода |
|||
2. Время следования (мин) τсл | τсл = L × 60 / Vсл | L | Расстояние от пожарной части до объекта, км | |
Vсл | Средняя скорость движения ПА, км/ч | |||
3. Длина пути, пройденная огнем, (м) | ||||
до 10 мин включительно | Rп = 0,5 Vл × τсв | Vл | Линейная скорость распространения горения, м/мин (справочная) | |
τсв | Время свободного развития пожара, мин | |||
более 10 мин | Rп = 0,5 Vл × 10 + Vл (τсв- 10) | Vл | Линейная скорость распространения горения, м/мин (справочная) | |
τсв | Время свободного развития пожара, мин | |||
4. Площадь пожара, (м2) | ||||
круговая | SП = πR2 SП = 0,785 D2 |
π | 3,14 | |
R | Длина пути, пройденная огнем (радиус пожара) | |||
D | Длина пути, пройденная огнем (диаметр пожара), D=2R | |||
угловая | SП = 0,5 αR2 | α | Угол, внутри которого происходит развитие пожара, рад. | |
R | Длина пути, пройденная огнем (радиус пожара) | |||
угловая 90о | SП = 0,25πR2 | π | 3,14 | |
R | Длина пути, пройденная огнем (радиус пожара) | |||
прямоугольная | SП = a × b | a, b | Ширина сторон фронта горения, м | |
прямоугольная при развитии в двух направлениях | SП = a(b1 + b2) | |||
5. Периметр пожара, (м) | ||||
круговой | PП = 2πR | π | 3,14 | |
R | Длина пути, пройденная огнем (радиус пожара) | |||
угловой | PП = R(2 + α) | α | Угол, внутри которого происходит развитие пожара, рад. | |
R | Длина пути, пройденная огнем (радиус пожара) | |||
прямоугольный | PП = 2(a+b) | a, b | Ширина сторон фронта горения, м | |
прямоугольный при развитии в 2-х направлениях | PП = 2[a + (b1+b2) | |||
6. Фронт пожара, (м) | ||||
круговой | ФП = 2πR | π | 3,14 | |
R | Длина пути, пройденная огнем (радиус пожара) | |||
угловой | ФП = αR | α | Угол, внутри которого происходит развитие пожара, рад. | |
R | Длина пути, пройденная огнем (радиус пожара) | |||
прямоугольный | ФП = na | n | число сторон фронта горения | |
a | длина стороны фронта горения, м | |||
7. Площадь тушения(м2) | по фронту | по периметру | ||
круговая | при R>h Sт = πh(2R-h) |
при R≥h Sт = πh(2R-h) |
h | Глубина тушения ствола: для ручных стволов — 5 м; для лафетных — 10 м |
R | Длина пути, пройденная огнем (радиус пожара) | |||
π | 3,14 | |||
угловая 90о | при R>h Sт = 0,25πh х (2R-h) |
при R>3h Sт = 3,57h(2R-h) |
h | Глубина тушения ствола: для ручных стволов — 5 м; для лафетных — 10 м |
R | Длина пути, пройденная огнем (радиус пожара) | |||
π | 3,14 | |||
угловая 180о | при R>h Sт = 0,5πh х (2R-h) |
при R>2h Sт = 3,57h(1,4R-h) |
h | Глубина тушения ствола: для ручных стволов — 5 м; для лафетных — 10 м |
R | Длина пути, пройденная огнем (радиус пожара) | |||
π | 3,14 | |||
угловая 270о | при R>h Sт = 0,75 πh х (2R-h) |
при R≥h Sт=3,57h(1,8R-h) |
h | Глубина тушения ствола: для ручных стволов — 5 м; для лафетных — 10 м |
R | Длина пути, пройденная огнем (радиус пожара) | |||
π | 3,14 | |||
прямоугольная | при b>nh Sт = nah |
при a>2h Sт = 2h(a+b-2h) |
h | Глубина тушения ствола: для ручных стволов — 5 м; для лафетных — 10 м |
а, b | Ширина сторон фронта горения, м | |||
8. Требуемый расход на тушение (л/с, кг/с, м3/с) | Qтр.т = Sп × Iтр | Sп | Величина расчетного параметра тушения пожара: (площадь — м2, объем — м3, периметр или фронт — м) | |
Iтр | Интенсивность подачи огнетушащего средства для тушения пожара: (справочная) поверхностная — л/(м2×с), кг/(м2×с), объёмная — кг/(м3 с), м3/(м3 с) линейная — л/(м с) |
|||
9. Требуемый расход на защиту (л/с) | Qтр.т = Sз × Iтр.з | Sз | Величина расчетного параметра тушения пожара | |
Iтр.з | Интенсивность подачи огнетушащего средства для защиты (справочная) | |||
10. Количество приборов подачи огнетушащих веществ | ||||
водяные стволы | Nств.в = Qтр / qств | Qтр | Требуемый расход на тушение, л/с | |
qств | площадь тушения пенного ствола, м2 | |||
пенные стволы – ПОВЕРХНОСТНОЕ тушение |
Nств.п = Sт / Sпс | Sт | площадь тушения, м2 | |
Sпс | Расход пенного ствола, м3/мин (справочная) | |||
пенные стволы – ОБЪЁМНОЕ тушение |
Nств.п =(Vп × kз) / qпс × τр | Vп | объём помещения, м3 | |
kр | Коэффициент разрушения пены = 3 | |||
qпc | расход пенного ствола, м3/мин (справочная) | |||
τр | Расчетное время тушения — 15 мин | |||
11. Время работы стволов (от ПА без установки на водоисточник) | τраб= (Vц – NрVр) / (Nст × qст× 60) | Vц | Объем воды в цистерне пожарной машины, л | |
Nр | Число рукавов в магистральной и рабочих линиях, шт | |||
Vр | Объем воды в одном рукаве, л | |||
Nст | Число водяных стволов, работающих от данной пожарной машины, шт | |||
qст | Расход воды из ствола, л/с | |||
Время работы стволов(от ПА с установкой на водоисточник с ограниченным запасом) | τ = 0,9 VВ / (NПР × QПР × 60) | VВ | Запас воды в водоеме, л | |
NПР | Число приборов (стволов, генераторов), поданных от всех пожарных машин, установленных на данный водоисточник | |||
QПР | Расход воды одним прибором, л/с | |||
12. Время работы ГПС -600 (мин) | ||||
по ПО | τ = Vпо / qГПС | Vпо | Объем пенообразователя, л | |
qГПС | Расход ГПС-600: по воде — 5,64 л/с; по пене – 0,36 л/с; по раствору – 6 л/с | |||
по воде | τ = Vв / qГПС | Vв | Объем воды, л | |
qГПС | Расход ГПС-600: по воде — 5,64 л/с; по пене – 0,36 л/с; по раствору – 6 л/с | |||
13. Возможный объем пены средней кратности (ПСК) (м3) | ||||
по ПО | Vп = Vпо / 0,6 | Vпо | Объем пенообразователя, м3 | |
по воде | Vп = Vводы / 10 | Vводы | Объем воды, м3 | |
14. Возможная площадь тушения ЛВЖ и ГЖ (ПСК) (м2) | ||||
по ПО ЛВЖ | ST = Vпо / 3 | Vпо | Объем пенообразователя, л | |
по ПО ГЖ | ST = Vпо / 1,8(2) | |||
по воде ЛВЖ | ST = Vв / 45 | Vв | Объем воды, л | |
по воде ГЖ | ST = Vв / 30 | |||
15. Возможная площадь тушения ЛВЖ ГЖ по раствору (м2) | ST = VР-PA / ISt × τP × 60 | ISt | Нормативная интенсивность подачи раствора на тушение пожара, л/(м2 с) | |
τP | Расчетное время тушения, мин | |||
VР-PA | Количество водного раствора пенообразователя, л | |||
16. Предельная длина магистральной линии от водоисточника до пожара (м) | Lпр = [Нн – (Нпр ± Zм ± Zпр) / SQ2] × 20 | Нн | Напор на насосе, м | |
Нпр | Напор у разветвления, лафетных стволов, пеногенераторов (потери напора в рабочих линиях от разветвления в пределах двух – трех рукавов во всех случаях не превышает 10 м, поэтому напор у разветвления следует принимать на 10 м больше, чем напор у насадка ствола, присоединенного к данному разветвлению), м | |||
Zм | Наибольшая высота подъема (+) или спуска (—) местности на предельном расстоянии, м | |||
Zпр | Наибольшая высота подъема или спуска приборов тушения (стволов, пеногенераторов) от места установки разветвления или прилегающей местности на пожаре, м | |||
S | Сопротивление одного пожарного рукава | |||
Q | Суммарный расход воды одной наиболее загруженной магистральной рукавной линии, л/с | |||
17. Количество ПА основного назначения | Nотд = Nл.с / Nбр | Nл.с | Количество задействованного личного состава, чел | |
Nбр. | Количество личного состава в боевом расчете, чел (в среднем – 4 чел) | |||
18. Скорость заправки АЦ водой (мин) | τзап= Vц / Qп × 60 | Vц | Объем цистерны, л | |
Qп | Средняя подача воды насоса, заправляющего цистерну, л/с | |||
19. Время расхода воды из АЦ на пожаре (мин) | τРАСХ= Vц / Nпр × Qпр × 60 | Vц | Объем цистерны, л | |
Nпр | Число приборов (стволов, генераторов), поданных от ПА | |||
Qпр | Расход воды одним прибором, л/с | |||
20. Предельное расстояние ступени перекачки (м) | Lст = [НН – (НВХ ± ZM) / SQ2] × 20 | НВХ | Напор на конце магистральной линии ступени перекачки, м | |
21. Длина магистральной линии (м) | Lм=L×1,2 | L | Расстояние от водоисточника до места пожара, м | |
22. Количество ступеней перекачки | Nст = Lм – Lгол / Lст | Lм | Длина магистральной линии от водоисточника до места пожара, м | |
Lгол | Расстояние от места пожара до головного ПА, м = Lпр | |||
Lст | Длина ступеней перекачки, м | |||
23. Общее количество ПА для перекачки | Nм = Nст + 1 | Nст | Количество ступеней перекачки | |
1 | Головной автомобиль |
Методика и формулы расчета сил и средств для тушения пожара
Расчеты сил и средств выполняют в следующих случаях:
- при определении требуемого количества сил и средств на тушение пожара;
- при оперативно-тактическом изучении объекта;
- при разработке планов тушения пожаров;
- при подготовке пожарно-тактических учений и занятий;
- при проведении экспериментальных работ по определению эффективности средств тушения;
- в процессе исследования пожара для оценки действий РТП и подразделений.
Расчет сил и средств для тушения пожаров твердых горючих веществ и материалов водой (распространяющийся пожар)
Исходные данные для расчета сил и средств:
-
- характеристика объекта (геометрические размеры, характер пожарной нагрузки и ее размещение на объекте, размещение водоисточников относительно объекта);
- время с момента возникновения пожара до сообщения о нем (зависит от наличия на объекте вида средств охраны, средств связи и сигнализации, правильности действий лиц, обнаруживших пожар и т.д.);
- линейная скорость распространения пожара Vл;
- силы и средства, предусмотренные расписанием выездов и время их сосредоточения;
- интенсивность подачи огнетушащих средств Iтр.
1) Определение времени развития пожара на различные моменты времени.
Выделяются следующие стадии развития пожара:
- 1, 2 стадии свободного развития пожара, причем на 1 стадии (t до 10 мин) линейная скорость распространения принимается равной 50% ее максимального значения (табличного), характерного для данной категории объектов, а с момента времени более 10 мин она принимается равной максимальному значению;
- 3 стадия характеризуется началом введения первых стволов на тушение пожара, в результате чего линейная скорость распространения пожара уменьшается, поэтому в промежутке времени с момента введения первых стволов до момента ограничения распространения пожара (момент локализации), ее значение принимается равным 0,5Vл. В момент выполнения условий локализации Vл = 0.
