Чаще всего необходимость найти границы земельного участка возникает либо у собственника земли – чтобы оградить участок, либо у покупателя или арендатора – в целях проверки предлагаемого участка. Причины могут быть разные.
Если у вас возникла необходимость узнать, где фактически расположены границы нужного участка и сверить их с имеющимися координатами – тогда эта статья для вас.
Как узнать где находиться участок
Часто мы сталкиваемся, с тем что нам необходимо узнать где находиться участок, и тут надо понимать, а что мы имеем, какими данными мы обладаем. Чаще всего такая ситуация возникает при желании купить участок. Нам показывают землю но мы не знаем точно, купим ли мы тот участок который нам показали. Самое достоверное на сегодняшний день это кадастровый номер участка. Имея кадастровый номер земли мы можем проверить его местоположение, т.е. фактически узнать где находиться участок, а так же ещё ряд информации по нему. Подробнее читайте в статье ниже.
Кратко о том, что такое границы, поворотные точки и координаты
Границы земельного участка определяются при помощи геодезического оборудования. Каждой точке соответствует своя координата, которая вычисляется путем измерений на местности и последующей обработки данных прибора.
Так, все поворотные точки земельного участка, будь их 4, 5 или 10 имеют свое цифровое обозначение и содержатся в выписке ЕГРН.
Для того, чтобы быстро узнать, где находятся границы нужного участка по координатам – надо заказать услугу: «Вынос границ в натуру» – данная услуга оказывается геодезическими и кадастровыми компаниями за плату.
Рассмотрим несколько способов поиска границ участка по координатам самостоятельно, при помощи имеющихся подручных данных и средств.
Координаты из выписки ЕГРН х и у
Если заказать расширенную выписку ЕГРН на земельный участок, то в разделе 3.2 выписки мы увидим сведения о характерных точках границ земельного участка в виде набора цифр.
Координаты в ЕГРН содержатся в местной системе (на нашем примере – система координат – Московская).
Можно ли найти границы участка самостоятельно, зная эти координаты и как это сделать?
Как найти участок по координатам x y на карте
Если у Вас есть данные из местной системы координат, то скорее всего вы их получили из выписки, а значит у вас есть кадастровый номер земельного участка. По кадастровому номеру легко определить, где именно находится участок – его лишь надо вбить в поисковик публичной кадастровой карты и вы увидите не только месторасположение ЗУ, но и его описание (адрес, категория земель, кадастровая стоимость, площадь и т.д.)
Но, если у вас есть только координаты – тогда дело обстоит сложнее.
Чтобы найти участок по координатам Х, У следует их перевести в географические координаты. Для этого есть масса бесплатных и платных сервисов пересчета координат из одной системы в другую на просторах интернета.
Однако имейте ввиду, что пересчет (особенно бесплатный) будет приблизительным и данные таких координат могут иметь размах плюс минус пара-тройка метров, а то, итого больше.
Если же у вас есть кадастровый номер участка, то вы можете найти его географические координаты на той же публичке – подробную инструкцию о том, как это сделать мы писали в отдельной статье.
Если кратко – наведите курсор на угол интересующего земельного участка и кликните мышкой – поисковик отразит географические координаты. См. фото ниже.
Как самостоятельно определить координаты земельного участка на местности
Предположим, вам известно местонахождение участка, но неизвестны его фактические границы. Вы воспользовались поиском участка на карте и знаете его географические координаты – осталось только данные со спутника сориентировать на местность с учетом месторасположения близлежащих построек. Проще всего вбить координаты в свой гаджет и воспользоваться поиском встроенного навигатора.
Как с помощью смартфона определить координаты земельного участка
Все мы давно пользуемся GPS навигацией. Однако, стоит понимать, что телефоны работают по упрощенной системе и не всегда отражают местность так как она есть в действительности. Наверняка вы сталкивались хоть однажды с тем, что навигатор периодически «тупит» и теряется в дороге. Тоже самое происходит и тогда, когда вы пытаетесь на местности найти нужную координату.
В телефонах для повышения точности используются, как правило сотовые вышки, по факту это приводит к погрешности в несколько метров. Конечно, если участок измеряется десятками гектар, тогда это отклонение мизерное, но если вы хотите узнать площадь или границы участка 5-6 соток, тогда разница по факту будет колоссальной.
Если вы все же решили использовать телефон и с помощью него определить координаты – тогда воспользуйтесь программой навигации – сохраните или запишите географические координаты каждой точки на местности, а затем при помощи этих координат найдите местонахождение участка на публичной кадастровой карте и убедитесь – совпадают ли фактические границы с границами карты.
Заключение
Найти границы участка по координатам самостоятельно возможно. Однако они будут неточными и не годятся для официальной документации. Наверняка, с развитием информационных систем доступ к точному определению координат будет не только у геодезистов, которые используют в работе дорогостоящие приборы, но и у простых граждан.
На сегодняшний момент, чтобы найти соответствие месторасположения земельного участка его координатам на бумаге, надо вызывать геодезиста и оплатить его труд. Тогда данные о границах и точках будут точными и достоверными, с минимальной погрешностью.
Обновлено: 19.05.2023
Тема геодезии и выполнения геодезических работ достаточна популярна в современное время. Нам поступает много вопросов по поводу того как именно происходит геодезическая съемка и с помощью какого оборудования.
В данной статье, мы попробуем раскрыть основные понятия, связанные с проведением геодезических работ.
1. Что такое геодезия? Основные понятия и задачи.
Геодезия – наука об измерении земли. Данные, полученные при геодезических и топографических исследованиях используют для создания точных карт и планов, при проектировании строительства промышленных и гражданских объектов недвижимости, для создания навигационных систем и во многих других сферах.
Благодаря возможностям геодезии можно точно измерить расстояние между зданиями, определить, где проходят границы населенных пунктов, муниципальных образований, административных границ между районами и областями, государственных границ между странами.
Специалист, выполняющие такие работы – геодезист. Он выполняет топографо-геодезические, изыскательские, разбивочные, проектировочные работы. На данный момент, это профессия является одной из самых востребованных в России.
Основная задача геодезиста: вычисление координат характерных точек местности. Специалист в этой области производит геодезическую или топографическую съемку, в зависимости от поставленной задачи. После этого производит обработку результатов измерений, анализирует полученные данные и составляет топографический план или карту.
2. Виды съемки или зачем нужны геодезисты?
Итак, поговори поподробнее о том, какие же работы включает в себя геодезия?
Разбивочные работы. Данный вид работ проводится с целью выноса проектных точек границ участка в натуру. Иными словами, если известен кадастровый номер земельного участка, в Едином государственном реестре недвижимости (далее – ЕГРН) внесены координаты его границ, а на местности нет никаких ограждений, вынос границ в натуру позволит определить, где проходит реальная граница земельного участка.
Непосредственной основой служит внутренняя сеть, которая создается на каждом новом горизонте. Пункты сети закрепляются различными знаками окраской с метками на ровной плоскости, дюбелями в бетонной поверхности или кернением центров (перекрестий) на металлических закладных.
Исполнительная съемка. По мере строительства зданий, чтобы обеспечить их высотное и плановое положение относительно установленных конструкций, производят геодезические работы, называемые исполнительной съемкой. В этом задействуются те части и элементы здания, от расположения которых во многом зависит устойчивость и прочность всего здания. Точность в данном случае должна соответствовать точности предыдущих разбивочных работ.
Цель исполнительной съемки – определить точность вынесения проекта в натуру и выявить все отклонения от проекта, допущенные в процессе строительства. Это достигается путем определения фактических координат характерных точек построенных зданий и сооружений.
Именно исполнительная съемка позволяет проверить точность совпадения с проектом, именно она подтверждает соответствие возведенного здания или сооружения строительным нормам и правилам (СНиП) и только по результатам исполнительной съемки можно действительно определить качество проведенного строительства. Безусловно, исполнительная съемка проводится в период завершения строительства, т.е. до сдачи объекта в эксплуатацию.
Исполнительная съемка позволяет проконтролировать результаты строительства и выявить все отклонения от проекта. Для этого, одновременно со съемкой, экспертом-геодезистом ведется журнал отступлений от заданного проекта, в котором отмечаются отклонения возведенного здания или сооружения от проекта.
Документальный материал, получаемый в процессе геодезических работ, используется при проектировании фасадов и остекления зданий, контроле точности, подсчетах объемов выполненных строительных работ. Исполнительные схемы составляются на основании требований действующих нормативных документов, а также с учетом требований органов государственного надзора, авторского надзора проектной организации, а также технадзора заказчика. Правила оформления исполнительных чертежей отражены в ГOСТ и СНиП.
Инженерно-геодезические изыскания – вид геодезических работ, в ходе которых проводятся съемка и изучение рельефа на необходимой территории, объектов существующей застройки, дорожного строительства и других элементов планировки. Основной целью изысканий является получение материалов топографических съемок.
Топографо-геодезические работы. Производится съемка различных масштабов, обновление и создание топографических карт, фотосъемка, планировка надземных и подземных сооружений.
Топографическая съемка (топосъемка) – это комплекс геодезических работ, которые выполняются на местности, цель которых – составление карт и планов. Различают топосъемки для составления топографических карт и планов крупных масштабов (1:500, 1:1000, 1:2000, 1:5000) и съемки для мелких масштабов (1:10 000, 1:25 000 и мельче).
Топографическая съемка земельного участка – совокупность геодезических работ по определению границ и высот земельного участка, а также всех подземных и наземных коммуникаций и объектов в пределах данного земельного участка. Местоположение границ земельного участка, и коммуникаций устанавливается посредством определения координат и высот характерных точек границ специальным оборудованием: GPS-приемниками и тахеометром, трассоискателем.
