Как найти ген человека

Генетика — сложная наука, но информация и рассуждения о генах и наследственности окружают нас со всех сторон. Причем звучат они не только от специалистов. Друзья делают генетические тесты, родственники говорят, что у вас могут быть наследственные проблемы со здоровьем, и многое другое.

В этой статье расскажем, как обстоят дела на самом деле.

Содержание

  • Что такое геном
  • Хромосомы и ДНК
  • Нуклеотиды и гены
  • Что «записано» в генах и как их прочитать?
  • Что такое «мусорная ДНК»
  • Чем геном отличается от генотипа
  • Чем геномика отличается от генетики
  • Что показывают генетические тесты
  • Проект «Геном человека»

Что такое геном

Геном — это совокупность всего генетического материала, который находится в клетке человеческого организма и определяет его характеристики.

Каждый геном уникален. Именно он определяет, как будет развиваться тело человека, как он будет расти, какая у него будет внешность и как она будет меняться с возрастом.

В геноме также заложено то, как будут работать клетки, ткани и органы тела.

Разберем, из чего состоит геном и как он «хранится» в клетках.

Frame-48688

Хромосомы и ДНК

Почти во всех клетках нашего тела есть ядра. Их можно сравнить с «командным центром», который дает клеткам указания расти, делиться или умирать.

Именно в ядре находятся хромосомы. Это структуры, в которых сосредоточена большая часть генетической информации. Каждая хромосома представляет собой одну плотно «упакованную» длинную нить ДНК.

В каждой нормальной клетке человека 23 пары хромосом, то есть всего их 46.

Исключение составляют «родительские» клетки — сперматозоид и яйцеклетка. В каждой из них находится половинный набор хромосом, то есть 23.

ДНК (дезоксирибонуклеиновая кислота) — это длинная молекула, которую принято называть «двойной спиралью». Она хранит биологическую информацию, которая «записана» в виде генетического кода.

ДНК — это длинная нить, построенная из нуклеотидов. Гены — отрезки этой нити.

Нуклеотиды и гены

Информация в ДНК записана в виде кода, состоящего из четырех азотистых оснований:

  • аденин (А),
  • гуанин (Г),
  • цитозин (Ц),
  • тимин (Т).

Основания одной цепи соединяются с основаниями другой цепи парами (аденин с тимином, цитозин с гуанином). Каждое основание присоединяется к молекуле сахара и молекуле фосфата — вся эта конструкция называется нуклеотидом.

Посмотрите еще раз на двойную спираль ДНК: ее горизонтальные «ступени» — это и есть пары оснований, а вертикальные боковые части — сахара и фосфаты.

Теперь, когда мы поняли, как устроена двойная цепочка ДНК, настало время поговорить о генах.

Ген — это основная «единица» наследственной информации, и он представляет собой «кусочек» ДНК, то есть некоторое количество нуклеотидов.

Что «записано» в генах и как их прочитать?

У каждого человека есть две копии большинства генов — по одной от отца и от матери. Большинство генов одинаковы для всех людей, но малая часть (около 1%) немного отличаются от человека к человеку.

Именно этот 1% генов отвечает за уникальные физические особенности каждого из нас.

Different

Photo by Ricardo Gomez Angel / Unsplash
Каждый человек обладает 20—25 тысячами генов.

В части генов в виде кода записаны «рецепты» изготовления белков. Именно белки выполняют основные функции для поддержания жизнедеятельности организма: они отвечают за пищеварение, кровообращение, иммунитет, передачу информации между клетками.

Чтобы изготовить белки по записанному в генах коду, специальные соединения, ферменты, «читают» и копируют этот код. В результате получаются длинные одноцепочечные молекулы — РНК (рибонуклеиновые кислоты), но это еще не белок.

РНК лишь несут в себе информацию о первичной структуре белка, поэтому их называют матричными (сокращенно — мРНК). Эти молекулы покидают ядро клетки и ​​перемещаются в ее цитоплазму. Там специальные органы — рибосомы — считывают код мРНК и изготавливают по этому «рецепту» белок.

Что такое «мусорная ДНК»

Лишь около 1% ДНК составляют гены, которые кодируют белки.

Считается, что остальные 98—99% ДНК не несут в себе подобной информации. Поэтому долгое время эту часть ДНК считали бесполезной — отсюда и ее название, «мусорная ДНК».

Однако сейчас известно, что на самом деле она выполняет ряд важных функций. В частности, может «включать» и «выключать» гены, регулируя их активность и, как следствие, выработку белков.

Photo by Zonduurzaam Deventer / Unsplash

Некоторые участки некодирующей ДНК необходимы для нормального процесса синтеза белков. Кроме того, она служит для защиты хромосом — специальные сегменты некодирующей ДНК (теломеры) «закрывают» концы хромосом и предохраняют от разрушения при делении клетки.

Чем геном отличается от генотипа

И геном, и генотип — это совокупность генов организма. Изначально отличие заключалось в масштабе.

Генотип — это совокупность генов одного человека. От генотипа зависят внешние черты — рост, цвет кожи, глаз, тип волос и так далее. Внешние признаки, закодированные в генотипе, называются фенотипом.

Геном — это совокупность всей генетической информации отдельного человека, включая некодирующую и митохондриальную ДНК. Так как отличия между геномами представителей одного и того же вида незначительны, можно также сказать, что

генотип характеризует одну особь, а геном — вид.

Чем геномика отличается от генетики

Изучением ДНК, нуклеотидов и в целом работы генов занимаются геномика и генетика.

Генетика — это наука, которая изучает гены и их вариации, а также процессы наследования генов и изменчивость признаков человека.

Другими словами, генетики изучают, как определенные черты и свойства организма (в том числе и наследственные заболевания) передаются из поколения в поколение, а также как работа разных генов влияет на организм.

A female scientist in a laboratory looks through a microscope.

Photo by National Cancer Institute / Unsplash

Геномика — это более новый термин. Геномика исследует геном, то есть всю совокупность генов организма, в том числе их взаимодействие как друг с другом, так и с окружающей средой.

Геномика включает в себя и изучение заболеваний, но не сугубо генетических, а мультифакторных, — таких, которые вызываются комбинацией генетических факторов и факторов окружающей среды, например, болезней сердца, астмы, диабета, рака.

Геномика предлагает новые возможности терапии и лечения некоторых сложных заболеваний, а также новые методы диагностики.

Что показывают генетические тесты

Сегодня исследовать свою ДНК очень просто — для этого нужно всего лишь сдать кровь или слюну на генетическое исследование. Но генетические тесты бывают разные.

  • Стандартное диагностическое тестирование — используется для подтверждения или исключения определенного генетического заболевания.
  • Тест на наличие наследственных заболеваний — проводят до или во время беременности, чтобы определить риск их появления у ребенка.
  • Генетический скрининг новорожденных — стандартная процедура, которая проводится для выявления ряда наследственных заболеваний.
  • Прогностическое генетическое тестирование — позволяет оценить предрасположенность к развитию ряда заболеваний (например, рака молочной железы) в более позднем возрасте.
  • фармакогенетическое тестирование — показывает, может ли генетика человека влиять на его реакцию на лекарства.