- 4 стадия – ликвидация пожара.
tсв = tобн + tсооб + tсб + tсл + tбр (мин.), где
- tсв – время свободного развития пожара на момент прибытия подразделения;
- tобн – время развития пожара с момента его возникновения до момента его обнаружения (2 мин. – при наличии АПС или АУПТ, 2-5 мин. – при наличии круглосуточного дежурства, 5 мин. – во всех остальных случаях);
- tсооб – время сообщения о пожаре в пожарную охрану (1 мин. – если телефон находится в помещении дежурного, 2 мин. – если телефон в другом помещении);
- tсб = 1 мин. – время сбора личного состава по тревоге;
- tсл – время следования пожарного подразделения (2 мин. на 1 км пути);
- tбр – время боевого развертывания (3 мин. при подаче 1-го ствола, 5 мин. в остальных случаях).
2) Определение расстояния R, пройденного фронтом горения, за время t.
при tсв ≤ 10 мин.: R = 0,5·Vл ·tсв (м);
при tвв > 10 мин.: R = 0,5·Vл ·10 + Vл ·(tвв – 10)= 5·Vл + Vл·(tвв – 10) (м);
при tвв < t* ≤tлок : R = 5·Vл + Vл·(tвв – 10) + 0,5·Vл·(t* – tвв) (м).
- где tсв – время свободного развития,
- tвв – время на момент введения первых стволов на тушение,
- tлок – время на момент локализации пожара,
- t* – время между моментами локализации пожара и введения первых стволов на тушение.
3) Определение площади пожара.
Площадь пожара Sп – это площадь проекции зоны горения на горизонтальную или (реже) на вертикальную плоскость. При горении на нескольких этажах за площадь пожара принимают суммарную площадь пожара на каждом этаже.
Периметр пожара Рп – это периметр площади пожара.
Фронт пожара Фп – это часть периметра пожара в направлении (направлениях) распространения горения.
Для определения формы площади пожара следует вычертить схему объекта в масштабе и от места возникновения пожара отложить в масштабе величину пути R, пройденного огнем во все возможные стороны.
При этом принято выделять три варианта формы площади пожара:
- круговую (Рис.2);
- угловую (Рис. 3, 4);
- прямоугольную (Рис. 5).
При прогнозировании развития пожара следует учитывать, что форма площади пожара может меняться. Так, при достижении фронтом пламени ограждающей конструкции или края площадки, принято считать, что фронт пожара спрямляется и форма площади пожара изменяется (Рис. 6).
Формы площади пожара
а) Площадь пожара при круговой форме развития пожара.
Sп = k ·p · R2 (м2),
- где k = 1 – при круговой форме развития пожара (рис. 2),
- k = 0,5 – при полукруговой форме развития пожара (рис. 4),
- k = 0,25 – при угловой форме развития пожара (рис. 3).
б) Площадь пожара при прямоугольной форме развития пожара.
Sп = n ·b · R (м2),
- где n – количество направлений развития пожара,
- b – ширина помещения.
в) Площадь пожара при комбинированной форме развития пожара (рис 7)
Sп = S1 + S2 (м2)
Комбинированная форма пожара
4) Определение площади тушения пожара.
Площадь тушения Sт – это часть площади пожара, на которую осуществляется эффективное воздействие огнетушащими веществами.
Для практических расчетов используется параметр, называемый глубиной тушения hт, который равен для ручных стволов hт = 5 м, для лафетных hт = 10 м.
Тушение пожара производят, вводя стволы либо со всех сторон пожара – по периметру пожара (Рис. 8), либо на одном или нескольких направлениях, как правило, по фронту пожара (Рис. 9).
В некоторых случаях пожарные подразделения не могут подать огнетушащее средство одновременно на всю площадь пожара, например, при недостатке сил и средств, тогда тушение осуществляется по фронту распространяющегося пожара. При этом пожар локализуется на решающем направлении, а затем осуществляется процесс его тушения на других направлениях.
Тушение пожара по периметру и фронту
а) Площадь тушения пожара по периметру при круговой форме развития пожара.
Sт = k ·p · (R2 – r2) = k ·p··hт· (2·R – hт) (м2),
- где r = R – hт ,
- hт – глубина тушения стволов (для ручных стволов – 5м, для лафетных – 10 м).
б) Площадь тушения пожара по периметру при прямоугольной форме развития пожара.
Sт = 2·hт· (a + b – 2·hт) (м2)– по всему периметру пожара,
где а и b – соответственно длина и ширина фронта пожара.
Sт = n·b·hт (м2)– по фронту распространяющегося пожара,
где b и n – соответственно ширина помещения и количество направлений подачи стволов.
5) Определение требуемого расхода воды на тушение пожара.
Qттр = Sп · Iтр – при Sп ≤Sт (л/с) или Qттр = Sт · Iтр – при Sп >Sт (л/с)
Интенсивность подачи огнетушащих веществ Iтр – это количество огнетушащего вещества, подаваемое за единицу времени на единицу расчетного параметра.
Различают следующие виды интенсивности:
Линейная – когда в качестве расчетного принят линейный параметр: например, фронт или периметр. Единицы измерения – л/с∙м. Линейная интенсивность используется, например, при определении количества стволов на охлаждение горящих и соседних с горящим резервуаров с нефтепродуктами.
Поверхностная – когда в качестве расчетного параметра принята площадь тушения пожара. Единицы измерения – л/с∙м2. Поверхностная интенсивность используется в практике пожаротушения наиболее часто, так как для тушения пожаров в большинстве случаев используется вода, которая тушит пожар по поверхности горящих материалов.
Объемная – когда в качестве расчетного параметра принят объем тушения. Единицы измерения – л/с∙м3. Объемная интенсивность используется, преимущественно, при объемном тушении пожаров, например, инертными газами.
Требуемая Iтр – количество огнетушащего вещества, которое необходимо подавать за единицу времени на единицу расчетного параметра тушения. Определяется требуемая интенсивность на основе расчетов, экспериментов, статистических данных по результатам тушения реальных пожаров и т.д.
Фактическая Iф – количество огнетушащего вещества, которое фактически подано за единицу времени на единицу расчетного параметра тушения.
6) Определение требуемого количества стволов на тушение.
а) Nтст = Qттр / qтст – по требуемому расходу воды,
б) Nтст = Рп / Рст – по периметру пожара,
Рп – часть периметра, на тушение которого вводятся стволы
Рст = qст / Iтр ∙ hт – часть периметра пожара, которая тушится одним стволом. Р = 2·p ·L (длина окружности), Р = 2·а + 2·b (прямоугольник)
Стволы на тушение в складах со стеллажным хранением
в) Nтст = n· (m + A) – в складах со стеллажным хранением (рис. 11),
- где n – количество направлений развития пожара (ввода стволов),
- m – количество проходов между горящими стеллажами,
- A – количество проходов между горящим и соседним негорящим стеллажами.
7) Определение требуемого количества отделений для подачи стволов на тушение.
Nтотд = Nтст / nст отд ,
где nст отд – количество стволов, которое может подать одно отделение.
8) Определение требуемого расхода воды на защиту конструкций.
Qзтр = Sз · Iзтр (л/с),
- где Sз – защищаемая площадь (перекрытия, покрытия, стены, перегородки, оборудование и т.п.),
- Iзтр = (0,3-0,5)·Iтр – интенсивность подачи воды на защиту.
9) Водоотдача кольцевой водопроводной сети рассчитывается по формуле:
Qксети = ((D/25) x Vв ) 2 [л/с], (40) где,
- D – диаметр водопроводной сети, [мм];
- 25 – переводное число из миллиметров в дюймы;
- Vв – скорость движения воды в водопроводе, которая равна:
- – при напоре водопроводной сети Hв =1,5 [м/с];
- – при напоре водопроводной сети H>30 м вод.ст. –Vв =2 [м/с].
Водоотдача тупиковой водопроводной сети рассчитывается по формуле:
Qтсети = 0,5 x Qксети , [л/с].
10) Определение требуемого количества стволов на защиту конструкций.
Nзст = Qзтр / qзст ,
Также количество стволов часто определяется без аналитического расчета из тактических соображений, исходя из мест размещения стволов и количества защищаемых объектов, например, на каждую ферму по одному лафетному стволу, в каждое смежное помещение по стволу РС-50.
11) Определение требуемого количества отделений для подачи стволов на защиту конструкций.
Nзотд = Nзст / nст отд
12) Определение требуемого количества отделений для выполнения других работ (эвакуация людей, мат. ценностей, вскрытия и разборки конструкций).
Nлотд = Nл / nл отд , Nмцотд = Nмц / nмц отд , Nвскотд = Sвск / Sвск отд
13) Определение общего требуемого количества отделений.
Nобщотд = Nтст + Nзст + Nлотд + Nмцотд + Nвскотд
На основании полученного результата РТП делает вывод о достаточности привлеченных к тушению пожара сил и средств. Если сил и средств недостаточно, то РТП делает новый расчет на момент прибытия последнего подразделения по следующему повышенному номеру (рангу) пожара.
14) Сравнение фактического расхода воды Qф на тушение, защиту и водоотдачи сети Qвод противопожарного водоснабжения
Qф = Nтст·qтст + Nзст·qзст ≤ Qвод
15) Определение количества АЦ, устанавливаемых на водоисточники для подачи расчетного расхода воды.
На водоисточники устанавливают не всю технику, которая прибывает на пожар, а такое количество, которое обеспечило бы подачу расчетного расхода, т.е.
NАЦ = Qтр / 0,8 Qн ,
где Qн – подача насоса, л/с
Такой оптимальный расход проверяют по принятым схемам боевого развертывания, с учетом длинны рукавных линий и расчетного количества стволов. В любом из указанных случаев, если позволяют условия (в частности, насосно-рукавная система), боевые расчеты прибывающих подразделений должны использоваться для работы от уже установленных на водоисточники автомобилей.
Это не только обеспечит использование техники на полную мощность, но и ускорит введение сил и средств на тушение пожара.
В зависимости от обстановки на пожаре требуемый расход огнетушащего вещества определяют на всю площадь пожара или на площадь тушения пожара. На основании полученного результата РТП может сделать вывод о достаточности привлеченных к тушению пожара сил и средств.
Расчет сил и средств для тушения пожаров воздушно-механической пеной на площади
(не распространяющиеся пожары или условно приводящиеся к ним)
Исходные данные для расчета сил и средств:
- площадь пожара;
- интенсивность подачи раствора пенообразователя;
- интенсивность подачи воды на охлаждение;
- расчетное время тушения.
При пожарах в резервуарных парках за расчетный параметр принимают площадь зеркала жидкости резервуара или наибольшую возможную площадь разлива ЛВЖ при пожарах на самолетах.
На первом этапе боевых действий производят охлаждение горящих и соседних резервуаров.
1) Требуемое количество стволов на охлаждение горящего резервуара.
Nзгств = Qзгтр / qств = n ∙ π ∙ Dгор∙ Iзгтр / qств, но не менее 3х стволов,
Iзгтр = 0,8 л/с∙м – требуемая интенсивность для охлаждения горящего резервуара,
Iзгтр = 1,2 л/с∙м – требуемая интенсивность для охлаждения горящего резервуара при пожаре в обваловании,
Охлаждение резервуаров Wрез ≥ 5000 м3 и более целесообразно осуществлять лафетными стволами.
2) Требуемое количество стволов на охлаждение соседнего не горящего резервуара.
Nзсств = Qзстр / qств = n ∙ 0,5 ∙ π ∙ Dсос∙ Iзстр / qств, но не менее 2х стволов,
Iзстр = 0,3 л/с∙м – требуемая интенсивность для охлаждения соседнего не горящего резервуара,
n – количество горящих или соседних резервуаров соответственно,
Dгор, Dсос – диаметр горящего или соседнего резервуара соответственно (м),
qств – производительность одного пожарного ствола (л/с),
Qзгтр, Qзстр – требуемый расход воды на охлаждение (л/с).