Целью топографической съёмки земельного участка – является создание топографических карт или планов местности различных масштабов, с подробным указанием располагающихся на них объектов и коммуникаций в зависимости от технического задания. На топографической карте с помощью условных знаков отображается: рельеф местности, растительность, границы зданий и сооружений, подземные и надземные коммуникации.
Кадастровые геодезические работы, геодезические работы, куда входит составление кадастрового плана территории, определение площади участка, межевание земли, определение границ и вынос в натуру. Местоположение границ земельного участка устанавливается инженером-геодезистом посредством определения координат характерных точек таких границ специальным оборудованием: GPS-приемниками и тахеометром.
Цель кадастровой съемки земельного участка – внесение в ЕГРН сведений о земельном участке и его характеристиках. На основании результатов кадастровой съемки (векторных данных) подготавливается межевой план, который необходимо подать в органы кадастрового учета.
Топографическая съемка с воздуха. Современные методы геодезии и развитие технологий, позволили упростить процедуру топографической съемки. Сегодня на помощь геодезистам пришли квадрокопторы.
Топосъемка с квадрокоптера востребована, в первую очередь, для создания 3D модели местности, ортофотопланов и матрицы высот.
Аэросъемка – самый эффективный, быстрый и недорогой метод, при использовании именно квадрокоптера. При этом, изображение, получаемое с дрона, намного качественнее, чем аналогичное – со спутника.
Однако, к технике применяются особые требования, ведь неизменным в геодезии остается только необходимость максимальной точности.
1. Квадрокоптер должен проводить длительный полет без подзарядки, поэтому особые требования предъявляются к аккамулятору.
2. Камера должна быть с максимальным разрешением, для обеспечения уровня качества снимков.
3. Квадрокоптер должен обладать достаточной мощностью приема-передачи сигнала. Это необходимо, чтобы дрон смог подняться на необходимую для съемки высоту.
При помощи аэросъемки квадрокоптером можно получить: видео-записи и снимки местности, а также:
• ортофотоплан;
• 3D-модель;
• топоплан.
Оборудование геодезиста.
Перед геодезистом стоит непростая задача: определить местоположение участка, измерить расстояние, возможно, высоту и угол наклона, например, холма.
Отдельно затронем лучшее профессиональное оборудование, которое используют специалисты, чтобы сделать свою работу максимально эффективно.
1) Тахеометр – это универсальный прибор для проведения геодезических работ. Он электронно-оптический. Измеряет длину, разницу высот и горизонтальные углы.
2) Нивелир – более простой прибор. Им можно лишь контролировать высоту, уровень и вертикальность поверхностей, то есть превышения между объектами. Бывают нивелиры электронные, оптические, лазерные, с автоустановкой и прочие.
4) Штатив. Основная задача геодезического штатива – фиксация прибора, который на него устанавливается. От обычных штативов, используемых для фото и видеосъемки, штатив кадастрового инженера отличается тем, что более массивен и обладает высокой прочностью. При эксплуатации на штатив сначала ставится трегер- специальное устройство для центрирования над определенной точкой при необходимости и горизонтирования прибора. И уже на него крепется прибор-тахеометр.
5) Вешка. Выглядит как круглая палка. Вешки могут быть от 1.8 м. до 6 м. в длину. Наверху может находиться как отражатель, так и GPS приемник. Отражатель может быть разной формы и конструкции. Главная его задача- отражать сигнал, посланный дальномером. Его особенностью является то, что луч/сигнал, приходящий с прибора-измерителя отражается точно обратно.
В конечном итоге, там где находится отражатель или приемник на геодезической вешке происходит определение местоположения измеряемой точки.
6) Лазерная рулетка. Лазерная рулетка заменила стальную, исключив человеческий фактор и ошибки в замерах расстояний свыше 50 м (длиннее металлической рулетки просто нет). Теперь лазерная рулетка является необходимым инструментом для проведения замеров внутри помещения. Незаменима при проведении технической инвентаризации зданий.
7) Трубо-кабелеискатель. Часто возникают ситуации, когда инженеру-геодезисту необходимо определить где на данном участке находятся подземные коммуникации.
Часть коммуникаций обычно находится на поверхности и называется видимой частью. Именно сюда устанавливается генератор вибраций. Геодезист проходит над предполагаемым местом расположения подземных коммуникаций с приемником. При помощи него, геодезист фиксирует поворотные точки коммуникаций и наносит на топографический план. Глубину залегания коммуникации при помощи такого метода можно определить с точностью до 0,05 м.
3. Как проходит геодезическая съемка?
Геодезист получает техническое задание, в котором, помимо деталей поставленной задачи, указан кадастровый номер участка и его возможные координаты. После этого, он выезжает на местность, имея при себе необходимое оборудование.
Это метод, при котором, плановые координаты и высоты точек местности определяются с помощью спутниковой системы навигации, посредством получения поправок с базовой станции.
Чтобы правильно определить координаты установленной базы, используется не менее трех пунктов сети, расположенных друг от друга на расстоянии примерно 30 км. Количество пунктов закреплено на законодательном уровне.
Данные полученные с трех пунктов, заносятся в компьютер, который, после обработки, выдаст точные координаты расположения базовой станции, которая, в свою очередь, связывается со спутниками для определения точных координат. Полученный прибором спутниковый сигнал обрабатывается программным обеспечением, после чего на базовую станцию передается дифференциальная поправка, уточняющая спутниковый сигнал.
Вторым необходимым прибором при такой съемке является ровер – передвижной приемник GPS. Он используется для определения координат с точностью до 1 см. на расстояниях до 30 км от базового приёмника.
Приемник также связывается со спутником и, параллельно, с базовой станцией, посредством сотовой связи. Благодаря такому методу видно погрешность, которая будет учитываться при дальнейшем использовании полученных данных.
Отсняв все необходимые точки на местности, их координаты фиксируются в специальном журнале. Помимо этого, геодезист готовит абрис на местности – это схематически составленный чертеж, который отображает объекты, необходимые для составления топографического плана.
Результаты работ передаются кадастровому инженеру, который, в зависимости от поставленной задачи подготовит межевой план и карта(план) территории.
4. Государственная геодезическая сеть.
Для облегчения выполнения геодезических и картографических работ на территории России была создана государственная геодезическая сеть.
Рассмотрим подробнее, что же она собой представляет? Это сеть специально обозначенных точек земной поверхности, для каждой из которых определены координаты.
Сеть формировалась таким образом, чтобы точки внутри нее были расположены в виде геометрических фигур – чаще всего треугольников. Но также встречаются образуемые точками четырёхугольники и ломанные линии. Расстояние между ними всегда можно измерить и/или вычислить.
Каждая такая точка на местности – это геодезический пункт. На местности он закреплен путём возведения специального сооружения.
Существует три группы пунктов:
1) Плановые (определены координаты в плоскости);
2) Высотные (указана высота над уровнем моря);
3) Планово-высотные.
Геодезический знак — наземное сооружение, которое расположено на геодезическом пункте. Как правило, он нужен для установки геодезического прибора. Иногда на нем расположена площадка для работы специалиста.
Геодезический знак может быть деревянным, каменным, железобетонным или металлическим.
Лица, выполняющие геодезические и картографические работы, в ходе которых выявляются случаи повреждения или уничтожения пунктов государственной геодезической сети обязаны уведомлять федеральный орган исполнительной власти, уполномоченный на оказание государственных услуг в сфере геодезии и картографии, обо всех таких случаях, в Оренбургской области – это Территориальное Управлении Росреестра.
Сведения о пунктах ГГС возможно получить на сайте Росреестра. В электронной системе поиска материалов федерального фонда пространственных данных.
5. Точность измерений
Каждый геодезический инструмент будь то тахеометр или нивелир имеет свои характеристики, которые обеспечивают определенную точность измерений. Определенная погрешность возникает не только в зависимости от используемого оборудования и мастерства геодезиста, но и от погрешности, с которым установлен пункт ГГС.
Точность показывают программы, которые поставляются с GPS оборудованием. Геодезисты видят координаты, которые получили от каждого пункта и погрешность по каждому из них.
1. Средние погрешности в плановом положении изображений предметов и контуров с четкими очертаниями не должны превышать 0.25 м.
2. Средние погрешности в плановом положении скрытых точек подземных сооружений, определенных с помощью трубокабелеискателей не должны превышать 0.35 м.
3. Средние погрешности в высотном положении предметов не должны превышать 0.2 м.
Существуют следующие категории земель:
1. Земли городов и поселков- 0.1 м.
2. Земли сельских населенных пунктов; земли пригородной зоны-0.2 м.
3. Земли сельскохозяйственного назначения: земли особо охраняемых территорий и другие земли землевладений и землепользований-2.5 м.
4. Земли лесного фонда, земли водного фонда, земли запаса и другие земли-2.5 м.
Часто можно услышать о том, что на точность результатов геодезической съемки негативно влияют:
-плохие погодные условия (осадки, ветер, туман)
-наличие технических средств, порождающих вибрации (соседство с железными дорогами, метро, гидроэлектростанциями и др.)
-зимнее время, когда температура держится около нуля градусов.
Мир заключает в себе немалое количество естественных и математических наук. Для таких наук, учёными создана система обозначения местоположения. Другими словами, точным наукам просто жизненно необходимы обозначения, которые могли бы понимать все люди, а не только учёные, занимающиеся развитием науки.
Имеются координаты обозначающие точки на плоскости и в воздухе. Геодезические координаты важны при проведении расчётов и вычислений, связанных с землепользованием. Как правило, их проводят узкоспециализированные сотрудники кадастра.