Но и это лишь часть возможностей. Так, с помощью генетического теста можно получить более разнообразную информацию.

Генетический тест Атлас позволяет не только узнать о рисках развития ряда заболеваний, но и, например, получить информацию предрасположенности к непереносимости продуктов, вероятности получения спортивных травм. Кроме того, с помощью теста можно узнать о других генетически обусловленных особенностях организма, выяснить, к каким популяциям относились ваши предки и даже найти дальних родственников.

Frame-48690-1

Проект «Геном человека»

Проект«Геном человека» — самый масштабный международный проект по изучению человеческого генома.

Он стартовал в 1990 году и формально был завершен в 2003 году. Фактически цели проекта были выполнены только в 2022 году.

Главная цель проекта — полная расшифровка человеческого генома — определение последовательности пар оснований, которые составляют ДНК, а также выявление всех генов и определение их функций.

К 2003 году ученые смогли «прочитать» 92% «букв» в ДНК. Тогда пробелы не считались важными. Оставшиеся 151 миллион пар оснований (примерно 8% генома) относились к «мусорной» ДНК.

Photo by vnwayne fan / Unsplash

Однако за прошедшие годы ученые, используя новейшие технологии, смогли прочитать геном до конца. Оказалось, что остававшиеся непрочитанными 8% генома несут в себе важную информацию, благодаря которой исследователи смогут по-новому интерпретировать полученные ранее данные.

Статьи о генетике в блоге Атласа:

  • Что такое эпигенетика
  • Генная терапия
  • Кто такой врач-генетик и чем он может помочь
  • Very Well Health, What Are Genes, DNA, and Chromosomes? 2022
  • Your Genome, What is a genome? 2017
  • Medline Plus, What is DNA? 2021
  • National Human Genome Research Institute, Genome
  • National Human Genome Research Institute, Human Genome Project

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 19 июня 2022 года; проверки требуют 13 правок.

Геном человека — совокупность наследственного материала, заключённого в клетке человека[1]. Согласно этому определению человеческий геном состоит из 23 пар хромосом, находящихся в ядре, а также множества копий митохондриальной ДНК.
Существует и другое определение генома, в котором под геномом подразумевают совокупность генетического материала гаплоидного набора хромосом[2][3].
Когда говорят о размере генома человека, то имеют в виду данный вариант определения генома. Так, двадцать две аутосомы, две половые хромосомы Х и Y, а также митохондриальная ДНК человека содержат вместе 3 099 734 149 пар оснований[4].

В ходе выполнения проекта «Геном человека» была определена последовательность ДНК всех хромосом и митохондриальной ДНК (к 2003 году было секвенировано 85 % генома человека, а полное секвенирование генома человека было завершено лишь в 2022 году[5][6]). Полное секвенирование выявило, что человеческий геном содержит 19 969 активных генов, что составляет лишь очень небольшую часть генома, только 1,5 % всего генетического материала кодирует белки или функциональные РНК[4]. Всего же насчитывается 63 494 генов, большинство из которых являются генами некодирующей РНК, которую часто называют мусорной ДНК[7], но которая, как оказалось, играет важную роль в регуляции активности генов[8][9].
В настоящее время эти данные активно используются по всему миру в биомедицинских исследованиях.

Особенности[править | править код]

Хромосомы[править | править код]

Геном человека состоит из 23 пар хромосом (всего 46 хромосом). Каждая хромосома содержит сотни генов, разделённых межгенным пространством. Межгенное пространство содержит регуляторные участки и ничего не кодирующую ДНК.

В геноме присутствует 23 пары хромосом: 22 пары аутосомных хромосом, а также пара половых хромосом X и Y. У человека мужской пол является гетерогаметным и определяется наличием Y-хромосомы. Нормальные диплоидные соматические клетки имеют 46 хромосом[10][11].

Гены[править | править код]

Предварительные оценки предполагали наличие в геноме человека более 100 тысяч генов. По результатам проекта «Геном человека» количество генов, а точнее открытых рамок считывания, составило около 23 000 генов. В связи с усовершенствованием методов поиска (предсказания) генов предполагается дальнейшее уменьшение числа генов.

Число генов у человека лишь ненамного больше, чем у более простых организмов, например, круглого червя Caenorhabditis elegans или мухи Drosophila melanogaster. Так происходит из-за того, что в человеческом геноме широко представлен альтернативный сплайсинг. Альтернативный сплайсинг позволяет получить несколько различных белковых цепочек с одного гена. В результате человеческий протеом оказывается значительно больше протеома рассмотренных организмов. Большинство человеческих генов имеют множественные экзоны, и интроны часто оказываются значительно более длинными, чем граничные экзоны в гене.

Гены неравномерно распределены по хромосомам. Каждая хромосома содержит богатые и бедные генами участки. Эти участки коррелируют с хромосомными бендами (полосы поперёк хромосомы, которые видно в микроскоп) и с CG-богатыми участками. В настоящий момент значимость такого неравномерного распределения генов не вполне изучена.

Кроме генов, кодирующих белки, человеческий геном содержит тысячи РНК-генов, кодирующих транспортные РНК (tRNA), рибосомные РНК, микроРНК и прочие РНК, не кодирующие белок.

Регуляторные последовательности[править | править код]

В человеческом геноме найдено множество различных последовательностей, отвечающих за регуляцию генов. Под регуляцией понимается контроль экспрессии гена (процесс построения матричной РНК по участку молекулы ДНК). Обычно это короткие последовательности, находящиеся либо рядом с геном, либо внутри гена. Иногда они находятся на значительном расстоянии от гена (энхансеры). Систематизация этих последовательностей, понимание механизмов работы, а также вопросы взаимной регуляции группы генов группой соответствующих ферментов на текущий момент находятся только на начальной стадии изучения. Взаимная регуляция групп генов описывается с помощью сетей регуляции генов. Изучение этих вопросов находится на стыке нескольких дисциплин: прикладной математики, высокопроизводительных вычислений и молекулярной биологии. Знания появляются из сравнений геномов различных организмов и благодаря достижениям в области организации искусственной транскрипции гена в лабораторных условиях.

Идентификация регуляторных последовательностей в человеческом геноме частично была произведена на основе эволюционной консервативности (свойства сохранения важных фрагментов хромосомной последовательности, которые отвечают примерно одной и той же функции). Согласно данным молекулярных часов, эволюционные линии человека и мыши разделились около 100 миллионов лет назад[12]. Для двух геномов компьютерными методами были выявлены консервативные последовательности (последовательности, идентичные или очень слабо отличающиеся в сравниваемых геномах) в некодирующей части и оказалось, что они активно участвуют в механизмах регуляции генов у обоих организмов[13].

Другой подход получения регуляторных последовательностей основан на сравнении генов человека и рыбы фугу. Последовательности генов и регуляторные последовательности у человека и рыбы фугу существенно схожи, однако геном рыбы фугу содержит в 8 раз меньший объём «мусорной ДНК». Такая «компактность» рыбьего генома позволяет значительно легче искать регуляторные последовательности для генов[14].