3) Требуемое количество ГПС Nгпс на тушение горящего резервуара.
Nгпс = Sп ∙ Iр-ортр / qр-оргпс (шт.),
Sп – площадь пожара (м2),
Iр-ортр – требуемая интенсивность подачи раствора пенообразователя на тушение (л/с∙м2). При tвсп ≤ 28 оC Iр-ортр = 0,08 л/с∙м2, при tвсп > 28 оC Iр-ортр = 0,05 л/с∙м2 (см. приложение № 9)
qр-оргпс – производительность ГПС по раствору пенообразователя (л/с).
4) Требуемое количество пенообразователя Wпо на тушение резервуара.
Wпо = Nгпс ∙ qпогпс ∙ 60 ∙ τр ∙ Кз (л),
τр = 15 минут – расчетное время тушения при подаче ВМП сверху,
τр = 10 минут – расчетное время тушения при подаче ВМП под слой горючего,
Кз = 3 – коэффициент запаса (на три пенные атаки),
qпогпс – производительность ГПС по пенообразователю (л/с).
5) Требуемое количество воды Wвт на тушение резервуара.
Wвт = Nгпс ∙ qвгпс ∙ 60 ∙ τр ∙ Кз (л),
qвгпс – производительность ГПС по воде (л/с).
6) Требуемое количество воды Wвз на охлаждение резервуаров.
Wвз = Nзств ∙ qств ∙ τр ∙ 3600 (л),
Nзств – общее количество стволов на охлаждение резервуаров,
qств – производительность одного пожарного ствола (л/с),
τр = 6 часов – расчетное время охлаждения наземных резервуаров от передвижной пожарной техники (СНиП 2.11.03-93),
τр = 3 часа – расчетное время охлаждения подземных резервуаров от передвижной пожарной техники (СНиП 2.11.03-93).
7) Общее требуемое количество воды на охлаждение и тушение резервуаров.
Wвобщ = Wвт + Wвз (л)
8) Ориентировочное время наступления возможного выброса Т нефтепродуктов из горящего резервуара.
T= (H – h) / (W+ u + V) (ч), где
H – начальная высота слоя горючей жидкости в резервуаре, м;
h – высота слоя донной (подтоварной) воды, м;
W – линейная скорость прогрева горючей жидкости, м/ч (табличное значение);
u – линейная скорость выгорания горючей жидкости, м/ч (табличное значение);
V – линейная скорость понижения уровня вследствие откачки, м/ч (если откачка не производится, то V= 0).
Тушение пожаров в помещениях воздушно-механической пеной по объему
При пожарах в помещениях иногда прибегают к тушению пожара объемным способом, т.е. заполняют весь объем воздушно-механической пеной средней кратности (трюмы кораблей, кабельные тоннели, подвальные помещения и т.д.).
При подаче ВМП в объем помещения должно быть не менее двух проемов. Через один проем подают ВМП, а через другой происходит вытеснение дыма и избыточного давления воздуха, что способствует лучшему продвижению ВМП в помещении.
1) Определение требуемого количества ГПС для объемного тушения.
Nгпс = Wпом ·Кр / qгпс ∙tн , где
Wпом – объем помещения (м3);
Кр = 3 – коэффициент, учитывающий разрушение и потерю пены;
qгпс – расход пены из ГПС (м3/мин.);
tн = 10 мин – нормативное время тушения пожара.
2) Определение требуемого количества пенообразователя Wпо для объемного тушения.
Wпо = Nгпс ∙ qпогпс ∙ 60 ∙ τр ∙ Кз (л),
Пропускная способность рукавов
Приложение № 1
Пропускная способность одного прорезиненного рукава длиной 20 метров в зависимости от диаметра
Пропускная способность, л/с |
Диаметр рукавов, мм |
||||
51 | 66 | 77 | 89 | 110 | 150 |
10,2 | 17,1 | 23,3 | 40,0 | – | – |
Приложение № 2
Величины сопротивления одного напорного рукава длиной 20 м
Тип рукавов | Диаметр рукавов, мм | |||||
51 | 66 | 77 | 89 | 110 | 150 | |
Прорезиненные | 0,15 | 0,035 | 0,015 | 0,004 | 0,002 | 0,00046 |
Непрорезиненные | 0,3 | 0,077 | 0,03 | – | – | – |
Приложение № 3
Объем одного рукава длиной 20 м
Диаметр рукава, мм | 51 | 66 | 77 | 89 | 110 | 150 |
Объем рукава, л | 40 | 70 | 90 | 120 | 190 | 350 |
Приложение № 4
Геометрические характеристики основных типов стальных вертикальных резервуаров (РВС).
№ п/п | Тип резервуара | Высота резервуара, м | Диаметр резервуара, м | Площадь зеркала горючего, м2 | Периметр резервуара, м |
1 | РВС-1000 | 9 | 12 | 120 | 39 |
2 | РВС-2000 | 12 | 15 | 181 | 48 |
3 | РВС-3000 | 12 | 19 | 283 | 60 |
4 | РВС-5000 | 12 | 23 | 408 | 72 |
5 | РВС-5000 | 15 | 21 | 344 | 65 |
6 | РВС-10000 | 12 | 34 | 918 | 107 |
7 | РВС-10000 | 18 | 29 | 637 | 89 |
8 | РВС-15000 | 12 | 40 | 1250 | 126 |
9 | РВС-15000 | 18 | 34 | 918 | 107 |
10 | РВС-20000 | 12 | 46 | 1632 | 143 |
11 | РВС-20000 | 18 | 40 | 1250 | 125 |
12 | РВС-30000 | 18 | 46 | 1632 | 143 |
13 | РВС-50000 | 18 | 61 | 2892 | 190 |
14 | РВС-100000 | 18 | 85,3 | 5715 | 268 |
15 | РВС-120000 | 18 | 92,3 | 6691 | 290 |
Приложение № 5
Линейные скорости распространения горения при пожарах на объектах.
Наименование объекта | Линейная скорость распространения горения, м/мин |
Административные здания | 1,0…1,5 |
Библиотеки, архивы, книгохранилища | 0,5…1,0 |
Жилые дома | 0,5…0,8 |
Коридоры и галереи | 4,0…5,0 |
Кабельные сооружения (горение кабелей) | 0,8…1,1 |
Музеи и выставки | 1,0…1,5 |
Типографии | 0,5…0,8 |
Театры и Дворцы культуры (сцены) | 1,0…3,0 |
Сгораемые покрытия цехов большой площади | 1,7…3,2 |
Сгораемые конструкции крыш и чердаков | 1,5…2,0 |
Холодильники | 0,5…0,7 |
Деревообрабатывающие предприятия: | |
Лесопильные цехи (здания I, II, III СО) | 1,0…3,0 |
То же, здания IV и V степеней огнестойкости | 2,0…5,0 |
Сушилки | 2,0…2,5 |
Заготовительные цеха | 1,0…1,5 |
Производства фанеры | 0,8…1,5 |
Помещения других цехов | 0,8…1,0 |
Лесные массивы (скорость ветра 7…10 м/с, влажность 40 %) | |
Сосняк | до 1,4 |
Ельник | до 4,2 |
Школы, лечебные учреждения: | |
Здания I и II степеней огнестойкости | 0,6…1,0 |
Здания III и IV степеней огнестойкости | 2,0…3,0 |
Объекты транспорта: | |
Гаражи, трамвайные и троллейбусные депо | 0,5…1,0 |
Ремонтные залы ангаров | 1,0…1,5 |
Склады: | |
Текстильных изделий | 0,3…0,4 |
Бумаги в рулонах | 0,2…0,3 |
Резинотехнических изделий в зданиях | 0,4…1,0 |
То же в штабелях на открытой площадке | 1,0…1,2 |
Каучука | 0,6…1,0 |
Товарно-материальных ценностей | 0,5…1,2 |
Круглого леса в штабелях | 0,4…1,0 |
Пиломатериалов (досок) в штабеля при влажности 16…18 % | 2,3 |
Торфа в штабелях | 0,8…1,0 |
Льноволокна | 3,0…5,6 |
Сельские населенные пункты: | |
Жилая зона при плотной застройке зданиями V степени огнестойкости, сухой погоде | 2,0…2,5 |
Соломенные крыши зданий | 2,0…4,0 |
Подстилка в животноводческих помещениях | 1,5…4,0 |
Приложение № 6
Интенсивность подачи воды при тушении пожаров, л/(м2.с)
1. Здания и сооружения | |
Административные здания: | |
I-III степени огнестойкости | 0.06 |
IV степени огнестойкости | 0.10 |
V степени огнестойкости | 0.15 |
подвальные помещения | 0.10 |
чердачные помещения | 0.10 |
Больницы | 0.10 |
2. Жилые дома и подсобные постройки: | |
I-III степени огнестойкости | 0.06 |
IV степени огнестойкости | 0.10 |
V степени огнестойкости | 0.15 |
подвальные помещения | 0.15 |
чердачные помещения | 0.15 |
3.Животноводческие здания: | |
I-III степени огнестойкости | 0.15 |
IV степени огнестойкости | 0.15 |
V степени огнестойкости | 0.20 |
4.Культурно-зрелищные учреждения (театры, кинотеатры, клубы, дворцы культуры): | |
сцена | 0.20 |
зрительный зал | 0.15 |
подсобные помещения | 0.15 |
Мельницы и элеваторы | 0.14 |
Ангары, гаражи, мастерские | 0.20 |
локомотивные, вагонные, трамвайные и троллейбусные депо | 0.20 |
5.Производственные здания участки и цехи: | |
I-II степени огнестойкости | 0.15 |
III-IV степени огнестойкости | 0.20 |
V степени огнестойкости | 0.25 |
окрасочные цехи | 0.20 |
подвальные помещения | 0.30 |
чердачные помещения | 0.15 |
6. Сгораемые покрытия больших площадей | |
при тушении снизу внутри здания | 0.15 |
при тушении снаружи со стороны покрытия | 0.08 |
при тушении снаружи при развившемся пожаре | 0.15 |
Строящиеся здания | 0.10 |
Торговые предприятия и склады | 0.20 |
Холодильники | 0.10 |
7. Электростанции и подстанции: | |
кабельные тоннели и полуэтажи | 0.20 |
машинные залы и котельные помещения | 0.20 |
галереи топливоподачи | 0.10 |
трансформаторы, реакторы, масляные выключатели* | 0.10 |
8. Твердые материалы | |
Бумага разрыхленная | 0.30 |
Древесина: | |
балансовая при влажности, %: | |
40-50 | 0.20 |
менее 40 | 0.50 |
пиломатериалы в штабелях в пределах одной группы при влажности, %: | |
8-14 | 0.45 |
20-30 | 0.30 |
свыше 30 | 0.20 |
круглый лес в штабелях в пределах одной группы | 0.35 |
щепа в кучах с влажностью 30-50 % | 0.10 |
Каучук, резина и резинотехнические изделия | 0.30 |
Пластмассы: | |
термопласты | 0.14 |
реактопласты | 0.10 |
полимерные материалы | 0.20 |
текстолит, карболит, отходы пластмасс, триацетатная пленка | 0.30 |
Хлопок и другие волокнистые материалы: | |
открытые склады | 0.20 |
закрытые склады | 0.30 |
Целлулоид и изделия из него | 0.40 |
Ядохимикаты и удобрения | 0.20 |
* Подача тонкораспыленной воды.