Координата
Координатой называется точка, обозначающая территориальное нахождение кого-либо или чего-либо в пространстве. Современная наука использует буквенные и цифровые обозначения для иллюстрирования объекта на плоскости.
Поскольку система обозначения используется в большинстве точных наук, соответственно значения в различных науках остаются неизменными для удобства понимания. Система обозначения была придумана учёными деятелями для решения большинства практических и теоретических задач.
Система координат создана уже давно, сотни лет назад. Но современный, научный вид приобрела лишь недавно. Как говорилось ранее, система координат используется большинством современных наук. Однако в геодезии координаты занимают почти главенствующую роль. Это происходит потому, что вся работа геодезиста начинается с обозначения местоположений группой координат.
Расположение используются в:
- Математике, геометрии (для построения графиков и функций).
- Артиллерии.
- Картографии (для обозначения объектов на карте).
- Космонавтике.
- Воздухоплавании.
- Судоходстве, а также абстрактных и точных науках.
Таким образом, наглядно можно убедиться в том, что специфика применения обозначения координат многообразна.
Определение координат, как правило, осуществляется лишь на двух осях пространства. Способность определять максимально точное местонахождение объекта требует включения третьей оси – высот. Объект определяется не в плоскости, а в пространстве.
Местоположение в геодезии
Геодезический метод определения координат заключается в обозначении точек на поверхности планеты Земля. Каждая точка обладает тремя значения, расчёты каждого значения производятся в индивидуальном порядке.
Геодезические системы координат имеют следующие пространственные факторы, которые влияют на работу геодезиста:
- географические;
- полярные;
- прямоугольные;
- Гусса-Крюгера.
Геодезист в процессе работы обязан использовать данные, полагаясь на все тонкости этих факторов. Каждый из этих факторов имеет свои уникальные формулы вычисления, которые помогают определить точное местонахождение объекта в пространстве.
Если работники пренебрегут этими факторами, полученные данные будут являться неверными.
Геодезические обозначения
Земной эллипсоид — это фигура для подсчёта геодезических координат. Фигура представляет точную модель планеты Земля.
Необходимость использования земного эллипсоида заключается в том, что общеизвестная фигура земного шара является математически неверной. Земля имеет форму не шара, а эллипсоида. Если бы учёные проводили свои исследования, руководствуясь тем, что формой земли является шар, все методы исследования планеты и космоса были бы в корне неверными.
Учёные определяют геодезические месторасположения, учитывая следующие критерии:
Как правило, используются все три величины.
Может возникнуть вопрос: для чего необходимы три величины. Измерение положения объекта в пространстве осуществляется благодаря подсчётам совокупности широты, долготы и высоты. Эти показатели указывают точное местонахождение точки.
Координаты в географии
Для продуктивной работы над тяжёлыми геодезическими задачами следует различать геодезические и географические координаты.
- использование различных геометрических форм, применяемых в качестве идеальной формы Земли;
- разное понимание высоты, долготы и широты.
Но, несмотря на различия, эти науки – геодезия и география – априори не могут существовать вне друг друга.
Первым фактическим различием научных сфер является то, что геодезия в исследованиях использует фигуру эллипсоид, а география – геоид. Это геометрическая фигура также является математически несовершенной, но визуально данная фигура больше схожа с планетой.
Геодезия и география имеют различительные понятия о широте, высоте и долготе. Из-за этого и появляется необходимость в разграничении координат среди данных наук. Изучения различий высоты, широты и долготы является весьма сложным математическим процессом. Однако различия можно описать в общих чертах.
Относительно понятия долготы науки никаких различий не имеют. Геодезическая широта рассчитывается от плоскости экватора до необходимой точки. Географическая широта определяется немного по-другому. Начало измеряется также от плоскости экватора, а концом является поверхность геоида.
Высота в геодезии определяется от уровня моря (в состоянии спокойствия), до необходимой точки. В географии высота рассчитывается от уровня сглаженной поверхности геоида, до необходимой точки.
Полярное месторасположение
Полярное местоположение необходимо для определения точки на маленьких территориях. Измерения полярной группы координат совсем неприспособленно для нахождения точки в больших территориальных масштабах.
Для измерения полярной системой координат необходимо учитывать два фактора:
Угол рассчитывается от северного направления меридианы до необходимой точки. Таким образом можно определить пространственное нахождение объекта, но для точных данных этого недостаточно. Далее следует выявить расстояние до объекта.
Расстояние вычисляется при помощи рулетки или сопоставления расстояния по карте. Из-за того, что расстояние в большинстве случаев определяется при помощи рулетки или других подручных средств, данный метод измерения не подходит для выявления точки на больших территориях.
Если применить полярную группу местоположения на территории, превышающей несколько десятков километров, полученные данные будут недостоверными в должной степени. Следовательно, вся проделанная работа будет являться попросту бесполезной.
Применение координат
Для нахождения точки в пространстве проделывается немалая описательная и вычислительная работа. Составляется специализированный план работы.
Имеется существенное количество классификаций научных систем координат. Рабочие решают, какую из систем координат стоит применить, исходя из поставленной задачи.
С работой маленьких масштабов отлично справляются следующие системы:
- полярные системы;
- прямоугольные системы координат.
Указанные системы удобны в использовании, но для решения задач в глобальных масштабах подойдут системы, позволяющие охватить все границы планеты.
Алгоритм положения применяется во многих науках, таких как: геодезия, география, математика, геометрия, баллистика (изучение полёта пули из огнестрельного оружия) и так далее. Естественным и математическим наукам необходимы алгоритмы, позволяющие выявить нахождение объекта в пространстве.
Работнику, проводящему замеры и выявляющему местоположения необходимых точек, требуется определиться с используемой системой координат.
Для выполнения геодезических измерений, причем довольно-таки разнообразных, необходим целый набор составляющих факторов. Помимо объекта съемки и наличия геодезического оборудования, необходим квалифицированный персонал с соответствующими теоретическими знаниями и практическими навыками использования технологий геодезических определений. То есть нужно знать, образно говоря рецепт приготовления продукта. Так вот совокупность выполнения правил, операций (приемов) в определенной последовательности при геодезических замерах с учетом физических и математических принципов считается методом геодезических измерений. Они бывают не зависимо от области применения двух типов:
Первый вариант (прямой) означает применение прямого контакта с геодезическими мерными приборами и получение непосредственно (визуально) значений измеренных величин по конструктивно предусмотренным отсчетным устройствам, шкалам.
Во втором (косвенном) используют непосредственно измеренные величины для получения через функциональные зависимости значений искомых величин.
Помимо этого можно выделить методы связанные по назначению измеряемых величин:
- линейные;
- угловые;
- высотные (нивелирные);
- координатные (тахеометрические).
Линейные методы
Их суть заключается в определении расстояний между точками в конкретной последовательности с помощью специальных приборов и инструментов. В линейных средствах замеров можно выделить несколько от самых простых с применением мерных рулеток до высокоточных определений длин сторон с помощью современных свето-дальномеров.
Рулеточный замер. Он сводится к установлению значений длин линий от исходного пункта, имеющего известное местоположение, до искомого или створа (например, линии очистного забоя) с помощью металлических рулеток. Здесь следует сделать отступление, что любой метод геодезических измерений для его применения должен удовлетворять требованиям необходимой точности. В измерениях рулетками длин сторон в определенных условиях используются динамометры с величинами постоянного натяжения рулетки при непосредственном снятии отсчетов на ее шкале. Длины линий находятся два раза со смещением начального отсчета или другими словами используется метод двойных измерений. Существует возможность использования и метода реитераций, который заключается в многократных замерах искомых величин с дальнейшим определением средних их значений.
Измерение мерной лентой. Эта схема похожа на рулеточный замер. Различие в том, что в мерный комплект входят шпильки и ленты, которые бывают без шкал, а также при значительных расстояниях в нем используются дополнительные вехи для установления створа линии.
Еще одним способом линейных промеров является высокоточное измерение сторон базисным прибором. Он похож на измерения мерной лентой, но с разницей в длинах промеров (24м) и использованием в нем инварной проволоки и штативов. Применялся этот прибор для установления базисных сторон в геодезических сетях 1 и 2 классов.
Измерение расстояний на принципах оптического дальномера. Суть его заключается в нахождении с помощью нитяных дальномерных линий (с постоянным коэффициентом К=100) длины между точками стояния (инструмента) и визирования (на рейку) по количеству сантиметровых делений между нижней и верхней нитями дальномера.
Наиболее точным и доступным способом определений расстояний в настоящее время можно считать измерения свето-дальномером, основанных на импульсном или фазовом (более точном) принципах.
Угловые методы
Сущность их заключается в наборе выполнения определенных действий и операций при измерениях горизонтальных углов между направлениями с помощью геодезических приборов (теодолитов, тахеометров). К ним относятся определения углов:
- во всех комбинациях;
- приемами;
- круговыми приемами;
- повторениями.
Определения углов во всех комбинациях заключается в нахождении углов не только между смежными направлениями, но и в сочетании наблюдений между всеми направлениями.
Способ приемов. Суть его состоит в определении одиночного горизонтального угла дважды в положении трубы при круге лева (КЛ) и круге права (КП). При втором полу-приеме лимб смещается, и все операции повторяются.
Способ круговых приемов сводится к последовательному определению всех углов по часовой стрелке в положении круга лева. Затем при втором полу-приёме, измерения выполняют в обратном направлении, с завершающим снятием отсчета на первую начальную точку. Все серии производят в несколько приемов для повышения точности.
Способ повторений. Его сущность заключается в n-кратном определении горизонтального угла при снятии отсчетов только в начальном и завершающем визировании. Окончательное значение угла вычисляется.