Прочие объекты в геноме[править | править код]

Кодирующие белок последовательности (множество последовательностей составляющих экзоны) составляют менее чем 1,5 % генома[7]. Не учитывая известные регуляторные последовательности, в человеческом геноме содержится масса объектов, которые выглядят как нечто важное, но функция которых, если она вообще существует, пока не выяснена. Эти объекты занимают до 97 % всего объёма человеческого генома. К таким объектам относятся:

  • повторы
    • тандемные повторы
      • сателлитная ДНК
      • минисателлиты
      • микросателлиты
    • диспергированные повторы
      • SINEs (short interspersed nuclear elements)
      • LINEs (long interspersed nuclear elements)
  • транспозоны
    • ретротранспозоны
      • LTR-ы (long terminal repeat)
        • Ty1-copia
        • Ty3-gypsy
      • Не-LTR-ы
    • ДНК-транспозоны
  • псевдогены

Соответствующие последовательности, скорее всего, являются эволюционным артефактом. В современной версии генома их функция выключена, и эти участки генома многие называют мусорной ДНК. Однако есть масса свидетельств в пользу того, что эти объекты обладают некоторой функцией, которая пока неясна.

Псевдогены[править | править код]

Эксперименты с ДНК-микрочипами показали, что много участков генома, не являющихся генами, вовлечены в процесс транскрипции[15].

Вирусы[править | править код]

Около 1 % в геноме человека занимают встроенные гены ретровирусов (эндогенные ретровирусы). Эти гены обычно не приносят пользы хозяину, но существуют и исключения. Так, около 43 млн лет назад в геном предков обезьян и человека попали ретровирусные гены, служившие для построения оболочки вируса. У человека и обезьян эти гены участвуют в работе плаценты[16]. Большинство ретровирусов встроились в геном предков человека свыше 25 млн лет назад. Среди более молодых человеческих эндогенных ретровирусов полезных на настоящий момент не обнаружено[17][18].

Состав[править | править код]

Азотистые основания в ДНК (аденин, тимин, гуанин, цитозин) соответствуют 4 различным логическим состояниям, что эквивалентно 2 битам информации[19]. Таким образом, геном человека содержит более 6 гигабит информации в каждой цепи, что эквивалентно 800 мегабайтам и сопоставимо с количеством информации на компакт-диске[20]. Логика хранения данных в парных основаниях аналогична системе репликации (дублирования) данных RAID 1.

См. также[править | править код]

  • Пангеном

Примечания[править | править код]

  1. Talking glossary of genetic terms: genome (англ.). National Human Genome Research Institute. Дата обращения: 1 ноября 2012. Архивировано 4 ноября 2012 года.
  2. A Dictionary of genetics (англ.) / R.C. King, W.D. Stansfield, P.K. Mulligan. — 7th. — Oxford University Press, 2006. — ISBN 13978-0-19-530762-7.
  3. Генетика: энциклопедический словарь / Картель Н. А., Макеева Е. Н., Мезенко А. М.. — Минск: Тэхналогія, 1999. — 448 с.
  4. 1 2 GRCh38.p14. ncbi. Genome Reference Consortium (3 февраля 2022). Дата обращения: 1 апреля 2022. Архивировано 1 апреля 2022 года.
  5. Учредитель: Некоммерческое партнерство «Международное партнерство распространения научных знаний» Адрес: 119234, г Москва, ГСП-1, Ленинские горы, МГУ, Д. 1. Ученые полностью расшифровали геном человека. «Научная Россия» – электронное периодическое издание. Дата обращения: 29 октября 2022. Архивировано 13 мая 2022 года.
  6. Матвеева, Т. Ученые полностью расшифровали геном человека. Научная Россия (1 апреля 2022). Дата обращения: 5 апреля 2022. Архивировано 13 мая 2022 года.
  7. 1 2 International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. (англ.) // Nature. — 2001. — Vol. 409, no. 6822. — P. 860—921. — doi:10.1038/35057062. — PMID 11237011.
  8. «Мусорная» ДНК помогает включать гены. Дата обращения: 24 ноября 2018. Архивировано 24 ноября 2018 года.
  9. «Мусорная» ДНК играет важнейшую роль в поддержании целостности генома. Дата обращения: 24 ноября 2018. Архивировано 25 ноября 2018 года.
  10. Tjio J. H., Levan A. The chromosome number of man (англ.) // Hereditas  (англ.) (рус.. — 1956. — Vol. 42. — P. 1—6. — doi:10.1111/j.1601-5223.1956.tb03010.x. — PMID 345813. Первая работа с точно установленным числом хромосом у человека.
  11. Human Chromosome Number Архивная копия от 3 ноября 2020 на Wayback Machine, здесь рассказана история подсчёта хромосом у человека
  12. Nei M., Xu P., Glazko G. Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms. (англ.) // Proceedings of the National Academy of Sciences of the United States of America. — 2001. — Vol. 98, no. 5. — P. 2497—2502. — doi:10.1073/pnas.051611498. — PMID 11226267. Архивировано 15 июня 2008 года.
  13. Loots G., Locksley R., Blankespoor C., Wang Z., Miller W., Rubin E., Frazer K. Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. (англ.) // Science. — 2000. — Vol. 288, no. 5463. — P. 136—140. — doi:10.1126/science.288.5463.136. — PMID 10753117.
    Summary Архивная копия от 6 ноября 2009 на Wayback Machine

  14. Meunier, Monique Genoscope and Whitehead announce a high sequence coverage of the Tetraodon nigroviridis genome (англ.). Genoscope. Дата обращения: 12 сентября 2006. Архивировано из оригинала 20 августа 2002 года.

  15. Claverie J. Fewer genes, more noncoding RNA. (англ.) // Science. — 2005. — Vol. 309, no. 5740. — P. 1529—1530. — doi:10.1126/science.1116800. — PMID 16141064.
  16. Предки человека заимствовали полезные гены у вирусов. Дата обращения: 19 сентября 2017. Архивировано 20 сентября 2017 года.
  17. Eugene D. Sverdlov. Retroviruses and primate evolution // BioEssays. — Vol. 22, № 2. — P. 161—171. — doi:10.1002/(SICI)1521-1878(200002)22:2<161::AID-BIES7>3.0.CO;2-X. — PMID 10655035.
  18. Anders L Kjeldbjerg, Palle Villesen, Lars Aagaard, Finn Skou Pedersen. Gene conversion and purifying selection of a placenta-specific ERV-V envelope gene during simian evolution // BMC Evolutionary Biology. — 2008. — Vol. 8. — P. 266. — doi:10.1186/1471-2148-8-266. — PMID 18826608.
  19. Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М.: Издательство стандартов, 1990. — С. 25. — 240 с. — ISBN 5-7050-0118-5.
  20. How much information does human DNA store? – Quora

Литература[править | править код]