Тактико-технические показатели приборов подачи пены
Прибор подачи пены | Напор у прибора, м | Концция р-ра, % | Расход, л/с | Кратность пены | Производ-сть по пене, м куб./мин(л/с) | Дальность подачи пены, м | ||
воды | ПО | р-ра ПО | ||||||
ПЛСК-20 П | 40-60 | 6 | 18,8 | 1,2 | 20 | 10 | 12 | 50 |
ПЛСК-20 С | 40-60 | 6 | 21,62 | 1,38 | 23 | 10 | 14 | 50 |
ПЛСК-60 С | 40-60 | 6 | 47,0 | 3,0 | 50 | 10 | 30 | 50 |
СВП | 40-60 | 6 | 5,64 | 0,36 | 6 | 8 | 3 | 28 |
СВП(Э)-2 | 40-60 | 6 | 3,76 | 0,24 | 4 | 8 | 2 | 15 |
СВП(Э)-4 | 40-60 | 6 | 7,52 | 0,48 | 8 | 8 | 4 | 18 |
СВП-8(Э) | 40-60 | 6 | 15,04 | 0,96 | 16 | 8 | 8 | 20 |
ГПС-200 | 40-60 | 6 | 1,88 | 0,12 | 2 | 80-100 | 12 (200) | 6-8 |
ГПС-600 | 40-60 | 6 | 5,64 | 0,36 | 6 | 80-100 | 36 (600) | 10 |
ГПС-2000 | 40-60 | 6 | 18,8 | 1,2 | 20 | 80-100 | 120 (2000) | 12 |
Линейная скорость выгорания и прогрева углеводородных жидкостей
Наименование горючей жидкости | Линейная скорость выгорания, м/ч | Линейная скорость прогрева горючего, м/ч |
Бензин | До 0,30 | До 0,10 |
Керосин | До 0,25 | До 0,10 |
Газовый конденсат | До 0,30 | До 0,30 |
Дизельное топливо из газового конденсата | До 0,25 | До 0,15 |
Смесь нефти и газового конденсата | До 0,20 | До 0,40 |
Дизельное топливо | До 0,20 | До 0,08 |
Нефть | До 0,15 | До 0,40 |
Мазут | До 0,10 | До 0,30 |
Примечание: с увеличением скорости ветра до 8-10 м/с скорость выгорания горючей жидкости возрастает на 30-50 %. Сырая нефть и мазут, содержащие эмульсионную воду, могут выгорать с большей скоростью, чем указано в таблице.
Изменения и дополнения в Руководство по тушению нефти и нефтепродуктов в резервуарах и резервуарных парках
(информационное письмо ГУГПС от 19.05.00 № 20/2.3/1863)
Таблица 2.1. Нормативные интенсивности подачи пены средней кратности для тушения пожаров нефти и нефтепродуктов в резервуарах
№ п/п | Вид нефтепродукта | Нормативная интенсивность подачи раствора пенообразователя, л м2 с’ | ||
Пенообразователи общего назначения | Пенообразователи целевого назначения | |||
Углеводородные | Фторсодержащие | |||
не пленкообразующие | пленкообразующие | |||
1 | Нефть и нефтепродукты с Твсп 28° С и ниже и ГЖ, нагретыe выше Твсп | 0,08 | 0,06 | 0,05 |
2 | Нефть и нефтепродукты с Твсп более 28 °С | 0,05 | 0,05 | 0,04 |
3 | Стабильный газовый конденсат | – | 0,12 | 0,1 |
Примечание: Для нефти с примесями газового конденсата, а также для нефтепродуктов, полученных из газового конденсата, необходимо определение нормативной интенсивности в соответствии с действующими методиками.
Таблица 2.2. Нормативная интенсивность подачи пены низкой кратности для тушения нефти и нефтепродуктов в резервуарах*
№ п/п | Вид нефтепродукта | Нормативная интенсивность подачи раствора пенообразователя, л м2 с’ | |||||
Фторсодержащие пенообразователи “не пленкообразующие” | Фторсинтетические “пленкообразующие” пенообразователи | Фторпротеиновые “пленкообразующие” пенообразователи | |||||
на поверхность | в слой | на поверхность | в слой | на поверхность | в слой | ||
1 | Нефть и нефтепродукты с Твсп 28° С и ниже | 0,08 | – | 0,07 | 0,10 | 0,07 | 0,10 |
2 | Нефть и нефтепродукты с Твсп более 28 °С | 0,06 | – | 0,05 | 0,08 | 0,05 | 0,08 |
3 | Стабильный газовый конденсат | 0,12 | – | 0,10 | 0,14 | 0,10 | 0,14 |
Основные показатели, характеризующих тактические возможности пожарных подразделений
Руководитель тушения пожара должен не только знать возможности подразделений, но и уметь определять основные тактические показатели:
- время работы стволов и приборов подачи пены;
- возможную площадь тушения воздушно-механической пеной;
- возможный объем тушения пеной средней кратности с учетом имеющегося на автомобиле запаса пенообразователя;
- предельное расстояние по подаче огнетушащих средств.
Расчеты приведены согласно Справочник руководителя тушения пожара (РТП). Иванников В.П., Клюс П.П., 1987
Определение тактических возможностей подразделения без установки пожарного автомобиля на водоисточник
1) Определение формула времени работы водяных стволов от автоцистерны:
tраб = ( Vц – Np ·Vp) / Nст ·Qст ·60 (мин.),
Nр = k·L / 20 = 1,2· L / 20 (шт.),
- где: tраб – время работы стволов, мин.;
- Vц – объем воды в цистерне пожарного автомобиля, л;
- Nр – число рукавов в магистральной и рабочих линиях, шт.;
- Vр – объем воды в одном рукаве, л (см. прилож.);
- Nст – число водяных стволов, шт.;
- Qст – расход воды из стволов, л/с (см. прилож.);
- k – коэффициент, учитывающий неровности местности (k = 1,2 – стандартное значение),
- L – расстояние от места пожара до пожарного автомобиля (м).
Дополнительно обращаем Ваше внимание, что в справочнике РТП Тактические возможности пожарных подразделений. Теребнев В.В., 2004 в разделе 17.1 приводится, точно такая же формула но с коэффициентом 0,9: Tраб = ( 0,9Vц – Np ·Vp) / Nст ·Qст ·60 (мин.)
2) Определение формула возможной площади тушения водой SТ от автоцистерны:
SТ = ( Vц – Np ·Vp) / Jтр ·tрасч · 60 (м2),
- где: Jтр – требуемая интенсивность подачи воды на тушение, л/с·м2 (см. прилож.);
- tрасч = 10 мин. – расчетное время тушения.
3) Определение формула времени работы приборов подачи пены от автоцистерны:
tраб = ( Vр-ра– Np ·Vp) / Nгпс ·Qгпс ·60 (мин.),
- где: Vр-ра – объем водного раствора пенообразователя, полученный от заправочных емкостей пожарной машины, л;
- Nгпс – число ГПС (СВП), шт;
- Qгпс – расход раствора пенообразователя из ГПС (СВП), л/с (см. прилож.).
Чтобы определить объем водного раствора пенообразователя, надо знать, насколько будут израсходованы вода и пенообразователь.
КВ = 100–С / С = 100–6 / 6 = 94 / 6 = 15,7 – количество воды (л), приходящееся на 1 литр пенообразователя для приготовления 6-ти % раствора (для получения 100 литров 6-ти % раствора необходимо 6 литров пенообразователя и 94 литра воды).
Тогда фактическое количество воды, приходящееся на 1 литр пенообразователя, составляет:
Кф = Vц / Vпо ,
- где Vц – объем воды в цистерне пожарной машины, л;
- Vпо – объем пенообразоователя в баке, л.
если Кф < Кв , то Vр-ра = Vц / Кв + Vц (л) – вода расходуется полностью, а часть пенообразователя остается.
если Кф > Кв , то Vр-ра = Vпо ·Кв + Vпо (л) – пенообразователь расходуется полностью, а часть воды остается.
4) Определение возможной формула площади тушения ЛВЖ и ГЖ воздушно-механической пеной:
Sт= ( Vр-ра– Np ·Vp) / Jтр ·tрасч · 60 (м2),
- где: Sт – площадь тушения, м2;
- Jтр – требуемая интенсивность подачи раствора ПО на тушение, л/с·м2;
При tвсп ≤ 28 оC – Jтр = 0,08 л/с∙м2, при tвсп > 28 оC – Jтр = 0,05 л/с∙м2.
tрасч = 10 мин. – расчетное время тушения.
5) Определение формула объема воздушно-механической пены, получаемого от АЦ:
Vп = Vр-ра ·К (л),
- где: Vп – объем пены, л;
- К – кратность пены;
6) Определение возможного объема тушения воздушно-механической пеной:
Vт = Vп / Кз (л, м3),
- где: Vт – объем тушения пожара;
- Кз = 2,5–3,5 – коэффициент запаса пены, учитывающий разрушение ВМП вследствие воздействия высокой температуры и других факторов.
Примеры решения задач
Пример № 1. Определить время работы двух стволов Б с диаметром насадка 13 мм при напоре 40 метров, если до разветвления проложен один рукав d 77 мм, а рабочие линии состоят из двух рукавов d 51 мм от АЦ-40(131)137А.
Решение:
t = (Vц – NрVр) / Nст ·Qст · 60 =2400 – (1· 90 + 4 · 40) / 2 · 3,5 · 60 = 4,8 мин.
Пример № 2. Определить время работы ГПС-600, если напор у ГПС-600 60 м, а рабочая линия состоит из двух рукавов диаметром 77 мм от АЦ-40 (130) 63Б.
Решение:
1) Определяем объем водного раствора пенообразователя:
Кф = Vц / Vпо= 2350/170 = 13,8.
Кф = 13,8 < Кв = 15,7 для 6-ти % раствора
Vр-ра = Vц / Кв + Vц = 2350/15,7 + 2350 » 2500 л.
2) Определяем время работы ГПС-600
t = ( Vр-ра– Np ·Vp) / Nгпс ·Qгпс ·60 = (2500 – 2 · 90)/1 · 6 · 60 = 6,4 мин.
Пример № 3. Определить возможную площадь тушения бензина ВМП средней кратности от АЦ-4-40 (Урал-23202).
Решение:
1) Определяем объем водного раствора пенообразователя:
Кф = Vц / Vпо = 4000/200 = 20.
Кф = 20 > Кв = 15,7 для 6-ти % раствора,
Vр-ра = Vпо ·Кв + Vпо = 200·15,7 + 200 = 3140 + 200 = 3340 л.
2) Определяем возможную площадь тушения:
Sт = V р-ра / Jтр ·tрасч ·60 = 3340/0,08 ·10 · 60 = 69,6 м2.
Пример № 4. Определить возможный объем тушения (локализации) пожара пеной средней кратности (К=100) от АЦ-40(130)63б (см. пример № 2).
Решение:
Vп = Vр-ра · К = 2500 · 100 = 250000 л = 250 м3.
Тогда объем тушения (локализации):
Vт = Vп/Кз = 250/3 = 83 м3.
Определение тактических возможностей подразделения с установкой пожарного автомобиля на водоисточник
1) Определение предельного расстояния по подаче огнетушащих средств:
Формула предельное расстояние подачи огнетушащих веществ
(м), где
- Lпр – предельное расстояние (м),
- Hн = 90÷100 м – напор на насосе АЦ,
- Hразв = 10 м – потери напора в разветвлении и рабочих рукавных линиях,
- Hст = 35÷40 м – напор перед стволом,
- Zм – наибольшая высота подъема (+) или спуска (–) местности (м),
- Zст – наибольшая высота подъема (+) или спуска (–) стволов (м),
- S – сопротивление одного пожарного рукава,
- Q – суммарный расход воды в одной из двух наиболее загруженной магистральной рукавной линии (л/с),
2) Определение необходимого напора на пожарном насосе Hн:
Нн = Nрук · S · Q2 ± Zм ± Zст + Hразв + Hст (м),
- где Nрук · S · Q2 – потери напора в наиболее загруженной рукавной линии (м),
- Нрук = Nрук · S · Q2 – потери напора в рукавной линии (м)
3) Определение продолжительности работы водяных стволов от водоемов с ограниченным запасом воды:
Формула время работы пожарных стволов
(мин.), где
- VПВ – запас воды в пожарном водоеме (л);
- VЦ – запас воды в цистерне пожарного автомобиля (л);
- Nрук – количество рукавов в магистральных и рабочих линиях (шт.);
- Vрук – объем одного рукава (л);
- NСТ – количество подаваемых стволов от пожарного автомобиля (шт.);
- qСТ – расход воды из ствола (л/с);
Коэффициент 0,9 говорит нам о том, что всю воду из водоема мы забрать не сможем.