Трех-штативный метод. Он заключается в одновременной установке на смежных пунктах штативов. На каждом из них закрепляют: по краям подставки с визирными сигналами, а в центре геодезический прибор. После выполненных приемов задний штатив переставляют на следующий за передним пункт. И так последовательно переставляя каждый раз задний штатив вперед, а геодезический прибор на центральный штатив, выполняют визирования и считывание показаний, предусмотренные программой. Целью такой схемы является уменьшение погрешностей за центрирование на стоянках.
Высотные методы
Определение превышений одних точек поверхности над другими с применением специально для этого предусмотренных приборов по разработанной системе и считается высотными способами измерений. К ним можно отнести следующие виды;
Тригонометрическое нивелирование выполняется при значительных перепадах высот на наклонных склонах местности (наклонных горных выработках), где не эффективно использовать геометрическое нивелирование. При выполнении измерений по такой технологии используется возможность визирования наклонным лучом на точки наблюдений. Превышения между ними определяется путем вычислений из соответствующих тригонометрических формул. Откуда и пришло название к этому способу нивелирования.
Гидростатический способ нивелирования заключается в способности жидкости, при нахождении в разных местах, устанавливаться на одном уровне. При снятии ряда отдельных промеров на сообщающихся сосудах и определяется превышение между ними.
Координатный способ
Данный вид сводится к нахождению местоположения измеряемых точек, а именно их координат. Одними из таких способов считаются:
- тахеометрическая съемка;
- спутниковый метод определения координат.
Тахеометрическая съемка выполняется на основе использования тригонометрического способа измерений. При его выполнении производят геометрические определения следующих величин:
- высоты инструмента на станции стояния;
- высоты визирования на пункте наблюдения;
- горизонтального угла от начального направления до искомого;
- вертикального угла между направлениями, в которых измеряют наклонные расстояния;
- наклонные расстояния между пунктами стояния инструмента и наблюдения.
Вычисления искомых координат, в том числе и абсолютных значений высотных отметок, определяются по известным формулам.
Спутниковый метод определения координат основан на приеме от спутников радиосигналов, в которых закодированы данные по местоположению спутников и времени передачи сигналов. На наземных геодезических пунктах с помощью специальных устройств GPS-приёмников эти сигналы (время приема сигнала и координаты спутников) записываются в файлы. И таким образом продолжаются наблюдения какое-то определенное время. Для нахождения координат неизвестных пунктов на земной поверхности исходными данными служат:
- координаты базы, полученные в период спутниковых наблюдений на наземной станции;
- и координаты собственно спутников, определенные в строго фиксированный момент времени с помощью полученных многократных сигналов GPS-приемниками на этих наземных станциях.
После выполнения пост-обработки на программном оборудовании и уравнивания, получают результат всех наблюдений и вычислений в виде координат ранее неизвестных пунктов.
Обратная геодезическая задача – это вычисление дирекционного угла α и длины S линии, соединяющей два пункта с известными координатами X1, Y1 и X2, Y2 (рис.2.5).
25. Методы определения координат геодезических пунктов
Геодезический пункт – точка на земной поверхности, положение которой определено в известной системе координат и высот на основании геодезических измерений. Координаты Г. п. определяют преимущественно методом триангуляции. В этом случае Г. п. называют пунктом триангуляции, или тригонометрическим пунктом. Если координаты Г. п. определяются методом полигонометрии, то тогда он называется полигонометрическим пунктом. Высоты Г. п. определяют методом нивелирования. В общем случае пункты триангуляции и полигонометрии не совпадают с пунктами нивелирования. Пункты триангуляции, полигонометрни и нивелирные пункты обозначаются и закрепляются на местности путём возведения специальных сооружений. Система взаимно связанных Г. п. образует геодезическую сеть, которая служит основой топографического изучения земной поверхности и всевозможных геодезических измерений для различных нужд инженерного дела и народного хозяйства.
Триангуляция
Понятие о триангуляции
Триангуляция представляет собой группу примыкающих один к другому треугольников, в которых измеряют все три угла; два или более пунктов имеют известные координаты, координаты остальных пунктов подлежат определению. Группа треугольников образует либо сплошную сеть, либо цепочку треугольников.
Координаты пунктов триангуляции как правило вычисляют на ЭВМ по программам, реализующим алгоритмы строгого уравнивания по МНК. На стадии предварительной обработки триангуляции последовательно решают треугольники один за другим. В нашем курсе геодезии мы рассмотрим решение лишь одного треугольника.
27. Полигонометрия (от греч. polýgonos – многоугольный) – один из методов определения взаимного положения точек земной поверхности для построения опорной геодезической сети служащей основой топографических съёмок, планировки и строительства городов, перенесения проектов инженерных сооружений в натуру и т.п. Положения пунктов в принятой системе координат определяют методом полигонометрии путём измерения на местности длин линий, последовательно соединяющих эти пункты и образующих полигонометрический ход, и горизонтальных углов между ними.
Полигонометрия состоит из одного или нескольких ходов, в которых измеряют с высокой точностью все углы и стороны. Эти ходы прокладываются обычно между пунктами триангуляции.
Положения пунктов в принятой системе координат определяют методом П. путём измерения на местности длин линий, последовательно соединяющих эти пункты и образующих полигонометрический ход, и горизонтальных углов между ними. Так, выбрав на местности точки 1, 2, 3, …, n, n + 1 измеряют длины s1, s2. sn. Линий между ними и углы b2, b3. bn между этими линиями (рис. 1).
Полигонометрический ход
Как правило, начальную точку 1 полигонометрического хода совмещают с опорным пунктом Рн, который уже имеет известные координаты хн, ун и в котором известен также исходный дирекционный угол aн направления на какую-нибудь смежную точку Р’н. В начальной точке полигонометрического хода, т. е. в пункте Рн, измеряют также примычный угол b1 между первой стороной хода и исходным направлением РнР’н. Тогда дирекционный угол ai стороны i и координаты xi+1, yi+1 пункта i + 1 полигонометрического хода могут быть вычислены по формулам:
Для контроля и оценки точности измерений в полигонометрическом ходе его конечную точку n + 1 совмещают с опорным же пунктом Pk, координаты xk, yk которого известны и в котором известен также дирекционный угол ak направления на смежную точку P’k. Это даёт возможность вычислить т. н. угловую и координатные невязки в полигонометрическом ходе, зависящие от погрешностей измерения длин линий и углов и выражающиеся формулами:
Эти невязки устраняют путём исправления измеренных углов и длин сторон поправками, которые определяют из уравнительных вычислений по способу наименьших квадратов.
Трилатерация
Трилатерация(от лат. trilaterus — трёхсторонний, от tri-, в сложных словах — три и latus, родительный падеж lateris — сторона), метод определения опорных геодезических пунктов, заключающийся в построении на местности цепи или сети последовательно связанных между собой треугольников и измерении в каждом из них всех трёх сторон. Углы этих треугольников и координаты их вершин определяют из тригонометрических вычислений. Стороны треугольников измеряют радиодальномерами или электрооптическими дальномерами. Т. имеет то же назначение, что и триангуляция.
Трилатерация представляет собой сплошную сеть примыкающих один к другому треугольников, в которых измеряют длины всех сторон; два пункта, как минимум, должны иметь известные координаты (рис.2.25).
Решение первого треугольника трилатерации, в котором известны координаты двух пунктов и измерены две стороны, можно выполнить по формулам линейной засечки, причем нужно указывать справа или слева от опорной линии AB располагается пункт 1. Во втором треугольнике также оказываются известными координаты двух пунктов и длины двух сторон; его решение тоже выполняется по формулам линейной засечки и так далее.
Рис.2.25. Схема сплошной сети трилатерации
Можно поступить и по-другому: сначала вычислить углы первого треугольника по теореме косинусов, затем, используя эти углы и дирекционный угол стороны AB, вычислить дирекционные углы сторон A1 и B1 и решить прямую геодезическую задачу от пункта A на пункт 1 и от пункта B на пункт 1.
Уравнивание сплошных сетей трилатерации выполняется на ЭВМ по программам, в которых реализованы алгоритмы МНК.
29. Космические методы определения координат
Координаты наземных пунктов методами космической геодезии можно определить по двум направлениям. Первое направление основано на использовании законов движения спутников и включает группу методов для совместного определения геофизических параметров параметров Земли и координат наземных пунктов. Методы, принимаемые при этом, называют динамическими. Содержание второго направления составляет построение пространственных геодезических сетей с помощью синхронных ( одновременных) или квазисинхронных ( почти одновременных) наблюдений ИСЗ.
Космическая геодезия – раздел геодезии, в котором изучаются методы определения взаимного положения точек на земной поверхности, размеров и фигуры Земли, параметров ее гравитационного поля на основе наблюдений солнечных затмений и покрытий звезд Луной, а также наблюдений искусственных спутников Земли и аэростатов (баллонов) с импульсными источниками света, поднимаемых на высоту 20-30 км.
Космическая геодезия рассматривает теорию и методы решения научных и практических задач на земной поверхности по наблюдениям небесных тел (Луна, Солнце, ИСЗ) и по наблюдениям Земли из космоса.
Космическая геодезия включает в себя глобальные навигационные системы, являющиеся основой применяемых в настоящее время координатных систем, и системы космического дистанционного зондирования многоцелевого назначения, используемые для мониторинга поверхности Земли.