  • Тарантул В. З. Геном человека. Энциклопедия, написанная четырьмя буквами. — Языки славянской культуры, 2003. — 396 с. — ISBN 5-94457-108-X.
  • Ридли Мэтт. Геном: автобиография вида в 23 главах. — М.: Эксмо, 2008. — 432 с. — ISBN 5-699-30682-4
  • Миролюбова С.Ю. ГЕНЕТИЧЕСКИЙ ПАСПОРТ, ГЕНЕТИЧЕСКИЙ ПРОФИЛЬ НАСЕЛЕНИЯ И ГЕНОФОНД НАРОДОВ В СФЕРЕ ОБЕСПЕЧЕНИЯ НАЦИОНАЛЬНОЙ БЕЗОПАСНОСТИ РОССИЙСКОЙ ФЕДЕРАЦИИ // Вестник Сургутского государственного университета. 2022-07-07. вып. 2 (36). С. 70–80. ISSN 2312-3419. — doi:10.34822/2312-3419-2022-2-70-80

Ссылки[править | править код]

  • Всеобщая декларация о геноме человека и правах человека ЮНЕСКО, 1997
  • Lindblad-Toh K. et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. (англ.) // Nature. — 2005. — Vol. 438, no. 7069. — P. 803—819. — doi:10.1038/nature04338. — PMID 16341006.
  • The National Office of Public Health Genomics (англ.)

Генетические нарушения у человека и методы их выявления

Генами называются участки ДНК, в которых закодирована структура всех белков в теле человека или любого другого живого организма. В биологии действует правило: «один ген – один белок», то есть в каждом гене содержится информация только об одном определенном белке.

В 1990 году большая группа ученых из разных стран начала проект под названием «Геном человека». Он завершился в 2003 году и помог установить, что человеческий геном содержит 20–25 тысяч генов. Каждый ген представлен двумя копиями, которые кодируют один и тот же белок, но могут немного различаться. Большинство генов одинаковые у всех людей – различается всего 1%.

ДНК находится в клетке внутри ядра. Она особым образом организована в виде хромосом – эти нитеподобные структуры можно рассмотреть в микроскоп с достаточно большим увеличением. Внутри хромосомы ДНК намотана на белки – гистоны. Когда гены неактивны, они расположены очень компактно, а во время считывания генетического материала молекула ДНК расплетается.

В клетках человека есть структуры, которые называются митохондриями. Они выполняют роль «электростанций» и отвечают за дыхание. Это единственные клеточные органеллы, у которых есть собственная ДНК. И в ней тоже могут возникать нарушения.

Весь набор хромосом в клетке называется кариотипом. В норме у человека он представлен 23 парами хромосом, всего их 46. Выделяют два вида хромосом:

  • 22 пары аутосом одинаковы у мужчин и женщин. В каждой паре хромосомы имеют одинаковую длину и содержат одинаковые наборы генов.
  • Одна пара половых хромосом. У женщин это две X-хромосомы. Одна из них неактивна и плотно свернута – ее называют тельцем Барра. У мужчин одна половая хромосома представлена X-хромосомой, а вторая – Y-хромосомой, она меньше по размерам.

Методы исследования хромосом

Для исследования кариотипа применяют специальный метод – световую микроскопию дифференциально окрашенных метафазных хромосом культивированных лимфоцитов периферической крови.

Этот анализ применяется для диагностики различных хромосомных заболеваний. Он позволяет выявлять такие нарушения, как:

  • Грубые изменения в кариотипе – изменение количества хромосом. Например, при синдроме Дауна в клетках ребенка присутствует лишняя хромосома №21.
  • Присутствие в организме клеток с разными кариотипами. Это явление называется мозаицизмом.
  • Хромосомные аберрации – нарушение структуры хромосом, внутрихромосомные и межхромосомные перестройки. Сюда относятся делеции (утрата участка хромосомы), дупликации (удвоение участка хромосомы), инверсии (поворот участка хромосомы на 180 градусов), транслокации (перенос участка одной хромосомы в другую).

Однако с помощью исследования кариотипа можно выявить не все генетические нарушения. Оно не способно обнаружить такие изменения, как:

  • микроделеции и микродупликации, когда утрачивается или дублируется очень маленький участок хромосомы;
  • болезни обмена, вызванные нарушением последовательности «букв» генетического кода в отдельных генах;
  • митохондриальные заболевания, связанные с нарушениями в генетическом материале митохондрий;
  • низкопроцентный мозаицизм, когда клеток с неправильным кариотипом очень мало;
  • мутации в отдельных генах, которые не приводят к изменению внешнего вида хромосом;
  • эпигенетические расстройства, при которых структура хромосом и генов не меняется, но изменяется их функция.


Для получения дополнительной информации, не видимой в световой микроскоп, используют хромосомный микроматричный анализ (ХМА). С его помощью можно изучить все клинически значимые участки генома и выявить изменения в количестве и структуре хромосом, а именно микрополомки (микроделеции и микродупликации).

Во время хромосомного микроматричного анализа применяют технологию полногеномной амплификации и гибридизации фрагментов опытной ДНК с олигонуклеотидами, нанесенными на микроматрицу. Если объяснять простыми словами, то сначала ДНК, которую необходимо изучить, копируют, чтобы увеличить ее количество, а затем смешивают ее со специальными ДНК-микрочипами, которые помогают выявлять различные нарушения.

Эта методика позволяет в одном исследовании выявлять делеции и дупликации участков ДНК по всему геному. Разрешающая способность стандартного ХМА от 100 000 пар нуклеотидов – «букв» генетического кода (в отдельных регионах от 10 000 п. н.).

С помощью ХМА можно выявлять:

  • изменения числа хромосом;
  • дупликации и делеции, в том числе микродупликации и микроделеции;
  • отсутствие гетерозиготности – утрату одной из двух копий гена. Это явление имеет важное значение в онкологии, при болезнях импринтинга (когда активность гена зависит от того, от какого из родителей он получен), аутосомно-рецессивных заболеваниях (связанных с рецессивными генами – о них мы поговорим ниже), близкородственных браках;
  • однородительские дисомии, когда в геноме ребенка присутствуют две хромосомы от одного родителя.

Однако, как и предыдущий метод, хромосомный микроматричный анализ имеет некоторые ограничения. Он не позволяет выявлять или ограничен в выявлении таких аномалий, как:

  • сбалансированные хромосомные аномалии, когда в хромосомах происходят изменения, которые не приводят к добавлению или утрате генетического материала. К ним относятся инверсии (разворот участка хромосомы на 180 градусов), реципрокные транслокации (обмен участками между хромосомами), небольшие инсерции (вставки в хромосомах);
  • мозаицизм, если клеток с нарушениями в кариотипе менее 15%;
  • CNV (copy number variation) – повторы небольших участков генома;
  • точечные мутации – замены отдельных «букв» генетического кода;
  • экспансия (увеличение) повторов коротких участков в ДНК;
  • аномалии метилирования – присоединения особых метильных групп к определенным участкам ДНК, которые меняют активность генов.