4) Определение продолжительности работы приборов подачи пены:
Продолжительность работы приборов подачи пены зависит от запаса пенообразователя в заправочной емкости пожарного автомобиля или доставленного на место пожара.
Способ № 1 (по расходу водного раствора пенообразователя):
tраб = ( Vр-ра– Np ·Vp) / Nгпс ·Qгпс ·60 (мин.),
Np ·Vp = 0, т.к. весь водный раствор пенообразователя будет вытеснен из рукавов и примет участие в формировании ВМП (пенообразователь расходуется полностью, а вода остается), поэтому формула имеет окончательный вид:
tраб = Vр-ра / Nгпс ·Qгпс ·60 (мин.),
Vр-ра = Vпо ·Кв + Vпо (л), т.к. воды заведомо больше и Кф > Кв = 15,7
Способ № 2 (по расходу запаса пенообразователя):
t = Vпо / Nгпс ·Qгпспо· 60 (мин.),
- где Nгпс – число ГПС (СВП), шт;
- Qгпспо – расход пенообразователя из ГПС (СВП), л/с;
- Vпо – объем пенообразоователя в баке, л.
5) Определение возможного объема тушения (локализации) пожара:
Для ускоренного вычисления объема воздушно-механической пены средней кратности (К = 100, 4- и 6 % -ный водный раствор пенообразователя), получаемой от пожарных автомобилей с установкой их на водоисточник при расходе всего запаса пенообразователя, используют следующие формулы:
а) Vп = (Vпо / 4) ·10 (м3) и Vп = (Vпо / 6) ·10 (м3),
- где Vп – объем пены, м3;
- Vпо – количество пенообразователя (л);
- 4 и 6 – количество пенообразователя (л), расходуемого для получения 1 м3 пены соответственно при 4- и 6 % -ном растворе.
Вывод формулы:
КВ = 100–С / С = 100–6 / 6 = 94 / 6
Vр-ра = Vпо ·Кв + Vпо = Vпо · (Кв + 1) = Vпо · (94 / 6 + 6 / 6) = Vпо · 100 / 6
Vп = Vр-ра ·К = (Vпо · 100 / 6)· 100 = Vпо · 10000 / 6 (л)
б) Vп = Vпо ·Кп (л)
Vп = Vпо ·1700 (л) – при кратности 100;
Vп = Vпо ·170 (л) – при кратности 10.
Кп – количество пены, получаемой из 1 литра пенообразователя (для 6% раствора).
Примеры решения задач
Пример № 1. Определить предельное расстояние по подаче ствола А с d насадка 19 мм и 2-х стволов Б с диаметром насадка 13 мм, если напор у стволов 40 м, напор на насосе 100 м, высота подъема местности 8 м, высота подъема стволов 12 м. Рукава магистральной линии d 77 мм.
Решение:
Lпр = (Нн – (Нр ± zм ± zст))/S·Q2)·20 = (100 -50-8-12) /0,015 ·142) · 20 = 204 (м),
Нр = Нст + 10 = 40 + 10 = 50 (м).
Пример № 2. Определить время работы двух стволов А с d насадка 19 мм и 2-х стволов Б с диаметром насадка 13 мм от автонасоса, установленного на пожарный водоем вместимостью 50 м3. Расстояние от места установки разветвления до водоема 100 метров.
Решение:
(мин)
Пример № 3. Определить время работы двух ГПС-600 от АЦ-5.0-40 (КАМАЗ – 4310), установленной на пожарный гидрант.
Решение:
t = Vпо / Nгпс ·Qгпспо· 60 = 300 / 2 · 0,36 · 60 » 7 мин.
Пример № 4. Определить возможный объем тушения (локализации) воздушно-механической пеной средней кратности, если использовался 6 %-ный раствор пенообразователя от АЦ-4-40 (ЗиЛ-433104).
Решение:
Vп = (Vпо / 6) ·10 = (300 / 6) ·10 = 500 м3.
Vт = Vп / Кз = 500 / 3 » 167 м3.
Расчет основных показателей тактических возможностей подразделений позволяет заблаговременно определить возможный объем боевых действий на пожаре и их реальное выполнение.
Организация бесперебойной подачи воды
Методика расчета потребного количества пожарных автомобилей для перекачки воды к месту тушения пожара
Перекачку воды насосами пожарных машин применяют, если расстояние от водоисточника до места пожара велико (до 2 км), напор, развиваемый одним насосом, недостаточен для преодоления потерь напора в рукавных линиях и для создания рабочих пожарных струй.
Перекачка применяется также, если невозможен подъезд к водоисточнику для пожарных автомобилей (при крутых или обрывистых берегах, в заболоченных местах, при вымерзании пруда или реки у берегов и т.д.). Для этого способа перекачки применяют переносные технические устройства с установленными на них насосами (переносные пожарные мотопомпы).
Рис. 1. Схема подачи воды в перекачку
- Hн = 90÷100 м – напор на насосе АЦ,
- Hразв = 10 м – потери напора в разветвлении и рабочих рукавных линиях,
- Hст = 35÷40 м – напор перед стволом,
- Hвх ≥ 10 м – напор на входе в насос следующей ступени перекачки,
- Zм – наибольшая высота подъема (+) или спуска (–) местности (м),
- Zст – наибольшая высота подъема (+) или спуска (–) стволов (м),
- S – сопротивление одного пожарного рукава,
- Q – суммарный расход воды в одной из двух наиболее загруженной магистральной рукавной линии (л/с),
- L – расстояние от водоисточника до места пожара (м),
- Nрук – расстояние от водоисточника до места пожара в рукавах (шт.).
Пример: Для тушения пожара необходимо подать три ствола Б с диаметром насадка 13 мм, максимальная высота подъема стволов 10 м. Ближайшим водоисточником является пруд, расположенный на расстоянии 1,5 км от места пожара, подъем местности равномерный и составляет 12 м. Определить количество автоцистерн АЦ−40(130) для перекачки воды на тушение пожара.
Решение:
1) Принимаем способ перекачки из насоса в насос по одной магистральной линии.
2) Определяем предельное расстояние от места пожара до головного пожарного автомобиля в рукавах.
NГОЛ = [HН − (НР ± ZМ ± ZСТ )] / SQ2 = [90 − (45 + 0 + 10)] / 0,015 · 10,52 = 21,1 = 21.
3) Определяем предельное расстояние между пожарными автомобилями, работающими в перекачку, в рукавах.
NМР = [HН − (HВХ ± ZМ )] / SQ2 = [90 − (10 + 12)] / 0,015 · 10,52 = 41,1 = 41.
4) Определяем расстояние от водоисточника до места пожара с учетом рельефа местности.
NР = 1,2 · L/20 = 1,2 · 1500 / 20 = 90 рукавов.
5) Определяем число ступеней перекачки
NСТУП = (NР − NГОЛ ) / NМР = (90 − 21) / 41 = 2 ступени
6) Определяем количество пожарных автомобилей для перекачки.
NАЦ = NСТУП + 1 = 2 + 1 = 3 автоцистерны
7) Определяем фактическое расстояние до головного пожарного автомобиля с учетом установки его ближе к месту пожара.
NГОЛ ф = NР − NСТУП · NМР = 90 − 2 · 41 = 8 рукавов.
Следовательно, головной автомобиль можно приблизить к месту пожара.
Методика расчета потребного количества пожарных автомобилей для подвоза воды к месту тушения пожара
Если застройка сгораемая, а водоисточники находятся на очень большом расстоянии, то время, затраченное на прокладку рукавных линий, будет слишком большим, а пожар скоротечным. В таком случае лучше подвозить воду автоцистернами с параллельной организацией перекачки. В каждом конкретном случае необходимо решать тактическую задачу, принимая во внимание возможные масштабы и длительность пожара, расстояние до водоисточников, скорость сосредоточения пожарных автомобилей, рукавных автомобилей и другие особенности гарнизона.
Подвоз воды осуществляется при удалении водоисточника на расстоянии более 2 км или, если имеются сложности в заборе воды и отсутствии технических средств, позволяющих забрать воду в неблагоприятных условиях.
Формула количество АЦ на подвоз воды
(шт.), где
Формула время следование к водоисточнику
(мин.) – время следования АЦ к водоисточнику или обратно;
Формула время заправки АЦ
(мин.) – время заправки АЦ;
Формула расхода воды АЦ
(мин.) – время расхода воды АЦ на месте тушения пожара;
- L – расстояние от места пожара до водоисточника (км);
- 1 – минимальное количество АЦ в резерве (может быть увеличено);
- Vдвиж – средняя скорость движения АЦ (км/ч);
- Wцис – объем воды в АЦ (л);
- Qп – средняя подача воды насосом, заправляющим АЦ, или расход воды из пожарной колонки, установленной на пожарный гидрант (л/с);
- Nпр – число приборов подачи воды к месту тушения пожара (шт.);
- Qпр – общий расход воды из приборов подачи воды от АЦ (л/с).
Рис. 2. Схема подачи воды способом подвоза пожарными автомобилями.
Подвоз воды должен быть бесперебойным. Следует иметь в виду, что у водоисточников необходимо (в обязательном порядке) создавать пункт заправки автоцистерн водой.
Пример. Определить количество автоцистерн АЦ−40(130)63б для подвоза воды из пруда, расположенного в 2 км от места пожара, если для тушения необходимо подать три ствола Б с диаметром насадка 13 мм. Заправку автоцистерн осуществляют АЦ−40(130)63б, средняя скорость движения автоцистерн 30 км/ч.
Решение:
1) Определяем время следования АЦ к месту пожара или обратно.
tСЛ = L · 60 / VДВИЖ = 2 · 60 / 30 = 4 мин.
2) Определяем время заправки автоцистерн.
tЗАП = VЦ /QН · 60 = 2350 / 40 · 60 = 1 мин.
3)Определяем время расхода воды на месте пожара.
t РАСХ = VЦ / NСТ · QСТ · 60 = 2350 / 3 · 3,5 · 60 = 4 мин.
4) Определяем количество автоцистерн для подвоза воды к месту пожара.
NАЦ = [(2tСЛ + tЗАП ) / tРАСХ ] + 1 = [(2 · 4 + 1) / 4] + 1 = 4 автоцистерны.
Методика расчета подачи воды к месту тушения пожара с помощью гидроэлеваторных систем
При наличии заболоченных или густо заросших берегов, а так же при значительном расстоянии до поверхности воды (более 6,5-7 метров), превышающем глубину всасывания пожарного насоса (высокий крутой берег, колодцы и т.п.) необходимо применять для забора воды гидроэлеватор Г-600 и его модификации.
1) Определим требуемое количество воды VСИСТ, необходимое для запуска гидроэлеваторной системы:
VСИСТ = NР ·VР ·K ,
NР = 1,2·(L + ZФ) / 20,
- гдеNР − число рукавов в гидроэлеваторной системе (шт.);
- VР − объем одного рукава длиной 20 м (л);
- K − коэффициент, зависящий от количества гидроэлеваторов в системе, работающей от одной пожарной машины (К = 2 – 1 Г-600, K =1,5 – 2 Г-600);
- L – расстояние от АЦ до водоисточника (м);
- ZФ – фактическая высота подъема воды (м).
Определив требуемое количество воды для запуска гидроэлеваторной системы, сравнивают полученный результат с запасом воды, находящимся в пожарной автоцистерне, и выявляют возможность запуска данной системы в работу.
2) Определим возможность совместной работы насоса АЦ с гидроэлеваторной системой.