Одним из основных методов решения геометрических задач К. г. является одновременное (синхронное) наблюдение космического объекта (Луны, ИСЗ) из нескольких пунктов на земной поверхности. Если в некоторой системе координат, связанной с Землёй, известны положения двух (или более) из числа этих пунктов, то путём математического решения пространственных треугольников с одной из вершин в точке нахождения космического объекта можно вычислить положения также и др. пунктов, из которых проводились наблюдения. Такой метод установления геодезической связи между пунктами на земной поверхности называется космической (спутниковой) триангуляцией. В случае одновременных позиционных и дальномерных (выполняемых с помощью радиотехнических средств или спутниковыми лазерными дальномерами) наблюдений ИСЗ геодезические связи могут быть осуществлены и при одном пункте с известным положением методом геодезического векторного хода. В описанных методах К. г. космический объект лишь обозначает точку, фиксированную в пространстве в некоторый момент времени. К орбитальным методам К. г. относят способы установления геодезической связи между пунктами, предусматривающие определение положения ИСЗ в пространстве с помощью законов его движения в гравитационном поле Земли; применение этого метода освобождает от необходимости проведения наблюдений во всех пунктах в один и тот же момент времени.
К динамическим задачам К. г. относят определение параметров гравитационного поля Земли путём исследования изменений некоторых элементов орбит ИСЗ, вычисляемых по результатам систематических позиционных и дальномерных наблюдений ИСЗ.
Астрономические методы ориентировки (определение географических координат и азимутов направлений), несмотря на развитие других методов и наличие различных приборов, используемых для этой цели, до сих пор являются наиболее надежными методами при далеких плаваниях морских кораблей и дальних перелетах на современных “воздушных кораблях”. Особое значение астрономические способы ориентировки имеют при космических полетах. Поэтому в следующих параграфах мы рассмотрим принципы, лежащие в основе этих методов, и кратко опишем важнейшие инструменты.
Определение географической долготы L. Решение этой задачи основано на том, что разность местных времен на двух меридианах в один и тот же момент равна разности долгот этих меридианов, выраженной в часовой мере. В настоящее время географические долготы отсчитываются от гринвичского меридиана, долгота которого принята равной нулю. Следовательно, если Tm – местное время какого-либо меридиана с восточной долготой L от Гринвича, а Т0 – гринвичское время, то L = Tm – T0. (6.5).
Таким образом, определение долготы какого-либо пункта сводится к одновременному определению местного времени в данном пункте и местного времени на начальном меридиане. До изобретения радио решение такой задачи представляло значительные трудности. Главная из них заключалась в определении гринвичского времени Т0. Старые методы определения долгот были и приближенными (гринвичское время определялось из наблюдений затмений Луны, покрытий звезд Луной, из наблюдений явлений в системе галилеевых спутников Юпитера) и очень трудоемкими (способ “перевозки хронометров”). Изобретение телеграфа несколько облегчило задачу, но и оно не сняло всех трудностей в этом вопросе.
В современных методах определения долгот гринвичское время получается из приема сигналов точного времени по радио. Из приема радиосигналов до и после астрономических наблюдений вычисляется поправка часов u0 и относительно гринвичского меридиана для того же момента, для которого из наблюдений получена поправка часов u0 относительно меридиана данного пункта. Тогда долгота пункта L = u – u0.
30. Спутниковые методы определения координат
Наблюдения спутников с помощью специальных спутниковых фотографических камер из пунктов, расположенных далеко друг от друга, из разных странах и даже на разных материках, дают возможность вычислить расстояния между этими пунктами, определить их взаимное положение на земной поверхности. Таким путем можно осуществить, например, геодезическую привязку того или иного острова к сети координат, установленной на материке. Наблюдения, выполняемые в течение многих лег со станций, расположенных на разных материках, позволяют выявлять изменения расстояний между станциями и изучать таким образом закономерности движения материков.
Задачи спутниковой геодезии подразделяются на геометрические и динамические. Геометрические задачи решаются на основе одновременных (синхронных) наблюдений спутников с двух или более станций. В результате решения этих задач строятся сети космической триангуляции, подобные сейм триангуляции, создаваемым классическими (наземными) методами. Однако если в наземных сетях стороны треугольников обычно не превышают 20-30 км (расстояния между соседними геодезическими знаками – вышками), то в космической триангуляции они могут достигать нескольких тысяч километров.
Наряду с фотографическими камерами в спутниковой геодезии все более широкое применение находят лазерные спутниковые дальномеры, позволяющие с высокой точностью измерять расстояния до спутников.
К началу 1990-х годов относится массовое внедрение геоинформационных технологий – научно-технического комплекса, позволяющего формализовать и реализовывать накопление, хранение, обработку и использование пространственно координированных данных с помощью средств географических информационных систем (ГИС). В последние годы ГИС-технологии находят широкое распространение не только в картографии, но и в целом ряде отраслей экономики, а также активно используются в сети Интернет.
Научно-технический прорыв последних лет – спутниковые системы позиционирования, ССП (Global Positioning System, GPS, GPS-system) – технологические комплексы, предназначенные для позиционирования объектов на поверхности Земли. GPS-системы позволяют отслеживать координаты (и их изменение) даже быстродвижущихся объектов.
Читайте также:
- Связь философии с физикой кратко
- Виноградова н ф экологическое воспитание детей дошкольного и младшего школьного возраста
- Должностная инструкция медицинской сестры в школе
- Икм 30 описание системы кратко
- Условия необходимые для создания социальной ситуации развития детей в доу определяемые фгос
Определение геодезических координат по топографической карте.
Северная
и южная линии внутренней рамки листа
топографической карты являются
параллелями, западная и восточная –
меридианами. Во всех четырех углах листа
карты подписаны значения широты и
долготы.
Между
внутренней и внешней рамками выделена
градусная рамка в виде двойной линии с
переменной заливкой белым и черным
цветами. Каждый интервал (белый или
черный) равен 1’. Этот минутный интервал
разделен с помощью точек на 10-секундные
отрезки. Если соединить аналогичные
точки на северной и южной стороне листа
получим меридиан с известной долготой.
Соответственно при соединении аналогичных
точек на западной и восточной стороне
получим параллель с известной широтой.
Чтобы
определить геодезические координаты
(широту и долготу) точки нужно через нее
провести перпендикуляры к градусной
рамке листа топографической карты (рис.
1).
Рис.
1. Определение геодезических координат.
Проводим
перпендикуляр к западной стороне листа.
Находим пересечение с градусной рамкой.
Далее определяем широту ближайшей южной
точки, отделяющей 10-секундные интервалы
(В0).
Измеряем длину 10-секундного интервала
(b10)
и расстояние от ближайшей точки до
отметки пересечения перпендикуляра с
градусной рамкой (∆b).
Широту
заданной точки можно вычислить по
формуле B
= В0
+ (∆b
* 10’’ / b10).
Чтобы
определить долготу заданной точки,
необходимо опустить перпендикуляр на
южную сторону листа карты, определить
долготу ближайшей западной точки,
отделяющей 10-секундные интервалы (L0).
Далее процесс аналогичен предыдущему,
формула выглядит как L
= L0
+ (∆l
* 10’’ / l10).
Масштаб
– величина, характеризующая степень
уменьшения длины отрезка на местности
при его отображении на карте. На картах
масштаб указывается обязательно. Подпись
масштаба возможна в нескольких вариантах.
Численный
масштаб
представляется в виде дроби с единицей
в числителе, например, 1 : 10 000, 1 : 100 000
и т.д. Именованный масштаб
– это запись вида «в 1 сантиметре 100
метров», «в 1 сантиметре 1 километр».
Линейный
масштаб
дается в виде масштабной линейки, которая
облегчает измерение длин по топографической
карте. На топографических картах, как
правило, даются все три варианта (рис.
2).
Рис.
2. – Подписи масштаба топографических
карт (сверху вниз: численный, именованный,
линейный).
К
артографическая
проекция
– математически определенный способ
изображения эллипсоида на плоскости.
В России для составления топографических
карт используют проекцию
Гаусса-Крюгера.
Это поперечно-цилиндрическая равноугольная
зональная проекция.
В
проекции Гаусса-Крюгера размер зон для
топографических карт ограничен 6-ю
градусами по долготе. Зоны располагаются
последовательно от нулевого (Гринвичского
меридиана) в направлении с запада на
восток. Т.е. 1-я зона ограничена меридианами
00
и 60
в.д., 2-я – 60
и 120
в.д., 60-я – 60
и 00
з.д.
Через
центр зоны проходит осевой
меридиан,
являющийся касательным к боковой
поверхности гипотетического цилиндра.
Таким образом, для 1-й зоны осевой меридиан
будет иметь долготу 30
в.д.,
2-й – 90
в.д. и т.д. Чтобы определить долготу
осевого меридиана по номеру зоны, можно
воспользоваться формулами:
для
восточного полушария L
= 6*n
– 3
для
западного полушария L
= 180 – 6*(n
– 30) + 3,
где
n
– номер зоны.
Прямоугольные
координаты.
На
топографических картах применяется
зональная прямоугольная система
координат. Координаты – абсцисса и
ордината – определяются в метрах. За
ось
ординат Y
принята линия экватора (рис. 3), а за ось
абсцисс X
– северное направление осевых меридианов
зон. Начало отсчета по оси ординат
смещено на 500 км к западу, чтобы исключить
отрицательные значения ординат.
Рис.
3. Система плоских прямоугольных координат
Для
устранения неоднозначности определения
ординат, в ее состав вводится номер зоны
(первые одна или две цифры). Таким образом,
запись ординаты вида «4 312 000»
означает, что заданная точка находится
в 4-й зоне на расстоянии 312 км от смещенного
осевого меридиана (число меньше 500 км,
т.е. точка западнее осевого меридиана).