Мутации в генах и заболевания, к которым они способны приводить

Мутации – это изменения, которые происходят в ДНК как случайным образом, так и под действием разных факторов, например химических веществ, ионизирующих излучений. Они могут затрагивать как отдельные «буквы» генетического кода, так и большие участки генома. Мутации происходят постоянно, и это основной двигатель эволюции. Чаще всего они бывают нейтральными, то есть ни на что не влияют, не приносят ни вреда, ни пользы. В редких случаях встречаются полезные мутации – они дают организму некоторые преимущества. Также встречаются вредные мутации – из-за них нарушается работа важных белков, наоборот, происходят достаточно часто. Генетические изменения, которые происходят более чем у 1% людей, называются полиморфизмами – это нормальная, естественная изменчивость ДНК Полиморфизмы ответственны за множество нормальных отличий между людьми, таких как цвет глаз, волос и группа крови.

Все внешние признаки и особенности работы организма, которые человек получает от родителей, передаются с помощью генов. Это важнейшее свойство всех живых организмов называется наследственностью. В зависимости от того, как проявляются гены в тех или иных признаках, их делят на две большие группы.

  • Доминантные гены. Выражаясь простым языком, эти гены более «сильные». Если в клетках присутствует хотя бы одна копия такого гена, его признаки проявятся.
  • Рецессивные гены «слабее» доминантных. Если у человека одна копия гена доминантная и одна рецессивная, – проявится признак доминантной. А для проявления рецессивного признака нужно две соответствующих копий.

Например, карий цвет глаз у человека является доминантным. Поэтому у кареглазых родителей с высокой вероятностью родится кареглазый ребенок. Если у одного из родителей глаза карие, а у другого голубые, то вероятность рождения кареглазых детей в такой семье тоже высока. У двух голубоглазых родителей, скорее всего, все дети тоже будут голубоглазыми. А вот у кареглазых родителей может родиться ребенок с голубыми глазами, если у обоих есть рецессивные «гены голубоглазости», и они достанутся ребенку. Конечно, это упрощенная схема, потому что за цвет глаз отвечает не один, а несколько генов, но на практике эти законы наследования зачастую работают. Аналогичным образом потомству могут передаваться и наследственные заболевания.

Как выявляют рецессивные мутации?

Для выявления мутаций, которые передаются рецессивно, используют целый ряд исследований.

Секвенирование по Сэнгеру – метод секвенирования (определения последовательности нуклеотидов, буквально – «прочтение» генетического кода) ДНК, также известен как метод обрыва цепи. Анализ используется для подтверждения выявленных мутаций. Это лучший метод для идентификации коротких тандемных повторов и секвенирования отдельных генов. Метод может обрабатывать только относительно короткие последовательности ДНК (до 300–1000 пар оснований) одновременно. Однако самым большим недостатком этого метода является большое количество времени, которое требуется для его проведения.

Если неизвестно, какую нужно выявить мутацию, то используют специальные панели.

Панель исследования — тестирование на наличие определенных мутаций, входящих в перечень конкретной панели исследования. Анализ позволяет выявить одномоментно разные мутации, которые могут приводить к генетическим заболеваниям. Анализ позволяет компоновать мутации в панели по частоте встречаемости (скрининговые панели, направленные на выявление носительства патологической мутации, часто встречаемой в данном регионе или в определенной замкнутой популяции) и по поражаемому органу или системе органов (панель «Патология соединительной ткани»). Но и у этого анализа есть ограничения. Анализ не позволяет выявить хромосомные аберрации, мозаицизм и мутации, не включенные в панель, митохондриальные заболевания, а также эпигенетические нарушения.

Не в каждой семье можно отследить все возможные рецессивные заболевания. Тогда на помощь приходит секвенирование экзома – тест для определения генетических повреждений (мутаций) в ДНК путем исследования в одном тесте практически всех областей генома, кодирующих белки, изменения которых являются причиной наследственных болезней.

Секвенирование следующего поколения-NGS – определение последовательности нуклеотидов в геномной ДНК или в совокупности информационных РНК (транскриптоме) путем амплификации (копирования) множества коротких участков генов. Это разнообразие генных фрагментов в итоге покрывает всю совокупность целевых генов или, при необходимости, весь геном.

Анализ позволяет выявить точечные мутации, вставки, делеции, инверсии и перестановки в экзоме. Анализ не позволяет выявить большие перестройки; мутации с изменением числа копий (CNV); мутации, вовлеченные в трехаллельное наследование; мутации митохондриального генома; эпигенетические эффекты; большие тринуклеотидные повторы; рецессивные мутации, связанные с Х-хромосомой, у женщин при заболеваниях, связанных с неравномерной Х-деактивацией, фенокопии и однородительские дисомии, и гены, имеющие близкие по структуре псевдогены, могут не распознаваться.

Что делать, если в семье есть наследственное заболевание?

Существуют два способа выявить наследственные генетические мутации у эмбриона:

Предимплантационное генетическое тестирование (ПГТ) в цикле ЭКО. Это диагностика генетических заболеваний у эмбриона человека перед имплантацией в слизистую оболочку матки, то есть до начала беременности. Обычно для анализа проводится биопсия одного бластомера (клетки зародыша) у эмбриона на стадии дробления (4–10 бластомеров). Существует несколько видов ПГТ: на хромосомные отклонения, на моногенные заболевания и на структурные хромосомные перестройки. Данные Simon с соавторами (2018) говорят о том, что в случае проведения ЭКО с ПГТ у пациентки 38–40 лет результативность ЭКО составляет 60%. Но при исследовании эмбриона есть ряд ограничений. Так, из-за ограниченного числа клеток можно не определить мозаицизм.

Если нет возможности провести ЭКО с ПГТ, то используют второй вариант – исследование плодного материала во время беременности.

Для забора плодного материала используют инвазивные методы:

  • биопсия хориона – когда берут клетки из плаценты;
  • амниоцентез – когда берут клетки амниотической жидкости.

Далее эти клетки исследуют при помощи одного или нескольких генетических тестов (которые имеют свои ограничения). Проведение инвазивных методов может быть связано с риском для беременности порядка 1%.

Таким образом, проведя дополнительные исследования, можно значительно снизить риск рождения ребенка с генетическим заболеванием в конкретной семье. Но привести этот риск к нулю на сегодняшний день, к сожалению, невозможно, так как любой генетический тест имеет ряд ограничений, что делает невозможным исключить абсолютно все генетические болезни.

Пелина Ангелина Георгиевна
Автор статьи

Пелина Ангелина Георгиевна

Врач-генетик

Ведёт генетическое обследование доноров Репробанка, осуществляет подбор доноров для пар, имеющих ранее рождённых детей с установленной генетической патологией.

+7 (499) 653-66-09

[email protected]

Записаться на консультацию

Еще несколько лет назад мы и не слышали о ДНК-тестах, которые были бы доступны каждому. А сегодня они настолько распространены, что даже вошли в хит-парад новогодних подарков, правда, пока что не в России, а в США. А еще все чаще стали появляться сообщения об ошибках и курьезных случаях, вызванных анализом ДНК обычных людей. MedAboutMe рассказывает, зачем делают такие тесты, и что важно знать, прежде чем отправить свою пробирку в одну из компаний.

Братья и сестры: как искать родственников?