И = QСИСТ / QН ,
QСИСТ = NГ (Q1 + Q2),
- гдеИ – коэффициент использования насоса;
- QСИСТ − расход воды гидроэлеваторной системой (л/с);
- QН − подача насоса пожарного автомобиля (л/с);
- NГ − число гидроэлеваторов в системе (шт.);
- Q1 = 9,1 л/с − рабочий расход воды одного гидроэлеватора;
- Q2 = 10 л/с − подача одного гидроэлеватора.
При И < 1 система будет работать, при И = 0,65-0,7 будет наиболее устойчивая совместная работа гидроэлеваторной системы и насоса.
Следует иметь в виду, что при заборе воды с больших глубин (18-20м) необходимо создавать на насосе напор 100 м. В этих условиях рабочий расход воды в системах будет повышаться, а расход насоса – понижаться против нормального и может оказаться, что сумма рабочего и эжектируемого расходов превысит расход насоса. В этих условиях система работать не будет.
3) Определим условную высоту подъема воды ZУСЛ для случая, когда длина рукавных линий ø77 мм превышает 30 м:
ZУСЛ = ZФ + NР · hР (м),
гдеNР − число рукавов (шт.);
hР − дополнительные потери напора в одном рукаве на участке линии свыше 30 м:
hР = 7 м при Q = 10,5 л/с, hР = 4 м при Q = 7 л/с, hР = 2 м при Q = 3,5 л/с.
ZФ – фактическая высота от уровня воды до оси насоса или горловины цистерны (м).
4) Определим напор на насосе АЦ:
При заборе воды одним гидроэлеватором Г−600 и обеспечении работы определенного числа водяных стволов напор на насосе (если длина прорезиненных рукавов диаметром 77 мм до гидроэлеватора не превышает 30 м) определяют по табл. 1.
Определив условную высоту подъема воды, находим напор на насосе таким же образом по табл. 1.
5) Определим предельное расстояние LПР по подаче огнетушащих средств:
LПР = (НН – (НР ± ZМ ± ZСТ) / SQ2) · 20 (м),
- где HН − напор на насосе пожарного автомобиля, м;
- НР − напор у разветвления (принимается равным: НСТ +10) , м;
- ZМ − высота подъема (+) или спуска (−) местности, м;
- ZСТ − высота подъема (+) или спуска (−) стволов, м;
- S − сопротивление одного рукава магистральной линии
- Q − суммарный расход из стволов, подсоединенных к одной из двух наиболее нагруженной магистральной линии, л/с.
Таблица 1.
Определение напора на насосе при заборе воды гидроэлеватором Г−600 и работе стволов по соответствующим схемам подачи воды на тушение пожара.
Высота подъема воды, м | Напор на насосе, м | ||
Один ствол А или три ствола Б | Два ствола Б | Один ствол Б | |
10 | 70 | 48 | 35 |
12 | 78 | 55 | 40 |
14 | 86 | 62 | 45 |
16 | 95 | 70 | 50 |
18 | 105 | 80 | 58 |
20 | – | 90 | 66 |
22 | – | 102 | 75 |
24 | – | – | 85 |
26 | – | – | 97 |
6) Определим общее количество рукавов в выбранной схеме:
NР = NР .СИСТ + NМРЛ ,
- где NР.СИСТ − число рукавов гидроэлеваторной системы, шт;
- NМРЛ − число рукавов магистральной рукавной линии, шт.
Примеры решения задач с использование гидроэлеваторных систем
Пример. Для тушения пожара необходимо подать два ствола соответственно в первый и второй этажи жилого дома. Расстояние от места пожара до автоцистерны АЦ−40(130)63б, установленной на водоисточник, 240 м, подъем местности составляет 10 м. Подъезд автоцистерны до водоисточника возможен на расстояние 50 м, высота подъема воды составляет 10 м. Определить возможность забора воды автоцистерной и подачи ее к стволам на тушение пожара.
Решение:
1) Принимаем схему забора воды с помощью гидроэлеватора (см. рис. 3).
Рис. 3 Схема забора воды с помощью гидроэлеватора Г-600
2) Определяем число рукавов, проложенных к гидроэлеватору Г−600 с учетом неровности местности.
NР = 1,2· (L + ZФ) / 20 = 1,2 · (50 + 10) / 20 = 3,6 = 4
Принимаем четыре рукава от АЦ до Г−600 и четыре рукава от Г−600 до АЦ.
3) Определяем количество воды, необходимое для запуска гидроэлеваторной системы.
VСИСТ = NР ·VР ·K = 8· 90 · 2 = 1440 л < VЦ = 2350 л
Следовательно воды для запуска гидроэлеваторной системы достаточно.
4) Определяем возможность совместной работы гидроэлеваторной системы и насоса автоцистерны.
И = QСИСТ / QН = NГ (Q1 + Q2) / QН = 1·(9,1 + 10) / 40 = 0,47 < 1
Работа гидроэлеваторной системы и насоса автоцистерны будет устойчивой.
5) Определяем необходимый напор на насосе для забора воды из водоема с помощью гидроэлеватора Г−600.
Поскольку длина рукавов к Г−600 превышает 30 м, сначала определяем условную высоту подъема воды: ZУСЛ = ZФ + NР · hР = 10 + 2 · 4 = 18 м.
По табл. 1. определяем, что напор на насосе при условной высоте подъема воды 18 м будет равен 80 м.
6) Определяем предельное расстояние по подаче воды автоцистерной к двум стволам Б.
LПР = (НН – (НР ± ZМ ± ZСТ) / SQ2) · 20 = [80 − (46 +10 + 6) / 0,015 · 72 ] · 20 = 490 м.
Следовательно, насос автоцистерны будет обеспечивать работу стволов т.к. 490 м > 240 м.
7) Определяем необходимое количество пожарных рукавов.
NР = NР .СИСТ + NМРЛ = NР .СИСТ + 1,2 L / 20 = 8 + 1,2 · 240 / 20 = 22 рукава.
К месту пожара необходимо доставить дополнительно 12 рукавов.
Расчеты сил и средств выполняют в
следующих случаях:
при определении требуемого количества сил и средств на тушение пожара;
при оперативно-тактическом изучении объекта;
при разработке планов тушения пожаров;
при подготовке пожарно-тактических учений и занятий;
при проведении экспериментальных работ по определению эффективности
средств тушения;
в процессе исследования пожара для оценки действий РТП и подразделений.
Расчет сил и средств для тушения пожаров твердых горючих веществ и материалов водой (распространяющийся пожар).
Исходные данные для расчета сил и средств:
характеристика объекта
(геометрические размеры, характер пожарной нагрузки и ее размещение на объекте,
размещение водоисточников относительно объекта);
время с момента
возникновения пожара до сообщения о нем (зависит от наличия на объекте вида
средств охраны, средств связи и сигнализации, правильности действий лиц,
обнаруживших пожар и т.д.);
линейная скорость
распространения пожара Vл;
силы и средства,
предусмотренные расписанием выездов и время их сосредоточения;
интенсивность подачи
огнетушащих средств Iтр.
1) Определение времени развития пожара на различные моменты времени.
Выделяются следующие стадии развития пожара:
1,
2 стадии свободного развития пожара, причем на 1 стадии (t до 10 мин) линейная скорость распространения
принимается равной 50% ее максимального значения (табличного), характерного для
данной категории объектов, а с момента времени более 10 мин она принимается
равной максимальному значению;
3
стадия характеризуется началом введения первых
стволов на тушение пожара, в результате чего линейная скорость распространения
пожара уменьшается, поэтому в промежутке времени с момента введения первых
стволов до момента ограничения распространения пожара (момент локализации), ее
значение принимается равным 0,5Vл.
В момент выполнения условий локализации Vл = 0.
4 стадия – ликвидация пожара.
tсв = tобн + tсооб + tсб + tсл + tбр
(мин.), где
tсв — время свободного развития пожара на момент прибытия
подразделения;
tобн
— время развития пожара с момента его
возникновения до момента его обнаружения (2 мин. — при наличии АПС или
АУПТ, 2-5 мин. — при наличии круглосуточного дежурства, 5 мин. –
во всех остальных случаях);
tсооб –
время сообщения о пожаре в пожарную охрану (1 мин. – если телефон находится
в помещении дежурного, 2 мин. – если телефон в другом помещении);
tсб
= 1 мин. – время сбора личного
состава по тревоге;
tсл — время следования пожарного подразделения (2 мин.
на 1 км пути);
tбр — время боевого развертывания (3 мин. при подаче 1-го
ствола, 5 мин. в остальных случаях).
2) Определение расстояния R, пройденного фронтом горения, за времяt.
при tсв ≤ 10 мин.: R = 0,5·Vл ·tсв (м);
при tвв > 10 мин.: R = 0,5·Vл ·10
+ Vл ·(tвв — 10)= 5·Vл + Vл·(tвв — 10) (м);
при tвв < t* ≤tлок : R
= 5·Vл + Vл·(tвв — 10) + 0,5·Vл·(t* — tвв) (м).
где tсв – время свободного
развития,
tвв – время на момент
введения первых стволов на тушение,
tлок – время на момент
локализации пожара,
t* — время между моментами локализации пожара и введения первых стволов на тушение.
3) Определение площади пожара.
Площадь пожара Sп – это
площадь проекции зоны горения на горизонтальную или (реже) на вертикальную
плоскость. При горении на нескольких этажах за площадь пожара принимают
суммарную площадь пожара на каждом этаже.
Периметр пожара Рп– это периметр площади пожара.
Фронт пожара Фп – это часть периметра пожара в направлении (направлениях)
распространения горения.
Для определения формы
площади пожара следует вычертить схему объекта в масштабе и от места
возникновения пожара отложить в масштабе величину путиR, пройденного огнем во все возможные стороны.
При этом принято выделять три варианта формы площади пожара:
- круговую (Рис.2);
- угловую (Рис. 3, 4);
- прямоугольную (Рис. 5).
При прогнозировании
развития пожара следует учитывать, что форма площади пожара может меняться.
Так, при достижении фронтом пламени ограждающей конструкции или края площадки,
принято считать, что фронт пожара спрямляется и форма площади пожара изменяется
(Рис. 6).
а) Площадь пожара при круговой форме развития пожара.
Sп = k ·p · R2 (м2),
где
k = 1 – при круговой форме развития пожара (рис. 2),
k = 0,5 – при полукруговой форме развития пожара (рис. 4),
k = 0,25 – при угловой форме развития пожара (рис. 3).
б) Площадь пожара при прямоугольной форме развития пожара.
Sп = n ·b · R (м2),
где n — количество направлений развития пожара,
b – ширина помещения.
в) Площадь пожара при комбинированной форме развития пожара (рис 7)
Sп = S1 + S2 (м2)
4) Определение площади тушения пожара.
Площадь
тушения Sт – это часть площади пожара, на которую осуществляется
эффективное воздействие огнетушащими веществами.
Для практических
расчетов используется параметр, называемый глубиной тушения hт,
который равен для ручных стволов hт = 5 м,
для лафетных hт
= 10 м.
Тушение пожара производят, вводя стволы либо со всех сторон пожара – по периметру пожара (Рис. 8), либо на одном или нескольких направлениях, как правило, по фронту пожара (Рис. 9).
В некоторых случаях пожарные подразделения не могут подать огнетушащее
средство одновременно на всю площадь пожара, например, при недостатке сил и
средств, тогда тушение осуществляется по фронту распространяющегося пожара. При
этом пожар локализуется на решающем направлении, а затем осуществляется процесс
его тушения на других направлениях
а) Площадь тушения пожара по периметру при круговой форме развития пожара.
Sт = k ·p · (R2 – r2) = k ·p··hт· (2·R – hт) (м2),
где r = R — hт
,
hт — глубина тушения
стволов (для ручных стволов – 5м, для
лафетных — 10 м).
б) Площадь тушения пожара по периметру при прямоугольной форме развития пожара.