Абсцисса вида «6 066 000» означает,
что точка находится на расстоянии 6 066
км от экватора.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Содержание конспекта
- 1. Системы координат, применяемые в топографии: географические, плоские прямоугольные, полярные и биполярные координаты, их сущность и использование
- 2. Определение географических координат и нанесение на карту объектов по известным координатам
- 3. Прямоугольная координатная сетка на топографических картах и ее оцифровка. Дополнительная сетка на стыке координатных зон
- 4. Определение прямоугольных координат точек. Нанесение на карту точек по их координатам
- 5. Точность определения координат на картах различных масштабов
- 6. Определение положения объектов (точек) в системах полярных и биполярных координат, нанесение на карту объектов по направлению и расстоянию, по двум углам или по двум расстояниям
- 7. Способы целеуказания по карте: в графических координатах, плоских прямоугольных координатах (полных и сокращенных), по квадратам километровой сетки (до целого квадрата, до 1/4, до 1/9 квадрата), от ориентира, от условной линии, по азимуту и дальности цели, в системе биполярных координат
- 8. Решение задач
1. Системы координат, применяемые в топографии: географические, плоские прямоугольные, полярные и биполярные координаты, их сущность и использование
Координатами называются угловые и линейные величины (числа), определяющие положение точки на какой-либо поверхности или в пространстве.
В топографии применяют, такие системы координат, которые позволяют наиболее просто и однозначно определять положение точек земной поверхности как по результатам непосредственных измерений на местности, так и с помощью карт. К числу таких систем относятся географические, плоские прямоугольные, полярные и биполярные координаты.
Географические координаты (рис.1) – угловые величины: широта (j) и долгота (L), определяющие положение объекта на земной поверхности относительно начала координат – точки пересечения начального (Гринвичского) меридиана с экватором. На карте географическая сетка обозначена шкалой на всех сторонах рамки карты. Западная и восточная стороны рамки являются меридианами, а северная и южная – параллелями. В углах листа карты подписаны географические координаты точек пересечения сторон рамки.
В системе географических координат положение любой точки земной поверхности относительно начала координат определяется в угловой мере. За начало у нас и в большинстве других государств принята точка пересечения начального (Гринвичского) меридиана с экватором. Являясь, таким образом, единой для всей нашей планеты, система географических координат удобна для решения задач по определению взаимного положения объектов, расположенных на значительных расстояниях друг от друга. Поэтому в военном деле эту систему используют главным образом для ведения расчетов, связанных с применением боевых средств дальнего действия, например баллистических ракет, авиации и др.
Плоские прямоугольные координаты (рис. 2) – линейные величины, определяющие положение объекта на плоскости относительно принятого начала координат – пересечение двух взаимно перпендикулярных прямых (координатных осей Х и Y).
В топографии каждая 6-градусная зона имеет свою систему прямоугольных координат. Ось Х – осевой меридиан зоны, ось Y – экватор, а точка пересечения осевого меридиана с экватором – начало координат.
Система плоских прямоугольных координат является зональной; она установлена для каждой шестиградусной зоны, на которые делится поверхность Земли при изображении ее ни картах в проекции Гаусса, и предназначена для указания положения изображений точек земной поверхности на плоскости (карте) в этой проекции.
Началом координат в зоне является точка пересечения осевого меридиана с экватором, относительно которой и определяется в линейной мере положение всех остальных точек зоны. Начало координат зоны и ее координатные оси занимают строго определенное положение на земной поверхности. Поэтому система плоских прямоугольных координат каждой зоны связана как с системами координат всех остальных зон, так и с системой географических координат.
Применение линейных величин для определения положения точек делает систему плоских прямоугольных координат весьма удобной для ведения расчетов как при работе на местности, так и на карте. Поэтому в войсках эта система находит наиболее широкое применение. Прямоугольными координатами указывают положение точек местности, своих боевых порядков и целей, с их помощью определяют взаимное положение объектов в пределах одной координатной зоны или на смежных участках двух зон.
Системы полярных и биполярных координат являются местными системами. В войсковой практике они применяются для определения положения одних точек относительно других на сравнительно небольших участках местности, например при целеуказании, засечке ориентиров и целей, составлении схем местности и др. Эти системы могут быть связаны с системами прямоугольных и географических координат.
2. Определение географических координат и нанесение на карту объектов по известным координатам
Географические координаты точки, расположенной на карте, определяют от ближайших к ней параллели и меридиана, широта и долгота которых известна.
Рамка топографической карты разбита на минуты, которые разделены точками на деления по 10 секунд в каждом. На боковых сторонах рамки обозначены широты, а на северной и южной – долготы.
Пользуясь минутной рамкой карты можно:
1. Определить географические координаты любой точки на карте.
Например, координаты точки А (рис.3). Для этого необходимо с помощью циркуля-измерителя измерить кратчайшее расстояние от точки А до южной рамки карты, затем приложить измеритель к западной рамке и определить количество минут и секунд в измеренном отрезке, сложить полученное (измеренное) значение минут и секунд (0’27”) с широтой юго-западного угла рамки – 54°30′.
Широта точки на карте будет равна: 54°30’+0’27” = 54°30’27”.
Долгота определяется аналогично.
Измеряют с помощью циркуля-измерителя кратчайшее расстояние от точки А до западной рамки карты, прикладывают циркуль-измеритель к южной рамке, определяют количество минут и секунд в измеренном отрезке (2’35”) складывают полученное (измеренное) значение с долготой юго-западного угла рамки – 45°00′.
Долгота точки на карте будет равна: 45°00’+2’35” = 45°02’35”
2. Нанести любую точку на карту по заданным географическим координатам.
Например, точку Б широта: 54°31 ’08”, долгота 45°01 ’41”.
Для нанесения на карту точки по долготе необходимо провести истинный меридиан через данную точку, для чего соединить одинаковое количество минут по северной и южной рамке; для нанесения на карту точки по широте необходимо провести параллель через данную точку, для чего соединить одинаковое количество минут по западной и восточной рамке. Пересечение двух прямых определит местоположение точки Б.
3. Прямоугольная координатная сетка на топографических картах и ее оцифровка. Дополнительная сетка на стыке координатных зон
Координатная сетка на карте представляет собой сетку квадратов, образованных линиями, параллельными координатным осям зоны. Линии сетки проведены через целое число километров. Поэтому координатную сетку называют также километровой сеткой, а ее линии километровыми.
На карте 1:25000 линии, образующие координатную сетку, проведены через 4 см, то есть через 1 км на местности, а на картах 1:50000-1:200000 через 2 см (1,2 и 4 км на местности соответственно). На карте 1:500000 наносятся лишь выходы линий координатной сетки на внутренней рамке каждого листа через 2 см (10 км на местности). При необходимости по этим выходам координатные линии могут быть нанесены на карту.
На топографических картах значения абсцисс и ординат координатных линий (рис. 2) подписывают у выходов линий за внутренней рамкой листа и девяти местах на каждом листе карты. Полные значения абсцисс и ординат в километрах подписываются около ближайших к углам рамки карты координатных линий и около ближайшего к северо-западному углу пересечения координатных линий. Остальные координатные линии подписываются сокращенно двумя цифрами (десятки и единицы километров). Подписи около горизонтальных линий координатной сетки соответствуют расстояниям от оси ординат в километрах.
Подписи около вертикальных линий обозначают номер зоны (одна или две первые цифры) и расстояние в километрах (всегда три цифры) от начала координат, условно перенесенного к западу от осевого меридиана зоны на 500 км. Например, подпись 6740 означает: 6 – номер зоны, 740 – расстояние от условного начала координат в километрах.
На внешней рамке даны выходы координатных линий (дополнительная сетка) системы координат смежной зоны.
4. Определение прямоугольных координат точек. Нанесение на карту точек по их координатам
По координатной сетке с помощью циркуля (линейки) можно:
1. Определить прямоугольные координаты точки на карте.
Например, точки В (рис. 2).
Для этого надо:
- записать X – оцифровку нижней километровой линии квадрата, в котором находится точка В, т. е. 6657 км;
- измерить по перпендикуляру расстояние от нижней километровой линии квадрата до точки В и, пользуясь линейным масштабом карты, определить величину этого отрезка в метрах;
- сложить измеренную величину 575 м с значением оцифровки нижней километровой линии квадрата: X=6657000+575=6657575 м.
Определение ординаты Y производят аналогично:
- записать значение Y – оцифровку левой вертикальной линии квадрата, т.е.7363;
- измерить по перпендикуляру расстояние от этой линии до точки В, т. е.335 м;
- прибавить измеренное расстояние к значению оцифровки Y левой вертикальной линии квадрата: Y=7363000+335=7363335 м.
2. Нанести на карту цель по заданным координатам.
Например, точку Г по координатам: Х=6658725 Y=7362360.
Для этого надо:
- найти квадрат, в котором расположена точка Г по значению целых километров, т. е. 5862;
- отложить от левого нижнего угла квадрата отрезок в масштабе карты, равный разности абсциссы цели и нижней стороны квадрата – 725 м;
- от полученной точки по перпендикуляру вправо отложить отрезок, равный разности ординат цели и левой стороны квадрата, т. е. 360 м.
5. Точность определения координат на картах различных масштабов
Точность определения географических координат по картам 1:25000-1:200000 составляет около 2 и 10” соответственно.
Точность определения по карте прямоугольных координат точек ограничивается не только ее масштабом, но и величиной погрешностей, допускаемых при съемке или составлении карты и нанесении на нее различных точек и объектов местности
Наиболее точно (с ошибкой, не превышающей 0,2 мм) на карту наносятся геодезические пункты и. наиболее резко выделяющиеся на местности и видимые издали предметы, имеющие значение ориентиров (отдельные колокольни, фабричные трубы, постройки башенного типа). Поэтому координаты таких точек можно определить примерно с той же точностью, с которой они на карту наносятся, т. е. для карты масштаба 1:25000 – с точностью – 5-7 м, для карты масштаба 1:50000 – с точностью – 10-15 м, для карты масштаба 1:100000 – с точностью – 20-30 м.