Основное различие компаний – а их на рынке уже немало – это базы данных. Чем больше у компании клиентов из определенного региона, тем больше локальной информации. Так что, заказав тестирование, например, в самой известной 23andMe, вы, вероятно, найдете родственников далеко за пределами России. Потому что база содержит максимум данных ДНК по Северной Америке и Канаде. Если в вашей семье нет истории эмиграции, то эти родственники могут оказаться очень дальними, например, пятиюродными, или будут совсем не родственниками. Хотя встречаются и интересные находки.

Москвич Павел Федоров поделился в соцсетях неожиданной радостью: после ДНК-теста у него нашлась сестра.

У Натальи, живущей в Сан-Франциско, 25% результатов совпали с анализом Павла. Она могла бы быть Павлу тетей или племянницей, но, судя по семейной истории и отчеству, у нее тот же отец. А еще тоже близорукость, любовь к серому и собакам хаски. Практически сюжет для индийского фильма: брат нашел сестру!

Чтобы действительно найти родственников, у компании должна быть наработана объёмная база, причем желательно в нужной стране или хотя бы на этом же континенте. Иначе вам предоставят несколько регионов, где могли бы жить ваши предки и где сейчас проживают л

Москвич Павел Федоров поделился в соцсетях неожиданной радостью: после ДНК-теста у него нашлась сестра.

У Натальи, живущей в Сан-Франциско, 25% результатов совпали с анализом Павла. Она могла бы быть Павлу тетей или племянницей, но, судя по семейной истории и отчеству, у нее тот же отец. А еще тоже близорукость, любовь к серому и собакам хаски. Практически сюжет для индийского фильма: брат нашел сестру!

49520136.jpg” height=”667″ title=”Как работают эти тесты?”>

В потребительских наборах обычно есть инструкции, пробирка и… в общем-то, все. Надо собрать образец слюны и отправить его по почте. 

Из слюны потом выделят ДНК. Но оценивать весь геном не будут. Вместо этого в лабораториях оценивают однонуклеотидные полиморфизмы, single nucleotide polymorphisms или SNPs. Эти SNPs – последовательности ДНК, отличающиеся всего на один нуклеотид, и являются базой для анализа. У всех людей 99,9% ДНК идентичны. Неидентичные остатки в 0,1% ДНК отличают нас от соседа и делают конкретного человека уникальным. Чем выше уровень родства, тем меньше отличающихся друг от друга участков. 

Измеряют длину SNPs в сантиморганах. В одном сантиморгане примерно миллион пар оснований.
Чем теснее родственные связи, тем сантиморганов больше. У детей и родителей их обычно около 3 500, у сиблингов – 2 500. Чем дальше родство, тем меньше общих сегментов, хотя могут быть и исключения.

Затем эти выделенные SNPs сравниваются с имеющимися в базе данных. Большинство результатов основаны на SNPs, присутствующих в конкретных группах или статистически связанных с какими-то изменениями в организме.

Например, если результаты показывают, что вы на 42% – азиат, это значит, что 42% SNPs, скорее всего, были идентичны образцам данных компании с надписью «Юго-Восточная Азия». То же самое касается черт характера и состояния здоровья. И это – первая причина проблем с тестами. В отношении здоровья они еще менее точны, чем в определении родственных связей.

Чем ДНК-тесты отличаются от клинических

Чем ДНК-тесты отличаются от клинических

Компаний, предоставляющих информацию только о родственников, все меньше. Практически каждый тест на рынке можно сделать комбинированным: не только узнать о предках, но и получить данные о предрасположенности к заболеваниям, а также о вероятности наличия определенных черт внешности и даже характера. Есть даже наборы, претендующие на оценку спортивного потенциала или совместимости с партнером. То есть, плюнув в пробирку, можно узнать, каких болезней опасаться, на какие рекорды можно рассчитывать и стоит ли надеяться на долгую и счастливую жизнь с партнером. Так ли это?

Популярные генетические тесты не могут стать заменой клинической оценки. Используемые методы резко отличаются от тех, которые используются для диагностики генетических заболеваний.

В клинических условиях, когда есть подозрение на генетическое заболевание, в основном исследуются целые гены. Именно те, про которые известно, как мутации в данном участке вызывают клеточные изменения, способные спровоцировать болезнь. Кроме того, клиническая диагностика включает генетическое консультирование, которое часто является ключом к пониманию результатов.

Результаты популярных генетических тестов часто являются просто статистикой. И хотя она в какой-то мере может указывать на риск нарушений и его последствия, но, как правило, в очень незначительной степени.

Пользователи могут интерпретировать результат как положительный, хотя увеличение риска является минимальным или полностью ложным. Эти тесты также могут дать ложную уверенность, потому что в их процессе не секвенируется ДНК полностью, то есть могут быть пропущены потенциально опасные варианты.

Более того, согласно последним новостям от канадских ученых из University of Alberta, влияние генетической предрасположенности на появление большинства распространенных заболеваний преувеличено. То есть, предварительная оценка риска болезней по ДНК практически никому не поможет.

Вероятность развития распространенных болезней, которые многие связывают с «наследственностью», составляет около 5%. Такие данные получены о сахарном диабете, болезни Альцгеймера, многих видах онкологии и иных патологиях.

Многие заболевания вообще зависят не от генетики, а от образа жизни. Исключения есть, хотя они довольно редки. В их число входят: болезнь Крона, целиакия (непереносимость глютена), возрастная дегенерация желтого пятна. В их развитии роль генетической предрасположенности составляет до 50%.

Тест на ДНК: мифы и правда

Тест на ДНК: мифы и правда

Итак, прежде чем плюнуть в трубочку, стоит остановиться и подумать.

Популярные ДНК-тесты очень интересны: они знакомят вас с генетикой и заставляют задуматься о своем здоровье. Они также помогают создавать обширные генетические базы данных, на основе которых будут проводиться медицинские исследования.

Но есть также важные моменты, которые следует учитывать.

Последние исследования ставят под сомнение точность таких тестов: есть сообщения о том, как идентичные близнецы получали разные результаты. Кроме того, малое разнообразие в базах данных вызывает сомнения в точности результатов для жителей других континентов или этнических меньшинств. Так что, если уж выбирать компанию для теста, то российскую.

Британский медицинский журнал предлагает задать себе важные вопросы, прежде чем решиться на тестирование.

  • Первый – зачем вам нужен этот ДНК-тест? Если хочется побольше узнать о здоровье, то лучше пройти диспансеризацию и посоветоваться с врачами. Эти тесты предназначены скорее для развлечения, чем для диагностики и получения точных данных. Они могут как стать причиной необоснованных тревог, так и дать ложные надежды.
  • Второй – готовы ли вы к результатам, которые могут оказаться не вполне приятными? Уже есть немало случаев выявления не самого приятного родства или его отсутствия: когда отец оказывался не отцом, ребёнок – усыновленным, а в округе набиралось несколько совсем чужих, но генетически родных людей.

Важно также учитывать вопросы безопасности и конфиденциальности. Всегда надо читать мелкий шрифт в договоре и думать, удобно ли вам делиться личной информацией сейчас и в будущем.