Sт = 2·hт· (a + b — 2·hт) (м2)- по всему периметру пожара,
где а и b — соответственно длина и ширина фронта пожара.
Sт = n·b·hт (м2)- по фронту распространяющегося пожара,
где b иn – соответственно ширина помещения и количество направлений подачи стволов.
5) Определение требуемого расхода воды на тушение пожара.
Qттр = Sп · Iтр — при Sп ≤Sт (л/с) или Qттр = Sт · Iтр — при Sп >Sт (л/с)
Интенсивность подачи
огнетушащих веществ Iтр
– это количество огнетушащего вещества, подаваемое за единицу времени на
единицу расчетного параметра.
Различают следующие
виды интенсивности:
Линейная
– когда в качестве расчетного принят линейный параметр: например, фронт или
периметр. Единицы измерения – л/с∙м. Линейная интенсивность используется,
например, при определении количества стволов на охлаждение горящих и соседних с
горящим резервуаров с нефтепродуктами.
Поверхностная
– когда в качестве расчетного параметра принята площадь тушения пожара. Единицы
измерения – л/с∙м2. Поверхностная интенсивность используется в
практике пожаротушения наиболее часто, так как для тушения пожаров в
большинстве случаев используется вода, которая тушит пожар по поверхности горящих
материалов.
Объемная
– когда в качестве расчетного параметра принят объем тушения. Единицы измерения
– л/с∙м3. Объемная интенсивность используется, преимущественно, при
объемном тушении пожаров, например, инертными газами.
Требуемая Iтр –
количество огнетушащего вещества, которое необходимо подавать за единицу времени
на единицу расчетного параметра тушения. Определяется требуемая интенсивность
на основе расчетов, экспериментов, статистических данных по результатам тушения
реальных пожаров и т.д.
Фактическая Iф –
количество огнетушащего вещества, которое фактически подано за единицу времени
на единицу расчетного параметра тушения.
6) Определение требуемого количества стволов на тушение.
а) Nтст = Qттр / qтст – по требуемому расходу воды,
б) Nтст = Рп / Рст – по периметру пожара,
Рп – часть периметра, на тушение которого вводятся стволы
Рст = qст / Iтр ∙ hт
– часть периметра пожара, которая тушится одним стволом. Р = 2·p ·L (длина окружности), Р = 2·а + 2·b (прямоугольник)
в) Nтст = n· (m + A) – в складах со стеллажным хранением (рис. 11),
где n — количество направлений развития пожара (ввода
стволов),
m – количество проходов между горящими стеллажами,
A — количество проходов между горящим и соседним негорящим стеллажами.
7) Определение требуемого количества отделений для подачи стволов на тушение.
Nтотд = Nтст / nст отд ,
где nст отд – количество стволов, которое может подать одно отделение.
8) Определение требуемого расхода воды на защиту конструкций.
Qзтр = Sз · Iзтр (л/с),
где Sз – защищаемая площадь
(перекрытия, покрытия, стены, перегородки, оборудование и т.п.),
Iзтр = (0,3-0,5)·Iтр — интенсивность подачи
воды на защиту.
9) Определение требуемого количества стволов на защиту конструкций.
Nзст = Qзтр / qзст ,
Также количество стволов часто определяется без аналитического расчета
из тактических соображений, исходя из мест размещения стволов и количества
защищаемых объектов, например, на каждую ферму по одному лафетному стволу, в
каждое смежное помещение по стволу РС-50.
10) Определение требуемого количества отделений для подачи стволов на защиту конструкций.
Nзотд = Nзст / nст отд
11) Определение требуемого количества отделений для выполнения других работ (эвакуация людей, мат. ценностей, вскрытия и разборки конструкций).
Nлотд = Nл / nл отд , Nмцотд = Nмц / nмц отд , Nвскотд = Sвск / Sвск отд
12) Определение общего требуемого количества отделений.
Nобщотд = Nтст + Nзст + Nлотд + Nмцотд + Nвскотд
На основании полученного результата РТП делает вывод о достаточности привлеченных к тушению пожара сил и средств. Если сил и средств недостаточно, то РТП делает новый расчет на момент прибытия последнего подразделения по следующему повышенному номеру (рангу) пожара.
13) Сравнение фактического расхода воды Qф на тушение, защиту и водоотдачи сети Qвод противопожарного водоснабжения
Qф = Nтст·qтст + Nзст·qзст ≤ Qвод
14) Определение количества АЦ, устанавливаемых на водоисточники для подачи расчетного расхода воды.
На водоисточники устанавливают не всю технику, которая
прибывает на пожар, а такое количество, которое обеспечило бы подачу расчетного
расхода, т.е.
NАЦ = Qтр / 0,8 Qн ,
где Qн —
подача насоса, л/с
Такой оптимальный расход проверяют по принятым схемам боевого
развертывания, с учетом длинны рукавных линий и расчетного количества стволов.
В любом из указанных случаев, если позволяют условия (в частности,
насосно-рукавная система), боевые расчеты прибывающих подразделений должны
использоваться для работы от уже установленных на водоисточники автомобилей.
Это не только обеспечит использование техники на полную мощность, но и
ускорит введение сил и средств на тушение пожара.
В зависимости от обстановки на пожаре требуемый расход огнетушащего вещества определяют на всю площадь пожара или на площадь тушения пожара. На основании полученного результата РТП может сделать вывод о достаточности привлеченных к тушению пожара сил и средств.
Расчет сил и средств для тушения пожаров воздушно-механической пеной на площади (не распространяющиеся пожары или условно приводящиеся к ним).
Исходные данные
для расчета сил и средств:
- площадь пожара;
- интенсивность подачи раствора пенообразователя;
- интенсивность подачи воды на охлаждение;
- расчетное время тушения.
При
пожарах в резервуарных парках за расчетный параметр принимают площадь зеркала
жидкости резервуара или наибольшую возможную площадь разлива ЛВЖ при пожарах на
самолетах.
На
первом этапе боевых действий производят охлаждение горящих и соседних
резервуаров.
1) Требуемое количество стволов на охлаждение горящего резервуара.
Nзгств = Qзгтр / qств = n ∙ π ∙ Dгор∙ Iзгтр / qств, но не
менее 3х стволов,
Iзгтр = 0,8 л/с∙м —
требуемая интенсивность для охлаждения горящего резервуара,
Iзгтр = 1,2 л/с∙м —
требуемая интенсивность для охлаждения горящего резервуара при пожаре в
обваловании,
Охлаждение резервуаров Wрез ≥ 5000 м3 и
более целесообразно осуществлять лафетными стволами.
2) Требуемое количество стволов на охлаждение соседнего не горящего резервуара.
Nзсств = Qзстр / qств = n ∙
0,5 ∙ π ∙ Dсос∙ Iзстр / qств, но не
менее 2х стволов,
Iзстр = 0,3 л/с∙м — требуемая интенсивность для
охлаждения соседнего не горящего резервуара,
n – количество горящих или соседних резервуаров
соответственно,
Dгор,
Dсос —
диаметр горящего или соседнего резервуара соответственно (м),
qств —
производительность одного пожарного ствола (л/с),
Qзгтр, Qзстр –
требуемый расход воды на охлаждение (л/с).
3) Требуемое количество ГПС Nгпс на тушение горящего резервуара.
Nгпс = Sп ∙ Iр-ортр / qр-оргпс (шт.),
Sп — площадь пожара (м2),
Iр-ортр — требуемая интенсивность подачи раствора
пенообразователя на тушение (л/с∙м2). При tвсп ≤ 28 оC Iр-ортр = 0,08 л/с∙м2, при tвсп > 28 оC Iр-ортр = 0,05 л/с∙м2
(см. приложение № 9)
qр-оргпс — производительность ГПС по раствору пенообразователя
(л/с).
4) Требуемое количество пенообразователя Wпо на тушение резервуара.
Wпо = Nгпс ∙ qпогпс ∙ 60 ∙ τр ∙ Кз (л),
τр = 15 минут — расчетное время тушения при подаче ВМП
сверху,
τр = 10 минут — расчетное время тушения при подаче ВМП
под слой горючего,
Кз =
3 — коэффициент запаса (на три пенные атаки),
qпогпс — производительность
ГПС по пенообразователю (л/с).
5) Требуемое количество воды Wвт на тушение резервуара.
Wвт = Nгпс ∙ qвгпс ∙ 60 ∙ τр ∙ Кз (л),
qвгпс —
производительность ГПС по воде (л/с).
6) Требуемое количество воды Wвз на охлаждение резервуаров.
Wвз = Nзств ∙ qств ∙ τр ∙ 3600 (л),
Nзств — общее
количество стволов на охлаждение резервуаров,
qств
— производительность одного пожарного
ствола (л/с),
τр = 6 часов –расчетное время охлаждения наземных
резервуаров от передвижной пожарной техники (СНиП
2.11.03-93),
τр = 3 часа –расчетное время охлаждения подземных
резервуаров от передвижной пожарной техники (СНиП
2.11.03-93).
7) Общее требуемое количество воды на охлаждение и тушение резервуаров.
Wвобщ
= Wвт +
Wвз (л)
8) Ориентировочное время наступления возможного выброса Т нефтепродуктов из горящего резервуара.
T= (H — h) / (W+ u + V) (ч), где
H — начальная высота слоя горючей жидкости
в резервуаре, м;
h — высота слоя донной (подтоварной) воды,
м;
W — линейная скорость прогрева горючей
жидкости, м/ч(табличное значение);
u — линейная скорость выгорания горючей
жидкости, м/ч (табличное значение);
V — линейная скорость понижения уровня
вследствие откачки, м/ч (если откачка не производится, то V= 0).
3.3.
Тушение пожаров в помещениях воздушно-механической пеной по объему.
При пожарах в помещениях иногда прибегают к тушению пожара объемным
способом, т.е. заполняют весь объем
воздушно-механической пеной средней кратности (трюмы кораблей, кабельные
тоннели, подвальные помещения и т.д.).
При подаче ВМП в объем помещения должно быть не менее двух
проемов. Через один проем подают ВМП, а через другой происходит вытеснение дыма
и избыточного давления воздуха, что способствует лучшему продвижению ВМП в
помещении.
1) Определение требуемого количества ГПС для объемного тушения.
Nгпс = Wпом ·Кр /
qгпс ∙tн , где
Wпом – объем помещения (м3);
Кр
= 3 – коэффициент,
учитывающий разрушение и потерю пены;
qгпс
– расход пены из ГПС (м3/мин.);
tн = 10 мин – нормативное
время тушения пожара.
2) Определение требуемого количества пенообразователя Wпо для объемного тушения.
Wпо = Nгпс ∙ qпогпс ∙ 60 ∙ τр ∙
Кз (л),
Периметр пожара
(Рп)
– это длина
внешней границы площади пожара. Данная
величина имеет важное значение для
оценки обстановки на пожарах, развившихся
до крупных размеров, когда сил и средств
для тушения по всей площади в данный
момент времени недостаточно. Периметр
пожара определяется по формуле, в
зависимости от формы площади пожара:
-
круговая: Рп
= 2L,
[м]; -
угловая 180o:
Рп
= L
+ 2L
, [м]; -
угловая 90o:
Рп
= (L)/2
+ 2L
, [м]; -
прямоугольная с
дальнейшим распространением пожара:
Рп
= 2(a+nL)
, [м]; -
прямоугольная
без распространения пожара: Рп
= 2(a+b)
, [м].
2.1.5.Определение фронта пожара.
Фронт пожара
(Фп)
— часть
периметра пожара, в направлении которой
происходит распространение горения.
Данный параметр имеет особое значение
для оценки обстановки на пожаре,
определения решающего направления
боевых действий и расчета сил и средств
на тушение любого пожара. Фронт пожара
определяется по формулам:
-
при круговой форме
пожара :
Фп
= 2L
, [м];
-
при угловой 1800
форме пожара :
Фп
= L
, [м];
-
при угловой 900
форме пожара :
Фп
= (L)/2
, [м];
-
при прямоугольной
форме с дальнейшим распространением
пожара :
Фп
= na
, [м];
-
при прямоугольной
форме без распространения пожара :
Фп
= 0.