Остальные ориентиры и точки контуров наносятся на карту, а, следовательно, и определяются по ней с ошибкой до 0,5 мм, а точки, относящиеся к нечетко выраженным на местности контурам (например, контур болота), с ошибкой до 1 мм.
6. Определение положения объектов (точек) в системах полярных и биполярных координат, нанесение на карту объектов по направлению и расстоянию, по двум углам или по двум расстояниям
Система плоских полярных координат (рис. 3, а) состоит из точки О – начало координат, или полюса, и начального направления ОР, называемого полярной осью.
Положение точки М на местности или на карте в этой системе определяется двумя координатами: углом положения θ, который измеряется по ходу часовой стрелки от полярной оси до направления на определяемую точку М (от 0 до 360°), и расстоянием ОМ=Д.
В зависимости от решаемой задачи за полюс принимают наблюдательный пункт, огневую позицию, исходный пункт движения и т. п., а за полярную ось – географический (истинный) меридиан, магнитный меридиан (направление магнитной стрелки компаса) или же направление на какой-либо ориентир.
Этими координатами могут служить либо два угла положения, определяющих направления с точек А и В на искомую точку М, либо расстояния D1=АМ и D2=ВМ до нее. Углы положения при этом, как показано на рис. 1, б, измеряются в точках А и В или от направления базиса (т. е. угол А=ВАМ и угол В=АВМ) или от других каких-либо направлений, проходящих через точки А и В и принимаемых за начальные. Например, во втором случае место точки М определено углами положения θ1 и θ2, измеренными от направления магнитных меридианов.Система плоских биполярных (двухполюсных) координат (рис. 3, б) состоит из двух полюсов А и В и общей оси АВ, называемой базисом или базой засечки. Положение любой точки М относительно двух данных на карте (местности) точек А и В определяется координатами, которые измеряются на карте или на местности.
Нанесение обнаруженного объекта на карту
Это один из важнейших моментов в обнаружении объекта. От того, насколько точно объект (цель) будет нанесен на карту, зависит точность определения его координат.
Обнаружив объект (цель), необходимо сначала точно определить по различным признакам, что обнаружено. Затем, не прекращая наблюдение за объектом и не обнаруживая себя, нанести объект на карту. Для нанесения объекта на карту существуют несколько способов.
Глазомерно: объект наносится на карту, если он находится вблизи известного ориентира.
По направлению и расстоянию: для этого необходимо сориентировать карту, найти на ней точку своего стояния, свизировать на карте направление на обнаруженный объект и прочертить линию до объекта от точки своего стояния, затем определить расстояние до объекта, измерив это расстояние на карте и соизмерив его с масштабом карты.
Если таким образом графически невозможно решить задачу (мешает противник, плохая видимость и др.), то нужно точно измерить азимут на объект, затем перевести его в дирекционный угол и прочертить на карте из точки стояния направление, на котором отложить расстояние до объекта.
Чтобы получить дирекционный угол, надо к магнитному азимуту прибавить магнитное склонение данной карты (поправка направления).
Прямой засечкой. Этим способом наносят объект на карту из 2-х-3-х точек, с которых можно вести наблюдение за ним. Для этого из каждой выбранной точки прочерчивается на ориентированной карте направление на объект, тогда пересечение прямых линий определяет местонахождение объекта.
7. Способы целеуказания по карте: в графических координатах, плоских прямоугольных координатах (полных и сокращенных), по квадратам километровой сетки (до целого квадрата, до 1/4, до 1/9 квадрата), от ориентира, от условной линии, по азимуту и дальности цели, в системе биполярных координат
Умение быстро и правильно указывать цели, ориентиры и другие объекты на местности имеет важное значение для управления подразделениями и огнем в бою или для организации боя.
Целеуказания в географических координатах применяется очень редко и только в тех случаях, когда цели удалены от заданной точки на карте на значительном расстоянии, выражающемся в десятках или сотнях километров. При этом географические координаты определяются по карте, как описано в вопросе № 2 настоящего занятия.
Местоположение цели (объекта) указывают широтой и долготой, например, высота 245,2 (40° 8′ 40″ с. ш., 65° 31′ 00″ в. д.). На восточную (западную), северную (южную) стороны топографической рамки наносят уколом циркуля отметки положения цели по широте и долготе. От этих отметок в глубину листа топографической карты опускают перпендикуляры до их пересечения (прикладывают командирские линейки, стандартные листы бумаги). Точка пересечения перпендикуляров и есть положение цели на карте.
Для приближенного целеуказания по прямоугольным координатам достаточно указать на карте квадрат сетки, в котором расположен объект. Квадрат всегда указывается цифрами километровых линий, пересечением которых образован юго-западный (нижний левый) угол. При указании квадрата карты придерживаются правила: сначала называют две цифры, подписанные у горизонтальной линии (у западной стороны), то есть координату «X», а затем две цифры у вертикальной линии (южная сторона листа), то есть координата «Y». При этом «X» и «Y» не говорятся. Например, засечены танки противника. При передаче донесения по радиотелефону номер квадрата произносят: «восемьдесят восемь ноль два».
Если положение точки (объекта) необходимо определить более точно, то пользуются полными или сокращенными координатами.
Работа с полными координатами. Например, требуется определить координаты указателя дорог в квадрате 8803 на карте масштаба 1:50000. Сначала определяют чему равно расстояние от нижней горизонтальной стороны квадрата до указателя дорог (например, 600 м на местности). Таким же образом измеряют расстояние от левой вертикальной стороны квадрата (например, 500 м). Теперь путем оцифровки километровых линий определяем полные координаты объекта. Горизонтальная линия имеет подпись 5988 (X), прибавив расстояние от этой линии до указателя дорог, получим: Х=5988600. Точно также определяем вертикальную линию и получаем 2403500. Полные координаты указателя дорог следующие: Х=5988600 м, У=2403500 м.
Сокращенные координаты соответственно будут равны: Х=88600 м, У=03500 м.
Если требуется уточнить положение цели в квадрате, то применяют целеуказание буквенным или цифровым способом внутри квадрата километровой сетки.
При целеуказании буквенным способом внутри квадрата километровой сетки квадрат условно разбивается на 4 части, каждой части присваивается заглавная буква русского алфавита.
Второй способ – цифровой способ целеуказания внутри квадрата километровой сетки (целеуказание по улитке). Этот способ получил свое название по расположению условных цифровых квадратов внутри квадрата километровой сетки. Они расположены как бы по спирали, при этом квадрат разбивается на 9 частей.
При целеуказании в этих случаях называют квадрат, в котором находится цель, и добавляют букву или цифру, уточняющую положение цели внутри квадрата. Например, высота 51,8 (5863-А) или высоковольтная опора (5762-2) (см. рис. 2).
Целеуказание от ориентира наиболее простой и распространенный способ целеуказания. При этом способе целеуказания вначале называют ближайший к цели ориентир, затем величину угла между направлением на ориентир и направлением на цель в делениях угломера (измеряется биноклем) и удаление до цели в метрах. Например: «Ориентир второй, вправо сорок, дальше двести, у отдельного куста – пулемет».
Целеуказание от условной линии обычно применяется в движении на боевых машинах. При этом способе по карте выбирают в направлении действий две точки и соединяют их прямой линией, относительно которой и будет вестись целеуказание. Эту линию обозначают буквами, разбивают на сантиметровые деления и нумеруют их начиная с нуля. Такое построение делается на картах как передающего, так и принимающего целеуказание.
Целеуказание от условной линии обычно применяется в движении на боевых машинах. При этом способе по карте выбирают в направлении действий две точки и соединяют их прямой линией (рис. 5), относительно которой и будет вестись целеуказание. Эту линию обозначают буквами, разбивают на сантиметровые деления и нумеруют их начиная с нуля.
Такое построение делается на картах как передающего, так и принимающего целеуказание.
Положение цели относительно условной линии определяется двумя координатами: отрезком от начальной точки до основания перпендикуляра, опущенного из точки расположения цели на условную линию, и отрезком перпендикуляра от условной линии до цели.
При целеуказании называют условной наименование линии, затем число сантиметров и миллиметров, заключающихся в первом отрезке, и, наконец, направление (влево или вправо) и длину второго отрезка. Например: «Прямая АС, пять, семь; вправо ноль, шесть – НП».
Целеуказание от условной линии можно выдать, указав направление на цель под углом от условной линии и расстояние до цели, например: «Прямая АС, вправо 3-40, тысяча двести – пулемет».
Целеуказание по азимуту и дальности до цели. Азимут направления на цель определяют с помощью компаса в градусах, а дальность до нее – с помощью прибора наблюдения или глазомерно в метрах. Например: «Азимут тридцать пять, дальность шестьсот – танк в окопе». Этот способ чаще всего используют на местности, где мало ориентиров.
8. Решение задач
Определение координат точек местности (объектов) и целеуказание по карте отрабатывается практически на учебных картах по заранее подготовленным точкам (нанесенным объектам).
Каждый обучаемый определение географические и прямоугольные координаты (наносит на карту объекты по известным координатам).
Способы целеуказания по карте отрабатываются: в плоских прямоугольных координатах (полных и сокращенных), по квадратам километровой сетки (до целого квадрата, до 1/4, до 1/9 квадрата), от ориентира, по азимуту и дальности цели.
Скачать конспект
Узнаем, когда и почему геодезия необходима, что входит в программу изысканий и как провести их, не привлекая подрядчиков.
Геодезическими исследованиями при ИЖС порой пренебрегают даже крупные строительные компании, частные же застройщики и вовсе считают эту деятельность ненужной.