В настоящее время такое генетическое тестирование не регулируется законодательством большинства стран. И то, как контролируются результаты исследований и их распространение, тоже неизвестно. Так, Пентагон уже высказал рекомендации военным США не прибегать к подобному тестированию из-за возможной утечки информации и потенциальной вероятности шантажа.

Наконец, вероятно, стоит обсудить анализ ДНК с родственниками. Генетические результаты влияют не только на нас, но и на нашу семью, на взаимоотношения с родней, как ближней, так и дальней. И это вопрос не только усыновления или внебрачных связей, но и здоровья: кому-то даже 5% вероятности рака помешают крепко спать и действительно станут причиной новых заболеваний.

Британский медицинский журнал предлагает задать себе важные вопросы, прежде чем решиться на тестирование.

  • Первый – зачем вам нужен этот ДНК-тест? Если хочется побольше узнать о здоровье, то лучше пройти диспансеризацию и посоветоваться с врачами. Эти тесты предназначены скорее для развлечения, чем для диагностики и получения точных данных. Они могут как стать причиной необоснованных тревог, так и дать ложные надежды.
  • Второй – готовы ли вы к результатам, которые могут оказаться не вполне приятными? Уже есть немало случаев выявления не самого приятного родства или его отсутствия: когда отец оказывался не отцом, ребёнок – усыновленным, а в округе набиралось несколько совсем чужих, но генетически родных людей.

Assessing the performance of genome-wide association studies for predicting disease risk / J. Patron, A. Serra-Cayuela, B. Han, et al. // PLoS One 2019 Dec 5 14(12)

Direct-to-consumer genetic testing: is the public ready for simple, at-home DNA tests to detect disease risk? / Bates M. // IEEE Pulse 2018 Nov-Dec 9(6)

Conversations Surrounding the Use of DNA Tests in the Family Reunification of Migrants Separated at the United States-Mexico Border in 2018. / Wagner JK, Madden D, Oray V, et al. // Front Genet 2019 Dec 13 10

Каждый организм можно сравнить с компьютером, система которого запрограммирована определенным образом. И лишь зная исходный код, реально повлиять на работу этой системы. ДНК — тот самый код, который хранит всю информацию о каждом из нас. 

Какие болезни вам грозят? Какой вид спорта будет самым подходящим? По какой причине не удается выносить ребенка? И почему те или иные таблетки не оказывают на вас никакого эффекта? О том, что можно узнать благодаря ДНК-тесту, рассказывает главный научный сотрудник лаборатории генетики человека Института генетики и цитологии НАН Беларуси Ирма Борисовна Моссэ.

Ирма Борисовна Моссэ
доктор биологических наук, профессор,
главный научный сотрудник лаборатории генетики человека
Института генетики и цитологии НАН Беларуси


Что такое генетический код?


В ядрах клеток находятся хромосомы, у человека их 46 (23 пары): 23 хромосомы мы получаем от мамы, 23 — от папы. 

Основная часть хромосомы — это молекула ДНК (дезоксирибонуклеиновая кислота), в которой закодирована вся информация об организме. ДНК состоит из генов, а гены — из сложных биологических веществ (нуклеотидов), которые и являются знаками генетического кода. 

Нуклеотидов всего 4, они обозначаются буквами: А, С, Т, G. Это начальные буквы от названий нуклеотидов: аденин, цитозин, тимин и гуанин. Но из этих четырех букв можно составить миллиарды комбинаций! Именно поэтому все люди на Земле уникальны (кроме однояйцевых близнецов: их генотип идентичен). 

Разные гены или комбинации генов отвечают за разные свойства организма. Одни ответственны за цвет глаз, структуру и цвет волос, кожи. В других закодирована информация о здоровье человека. В третьих содержатся данные о психоэмоциональных особенностях и так далее.


Что такое ДНК-тест?


— Это генетический анализ наследственного материала, который позволяет определить наличие тех или иных вариантов генов у человека и их влияние на организм. 


Какой материал подходит для изучения?


— ДНК можно выделить практически из любого биологического материала: волос (при наличии волосяной луковицы), кусочек ногтя, ушная сера, кровь, сперма и так далее. 

Чаще всего анализируется буккальный эпителий. Его собирают специальной ватной палочкой со внутренней стороны щеки. Это быстро и, конечно, совершенно не больно.  

— Криминалисты используют в своей работе также остатки кожи под ногтями, следы кожного жира и пота… Даже если человек просто попил воды и на стакане остались остатки его слюны, или он надкусил яблоко, провести ДНК-тест с помощью этих материалов вполне реально. 

Если ДНК-тест сделан правильно, достоверность информации составляет 100%. Важно, чтобы лаборатория была аккредитована, чтобы в ней регулярно проводились международные проверки, чтобы сотрудники были квалифицированными. 

Давайте перечислим, какие тайны о человеке
может открыть ДНК-тест.


Предрасположенность к заболеваниям


— В принципе, можно определить эту вероятность касательно совершенно любых заболеваний. Но чаще всего запрашивают:

  • предрасположенность к сердечно-сосудистым заболеваниям;
  • предрасположенность к эндокринным заболеваниям;
  • предрасположенность к костно-мышечным заболеваниям. 

Почему это полезно знать всем? Надо понимать: предрасположенность далеко не всегда = болезнь. Это лишь определенная степень риска. Зная о вероятности конкретной болезни, можно, не дожидаясь первых признаков недомогания, предотвратить саму возможность возникновения этой патологии при помощи правильного образа жизни, питания, специальных препаратов и так далее. То есть вполне реально опередить саму болезнь и не дать ей развиться. 

В иных случаях такая экспертиза необходима для того, чтобы поставить более точный диагноз и выявить причину, которая так хорошо замаскирована, что другие методы диагностики просто бессильны, а также правильно назначить лечение.


Причины бесплодия и невынашивания беременности


Этих причин очень много, но генетические среди них — одни из самых серьезных. 

Часто бывают случаи, когда женщина абсолютно здорова, ей удается забеременеть, но, к сожалению, она каждый раз теряет ребенка. Это может продолжаться 6-8 раз подряд и даже более. Вы представляете, какая это трагедия для женщины и какой вред для организма? Далеко не всегда врачи могут дать объяснение данному процессу, и тогда генетика становится последней надеждой. 

Иногда таких женщин к нам направляют клиники, иногда они приходят по собственному желанию. И я считаю, что это правильное решение. Не стоит откладывать, если был даже один выкидыш. Лучше проверить генетические риски и получить генетический паспорт. Даже при планировании первой беременности имеет смысл выяснить, нет ли необходимости принять профилактические меры для сохранения ребенка.

Простой наглядный пример — тромбофилия —  патологическое состояние, характеризующееся нарушением системы свертываемости крови, при котором увеличивается риск развития тромбоза. 

При беременности в принципе повышается риск тромбообразования — это естественный процесс, но если у женщины существует еще и предрасположенность к тромбообразованию (а при этом все анализы до беременностии могут быть в норме), возникают тромбы в плаценте, они закупоривают пуповину. Тогда плод не получает ни кислорода, ни питательных веществ, что в свою очередь приводит к замершей беременности или к выкидышу. 