2.1.6.Определение скорости роста площади пожара.
Скорость роста
площади пожара (Vs)
определяется по формуле :
Vs
=
,
[м2/мин.],
где:
– время на каждый
расчётный момент, [мин.].
2.1.7.Определение
скорости роста периметра пожара.
Скорость роста
периметра пожара (Vр)
определяется по формуле:
Vр
=
,
[м/мин.] – при круговой и угловой форме
площади пожара;
Vр
=
,
[м/мин.] – для прямоугольной формы
площади пожара;
2.1.8.Определение
скорости роста фронта пожара.
Скорость роста
фронта пожара (Vф)
определяется по формуле :
Vф
=
,
[м/мин.].
2.2.Определение
параметров пожара на момент прибытия
первого подразделения
2.2.1.Определение
времени прибытия первого подразделения.
приб.1=д.с.+сб.+сл.1,
[мин.],
где:
сб.=1
мин. – время сбора личного состава по
тревоге;
сл.1
– время следования первого подразделения
от ПЧ до места вызова, берется из
расписания выездов пожарных подразделений,
также сл.
можно определить по формуле:
сл.=,
[мин.],
где:
L
– длина пути следования подразделения
от пожарного депо до места пожара, [км];
Vсл.
– средняя
скорость движения пожарных автомобилей,
[км/ч] (при расчетах можно принимать: на
широких улицах с твердым покрытием 45
км/ч, а на сложных участках, при интенсивном
движении и грунтовых дорогах 25 км/ч).
2.2.2.Определение пути, пройденного огнём.
Путь, пройденный
огнём на момент прибытия первого
подразделения, определяется по формуле:
L=5Vл+Vл(приб.1-1)
, [м].
2.2.3.Далее расчет
параметров пожара проводится в том же
порядке, как на момент сообщения о пожаре
(с п.9.1.2. по п.9.1.8.).
2.3.Определение
параметров пожара на момент введения
сил и средств первого подразделения.
2.3.1. Определение
времени свободного развития горения.
св.=д.с.+сб.+сл.1+б.р.
, [мин.],
где:
б.р.
– время, затраченное на проведение
боевого развертывания (в пределах 6–8
минут).
2.3.2. Определение
пути, пройденного огнём.
Путь, пройденный
огнём на момент введения сил и средств
первого подразделения, определяется
по формуле:
L=0,5Vл1+Vл
(св.-1)
, [м].
2.3.3. Далее расчет
параметров пожара производится по ранее
описанному порядку (с п.2.1.2. по п.2.1.8.).
3.Расчет сил и
средств для тушения пожара.
Каждый пожар
характеризуется своеобразной обстановкой,
для его тушения требуются различные
огнетушащие средства и разное количество
сил и средств. От правильного их расчёта
зависит успех тушения любого пожара.
3.1.Определение
площади тушения.
Площадь тушения
(Sт)
– это часть площади пожара, которую на
момент локализации обрабатывают
поданными огнетушащими средствами.
В зависимости от
того, каким образом введены силы и
средства, тушение в данный момент времени
может осуществляться с охватом всей
площади пожара или только её части. При
этом расстановка сил и средств, в
зависимости от обстановки на пожаре,
конструктивных особенностей объекта,
производится по всему периметру пожара
или по фронту его локализации. Если в
данный момент сосредоточенные силы и
средства обеспечивают тушение пожара
по всей площади горения, то расчёт их
производится по площади тушения, т.е.
площадь тушения будет численно равна
площади пожара.
Если в данный
момент времени обработка всей площади
пожара огнетушащими средствами не
обеспечивается, то силы и средства
сосредотачиваются по периметру или
фронту локализации или по фронту для
поэтапного тушения. В этом случае расчет
их осуществляется по площади тушения.
Площадь тушения
водой во многом зависит от глубины
обработки горящего участка (глубина
тушения), hт.
[м]. Практикой
установлено, что по условиям тушения
пожаров эффективно используется примерно
третья часть длины струи. Поэтому в
расчётах глубина тушения для ручных
стволов принимается -5 метров, для
лафетных – 10 метров.
Следовательно,
площадь тушения будет численно совпадать
с площадью пожара при её ширине (для
прямоугольной формы),
hт hт
hт
hт
|
диаметре
(для круговой формы)
hт
и радиусе (для
угловой формы),
hт
hт
hт
не
превышающих 10 метров при подаче ручных
стволов, введенных по периметру навстречу
друг другу, и 20 метров – при тушении
лафетными стволами. В остальных случаях
площадь тушения принимается равной
разности общей площади пожара и площади,
которая в данный момент водяными струями
не обрабатывается. В жилых и административных
зданиях с небольшими помещениями расчёт
сил и средств целесообразно проводить
по площади пожара, т.к. их размеры не
превышают глубины тушения стволами.
Ф
hт
ормулы
для определения площади тушения даны
в таблице:
Форма площади |
Значение угла, |
Площадь тушения |
|
по фронту |
по периметру |
||
круговая |
360º Рис. 2 г. |
При Sт |
При
Sт |
угловая |
90º Рис. 2 д. |
При
Sт |
При
Sт |
угловая |
180º Рис. 2 е. |
При
Sт |
При
Sт |
угловая |
270º Рис. 2 ж. |
При
Sт |
При
Sт |
Прямо-угольная |
См. рис. 2 а,б,в. |
При
Sт |
При
Sт |
Примечание.
При значениях «а», «b»
и «L»,
равных и меньше значений, указанных в
таблице, площадь тушения будет
соответствовать площади пожара (Sт
= Sп)
и рассчитывается по формулам, приведенным
в п.9.1.3. данных методических указаний.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Во время пожара распространение огня на объект зависит от многих параметров. В конструкциях движение пламени может быть ограничено строительными конструкциями, блокировочными перегородками, а направлено и усилено за счет горючих материалов, продукции предприятия.
На открытых площадках огонь раздувается ветром в определенном направлении или тушится осадками. Чтобы определить силы и средства, необходимые для ликвидации катастрофы, необходима реальная оценка территории, охваченной пламенем.
Какие параметры анализируются, формулы для их расчета, нормы, на основании которых производится расчет — все это в статье.
Площадь пожара
При тушении пожара оцениваются два значения: площадь распространения и тушение пожара.
Давайте сначала рассмотрим первую особенность.
Что это такое
Зона возгорания определяется проекцией области, охваченной пламенем, на плоскую поверхность. В большинстве случаев используется горизонтальная проекция, но иногда, когда гаснут газовые или нефтяные факелы, используется вертикальная проекция.
При обнаружении нескольких пожаров общий размер рассчитывается как сумма площадей каждой отдельной области.
Схемы и правила определения
Для расчета вся окутанная огнем территория разбивается на простые формы: прямоугольник, круг, треугольник. Затем значения для каждого модуля рассчитываются отдельно, все полученные результаты суммируются.
Формулы
Площадь возгорания определяется как сумма значений для участков простой формы:
S = S1 + S2 +… Sn. Где S — это сумма, а Sn — площадь каждой выбранной геометрии.
Формула расчета для кругового огня:
Scr = π * R2, где π — постоянная, равная 3,14…, R — радиус окружности, охваченной пламенем.
Прямоугольная зона возгорания:
Sпр = a * b, где a, b — стороны прямоугольника.
Для фокусов треугольной формы используйте выражение:
Если контур распространения огня имеет форму углового сектора, площадь возгорания рассчитывается по формуле:
S = α * π * R² / 360 °, где α — значение угла сектора в градусах.
Другие показатели
При проведении мероприятий по локализации и тушению пожара учитываются направление распространения огня, длина сторон участка, охваченного пламенем.
Периметр пожара
Это общая длина внешней границы зоны пожара. Этот параметр имеет решающее значение при крупных катастрофах и ограниченных технических возможностях спасателей.
При недостатке сил и средств противопожарной защиты назначается определяющее направление перекрытия всего периметра и переносятся все измерения на него.
Фронт пожара
Так называется зона переднего огня, движущаяся полоса огня, окружающая зону пожара.
Фронт пожара — это граница между зоной горения и нетронутой зоной.
Форма площади тушения
Площадь, на которую подаются средства пожаротушения, может быть меньше площади пожара (когда пламя охватило большую площадь и тушение проводится на доступной части пожара).
В зависимости от места распространения, конфигурации помещения, внешних воздействий зона тушения пожара имеет разные формы.
Простая
Параметры зоны возгорания могут определять любую конфигурацию очагов пожара. Если на границах зоны четко обозначена геометрическая фигура, площадь для тушения пожара можно рассчитать по формулам для этих фигур.
Кольцевая
Это происходит, когда огонь охватывает большую круглую область. Бочки подачи огнетушащего вещества не могут покрыть всю площадь, а захватить только ее часть.
Чтобы узнать, как определить площадь для тушения пожара, обратимся к формуле:
Skol = Skr — Svn, где S — площадь кольца, на которое подается огнетушитель; Scr — площадь общей зоны фокусировки; Sвн — площадь внутреннего круга, которой не заканчиваются стволы. В этом случае радиус внутреннего круга рассчитывается как разница между общим радиусом воспламенения и значением дальности подачи огнетушащего вещества через форсунки.
Угловая
В этом случае используется тот же принцип, что и для расчета формы кольца.
Рассчитывается общая площадь пожара, затем вычитаются значения зоны, в которую не попали огнетушащие средства. Разница между этими значениями определяет зону пожаротушения. Формула отрезка под углом 90º при тушении по фронту движения огня:
S = 0,25 * π * h * (2R — h), где h — расстояние подачи вещества через бочки.
Если работа ведется по всему периметру, выражение будет выглядеть так:
S = 3,57 * π * h * (2R — h).
Для угла 180 градусов при закалке по фронту берется коэффициент 0,5, а для 270 градусов — 0,75 (вместо 0,25, указанных в первой формуле).
Прямоугольная
В зависимости от расположения бочек тушение пожара может проводиться:
- с одной стороны, тогда определяем площадь пожаротушения по формуле: S = h * a, где h — глубина подачи состава техническими средствами, — длина стороны удара;
- с обеих сторон, например, при пожаре в коридоре: S = 2 * h * a;
- если стороны смежные: S = h * (a + b — h);
- по периметру: S = 2h * (a + b — 2h).
Сложная
В реальных условиях пожары правильной геометрической формы встречаются редко. В таких случаях устанавливаются секции стандартной конфигурации, рассчитывается площадь каждой установленной детали, после чего общая площадь пожаротушения может быть добавлена и рассчитана.
Пример. Пожар произошел в круглой комнате, через дверь вышел в коридор. В этом случае вся территория делится на 2 геометрические фигуры — круг и прямоугольник. Вымирание сначала будет произведено по одной стороне коридора. Формула расчета прямоугольника заданной длины известна. Затем, потушив огонь в коридоре, добираемся до круглой комнаты. Там мы локализируем пожар со всех сторон с помощью переносных и мобильных огнетушителей. В зависимости от геометрии расположения устройств мы вычисляем площадь угасания с помощью выражения для определения круглой или угловой площади.
Нормативная документация
Методы расчета площади пожара и его тушения описаны в Приказе МЧС № 382, который утверждает Методику определения значений пожарного риска.
Выводы
Зона возгорания рассчитывается для принятия решения о направлении необходимых сил и средств на место пожара.
Размер реальной зоны воздействия огнетушащих материалов рассчитывается для определения стоимости вещества, а также для понимания ресурсов и времени, необходимых для полного тушения пожара. Этот параметр называется зоной пожаротушения.
В зависимости от размеров охваченной пламенем площади, помимо стационарных систем пожаротушения, используются мониторы, мобильные установки.
Зона пожара — это характеристика, которая используется для оценки стихийного бедствия, количества рабочей силы и ресурсов, необходимых для тушения пожара.