Если же врачи узнают из генетического паспорта о предрасположенности женщины к невынашиванию беременности, за ней ведется особое наблюдение и при необходимости назначается лечение. Например, применяются препараты, разжижающие кровь. 

В 2018 году был проведен опрос среди 1000 женщин, которые ранее обратились в лабораторию из-за проблем с беременностью. Оказалось, что благодаря ДНК-тестам около 85% этих женщин после соответствующего лечения благополучно родили здоровых малышей. Среди них нашлись и те, у которых на свет появились двойни. Хотя когда-то эти женщины совсем потеряли надежду иметь хотя бы одного ребенка. 

В 2020 году был проведен аналогичный, но более подробный опрос. Среди вопросов был и такой: «Как вы считаете, нужно ли женщине делать генетический паспорт (документ, в котором отражены генетические особенности человека) еще до беременности?». Итог удивляет — 99% опрошенных женщин ответили утвердительно. Удачными родами благодаря тестам и лечению окончилась беременность у 85,2% женщин!

Раньше по результатам ДНК-исследования предрасположенности к невынашиванию беременности можно было определить только примерный уровень риска: низкий, средний или высокий. Сейчас разработана количественная система, которая позволяет дать максимально точную оценку ситуации. Анализируются 25 основных генов тех систем организма, которые отвечают за процесс развития беременности и, кроме того, оценивается эффект их взаимодействия. Это дает возможность определить, во сколько раз повышен (если повышен) риск потери беременности. Для врачей такие данные очень информативны, особенно перед процедурой ЭКО. 

— Крайне важно сегодня сохранить именно первую беременность. Пока непонятно, с чем связана эта тенденция, но мировая статистика показывает: современные женщины благополучно рожают первенца, а вот забеременеть или выносить ребенка второй раз им очень трудно. Возможно, природа так старается решить проблему перенаселения планеты.  


Подходящие типы физической нагрузки и виды спорта


— Для выяснения этого вопроса анализируются гены выносливости и скоростно-силовые гены. По итогу о человеке мы будем знать:

  • есть ли у него гены спортивного таланта;
  • он спринтер или стайер;
  • одиночка или командный игрок;
  • может ли он стать чемпионом;
  • какие у него имеются неблагоприятные для спорта гены;
  • что с высокой долей вероятности будет мешать ему в достижении лучших результатов. 

— К примеру, существует ген, при наличии которого крайне нежелательно заниматься видами спорта, которые сопряжены с возможной травмой головы (гандбол, бокс и другие). У носителей этого гена велик риск серьезных  черепно-мозговых травм. От генов зависит также и эффективность восстановления после них.

Может ли человек достичь успехов в спорте, если у него нет к этому генетической предрасположенности? Чудеса в мире, конечно, случаются, но лучше все же, чтобы родители не заставляли ребенка стремиться к спортивным пьедесталам, если у него нет способностей и ему это не интересно. Ведь всегда нам нравится делать именно то, к чему у нас есть предрасположенность, потому что нам это легко дается. 

Возможна и обратная ситуация. Даже если у вашего чада в наличии все генетические показатели, которые предрекают спортивный талант, но душа у него к этому не лежит, заставляй, не заставляй, чемпионом такой малыш не станет. Нужно еще и честолюбие,  трудолюбие и упорство. 

Генетика помогает разобраться и в проблемах с весом. Для этого изучаются гены углеводно-жирового обмена и гены пищевого поведения. Они дают информацию о том:

  • как быстро человек насыщается;
  • есть ли у него склонность к ожирению;
  • можно ли ему употреблять протеиновые коктейли и специальные пищевые добавки для спорта;
  • какие виды спорта для человека самые подходящие, чтобы он максимально эффективно сбрасывал вес. 

Уровень интеллекта


— Базовый IQ развивается обычно до 7-8 лет. Далее изменить его трудно. Можно тренировать отдельные способности: улучшать память, внимание, решать задачки, но поднять одновременно все показатели почти невозможно. Полезно проверять уровень IQ еще до поступления ребенка в школу, чтобы знать, на что делать упор. Сейчас специалисты нацелены на изучение генетических механизмов интеллекта.

А вот что все еще определить действительно сложно, так это таланты человека. За них не отвечает какой-то один ген, это комбинация очень многих генов, сотые доли от каждого и вот он — талант! Пока эта область генетики плохо изучена.

— Стоит понимать, что уровень интеллекта никак не влияет на характер. Например, тип темперамента (меланхолик, флегматик, сангвиник или холерик) — это врожденная особенность. И как детей ни воспитывай, из холерика флегматика не сделаешь, хотя некоторые черты все же подвластны изменениям.   


Предрасположенность к зависимостям


Генетический тест помогает выявить склонность к алкоголизму, наркомании, курению. Мало кто знает, что возможно определить даже склонность к суициду и к агрессивному поведению.  

И все же, как я уже говорила, предрасположенность — это лишь определенный риск, но ни в коем случае не факт. Допустим у человека предрасположенность к алкогольной зависимости, а он живет на острове, где алкоголя попросту нет. Как предрасположенности проявиться? Или человек с детства знает эту информацию и принципиально не пьет, потому что у него сильная воля и высокая сознательность, соответствующее воспитание, хороший пример в семье. Все. Гены себя не проявят. Как можно предупредить развитие болезни, так же можно не допустить проявление алкоголизма.

Предупрежден, значит, вооружен! Очень многих проблем в жизни можно было бы избежать, если бы у каждого человека при рождении был генетический паспорт, так как это — руководство к действию.


Непереносимость некоторых лекарств


— В медицине есть определенная схема лечения для каждой болезни. И назначаются примерно одни и те же лекарства. Большинству людей они будут подходить, но всегда найдутся пациенты, организм которых не чувствителен к конкретному препарату или для которых тот же препарат просто-напросто опасен.

Фармакогенетика во многом разъясняет этот вопрос. ДНК-тест может подсказать, как организм реагирует на то или иное лекарство. Благодаря этой методике можно правильно скорректировать схему лечения, увеличив или уменьшив дозу определенного препарата или вовсе заменив его на аналог. 

В таких ситуациях лабораторные исследования спасают людям жизнь. Иногда нам поступают запросы от врачей, но сегодня любой человек может сам прийти и сдать такой ДНК-тест, чтобы проверить чувствительность к препаратам, например, при:

  • сердечно-сосудистых заболеваниях;
  • эндокринных заболеваниях;
  • костно-мышечных заболеваниях;
  • диабете

и так далее.

Если вы отчаялись найти причину какой-то проблемы, не спешите расстраиваться. Генетика — довольно молодая наука, но ее возможности поражают! Вскоре специалисты научатся исключать опасные гены, заменять их на более подходящие. Возможно, это случится даже раньше, чем нам кажется, но многие ответы реально получить уже сейчас. И самое важное, что точность этих ответов очень высока.   

Фото: Дмитрий Рыщук и Александр Задорин

Добавить комментарий