Геодезические исследования
- Цели геодезии
- Оборудование
- Этапы инженерной геодезии
- С чего начать
- Составление разбивочной основы
- Проведение разбивочных работ
Цели геодезии
В целом геодезия — это наука об измерении земной поверхности, её делении на участки и составлении карт. Известные на сегодняшний день очертания континентов, стран и отдельных областей — целиком и полностью заслуга этой научной дисциплины. В строительстве принято оперировать понятием геодезии инженерной, позволяющей сопоставить габариты и форму возводимого объекта с территорией, учитывая особенности рельефа, расположение близлежащих построек, коммуникаций, границ участков и стационарных объектов.
Причины, по которым частные строители отказываются от проведения геодезии, просты: будучи полноправными хозяевами на собственном участке, люди полагают, что могут строить так, как сами захотят. Этому способствует возможность выполнить топографическую привязку объекта для получения технического паспорта на жильё постфактум.
Своевременное проведение геодезических исследований позволяет не только избежать конфликтов с государственным кадастром. Как бы досконально не был разработан строительный проект, его сопровождение требует тщательного контроля за формой и размерами возводимой постройки, что очень трудно сделать, не имея определённой системы отсчёта, связанной с окружающей территорией.
Из-за пренебрежения геодезическими исследованиями до и в процессе строительства форма здания может быть существенно искажена, что приводит к трудностям в сопоставлении отдельных частей строительной конструкции, осложнениям при выполнении механических связей и примыканий, образованию значительного эксцентриситета нагрузок.
Отсутствие геодезического контроля за зданием после постройки делает невозможным оценить правильность расчётов по гидрогеологической обстановке и вовремя установить анормальное поведение строительной конструкции из-за колебаний литосферы или усадки почвы. Большинство разрушений частных домов в первые годы эксплуатации могли быть спрогнозированы своевременным проведением геодезических измерений. Обрушения зачастую можно было бы избежать, приняв соответствующие меры по укреплению фундамента или дренированию грунта.
Оборудование
Инженерная геодезия — наука весьма точная. Граничные отклонения геодезических измерений в целях строительства составляют не более 10 мм, в других целевых изысканиях допуски ещё меньше. Такую высокую точность невозможно обеспечить без специального оборудования, предназначенного для нивелирования, линейных и тригонометрических измерений.
Приборы для проведения геодезических измерений стоят сотни долларов, но их вовсе не обязательно приобретать. Практически в любом крупном городе России можно взять такое оборудование в аренду и выполнить всю работу за сутки-двое, потратив при этом минимум средств. Вот что понадобится для измерений:
1. Линейные величины могут измеряться геодезической рулеткой. Она отличается от обычной строительной длинным, лёгким и жёстким измерительным полотном, которое можно натянуть без провисания и удлинения под нагрузкой. В некоторых рулетках есть встроенный динамометр, по которому выбирается нужная степень натяжения в соответствии с длиной. На расстояниях свыше 30 метров рулетка малоэффективна, лучше воспользоваться лазерным дальномером.
2. Тригонометрические измерения предназначены для точного определения углов между прямыми. Такая необходимость неизбежно возникает при разметке линий разграничения участков, определении осей и границ построек. Можно пользоваться математическими соотношениями, но если удастся заполучить в пользование лазерный угломер — работа пойдёт значительно быстрее.
3. Отклонения от горизонтальной плоскости можно установить только с помощью оптического или лазерного ротационного нивелира. Это наиболее дорогостоящая часть оборудования и, к тому же, достаточно специфичная в пользовании, но только так можно правильно провести топографическую съёмку.
Этапы инженерной геодезии
В целом геодезическая съёмка сводится к составлению набора точек на местности, для каждой из которых определены координаты и отклонение по высоте. Координаты определяются по декартовой системе, образованной геодезическими пунктами, высоты — по точкам, называемым реперами.
Методы геодезической съёмки достаточно однотипны, но этапов исследований существует несколько:
- В ходе инженерно-геодезических изысканий составляют чертёж разбивочной основы — на план местности наносят сетку с фиксированным шагом, который обычно в 2–3 раза меньше самого малого габарита строящегося объекта. Оси построенной сетки параллельны главным осям здания. На чертеже отмечают перепады высот, стороны света, привязку к государственным и локальным геодезическим пунктам. В натуре формируют набор опорных пунктов, позволяющих провести измерение по каждой ключевой точке чертежа не менее чем с двух позиций.
- При разбивочных работах выполняется определение границ и осей сооружения. После того как в строительном проекте закреплено высотное и плановое расположение зданий:
- методом геосъёмки определяют размеры котлованов под фундамент;
- выносят в натуру граничные линии основания и нулевую точку;
- определяют расположение вспомогательных построек на участке;
- устанавливают вешки, необходимые для позиционирования объектов ландшафтного дизайна.
- Исполнительные съёмки ведутся в процессе возведения коробки здания. После усадки фундамента, либо установки междуэтажных перекрытий проводится повторная съёмка по изначальным ключевым пунктам. Так можно определить, соответствует ли натура проектным формам, размерам и положению.
- Контрольные измерения выполняются в том же порядке, что и исполнительные съёмки, но по прошествии 2–5 лет после сдачи дома в эксплуатацию. Их цель — подтвердить, что изначальное положение постройки и форма прилегающего рельефа сохранились в пределах допустимых отклонений.
С чего начать
Геодезия участка начинается с выноса его границ в натуру. Эту задачу, как правило, выполняют специалисты государственного земельного кадастра. Используя ближайшие тригопункты и реперы плановой геосети, геодезист определит расположение граничных угловых точек, на которых будут вбиты колья, а также среднее возвышение уровненной поверхности.
После завершения выноса застройщик волен проводить дальнейшую геодезию самостоятельно. Первоначально рекомендуется определить удаление точек друг от друга с помощью нитевого дальномера, встроенного в оптический нивелир. После этого углы участка проверяют с помощью египетского треугольника:
- На длинной нитке узелками размечаются 12 равных отрезков.
- Нитка натягивается на шпильках с образованием треугольника, стороны которого составляют 3, 4 и 5 отрезков.
- Треугольник ориентируется углом между сторонами с 3 и 4 отрезками к углу участка таким образом, чтобы одна из сторон была совмещена с границей.
- По перпендикуляру к границе участка измеряется отклонение вершины треугольника от разметочной линии.
- Отклонение делится на расстояние от углового колышка, по таблице тангенсов определяется угол, который нужно вычесть/добавить к 90°.
Подобная контрольная проверка — единственный метод убедиться, что границы, а значит, и площадь земельного участка определены верно. В ином случае вынос границ в натуру следует выполнить повторно.
Составление разбивочной основы
Порядок проведения инженерной геодезии определяется выраженностью рельефа и площадью исследуемого участка. На небольших территориях (до 10–12 ар) с визуально плоской поверхностью достаточно замерить возвышение по границам и определить общий уклон. Если же исследуется крупный участок, через который проходит балка или склон, следует разделить поверхность на квадраты со стороной от 10 до 50 м. Чем круче рельефные образования, тем мельче должна быть сетка в данной области.
Для составления геодезического чертежа используется план, на котором отображён участок определённой формы, обозначены координаты граничных угловых точек и расстояния между ними, а также углы между граничными линиями. При необходимости план покрывается квадратной сеткой, пересечения линий обозначаются по схеме шахматной доски.
Латинские буквы с цифровым индексом, обозначающие каждое пересечение, выносят в отдельный журнал, где впоследствии проставляются отметки о координатах и возвышении. Если размеры участка больше дальности работы нивелира, на плане заранее отмечают несколько мест установки станции, между которыми есть как минимум одна общая точка переноса. Также на плане отмечают условный репер, как правило, в точке наибольшего возвышения.
В натуру точки выносят по вешкам, установленным на границах участка с промежутками, соответствующими шагу сетки. Сторонний наблюдатель визуально сопоставляет место установки точки с двумя крайними вешками в прямом и поперечном направлении. В местах расположения точек устанавливаются небольшие колья или шпильки, любые помехи в виде бугров или приямков нужно распланировать заранее.
После установки нивелира на станции и выравнивания по уровню производится последовательная съёмка каждой точки с определением возвышения. При съёмке каждой точки под рейку устанавливают один и тот же массивный башмак или подпятник. Данные о возвышениях заносятся в журнал, после чего станция перемещается в одну из точек с удалением в 3–4 шага сетки и проводится съёмка с другого ракурса.
Результаты 2–3 съёмок из разных точек сопоставляют между собой с целью определить так называемую невязку — несовпадение показаний. Если невязка превышает 5 мм/100 м, съёмку проводят заново, при допустимой погрешности — используют для нахождения средних значений. Окончательные показатели возвышения заносят в журнал, на плане стрелками обозначают направления уклонов. Результаты позволяют проектировщику выбрать оптимальный уровень нулевой отметки и заложения фундамента, а также с высокой точностью оценить объём земляных работ.
Проведение разбивочных работ
При разбивочных работах сетка наносится на план участка с частотой, соответствующей размерам здания. Оси системы координат должны быть направлены параллельно основным осям постройки. В качестве ключевых точек выбираются углы здания, места сопряжения деталей фундамента и забивки свай.
Разбивочные работы можно разделить на разметку и нивелирование. В ходе разметки в натуру выносятся красные линии зданий и их граничные точки. Простейший способ определить положение соседних — прямая линейная засечка, при которой откладываются требуемые расстояния от двух стационарных точек, положение которых заведомо известно по разбивочной основе.
В качестве ориентира можно использовать угловые граничные точки участка, столбы, колодцы, скважины и т. д. Определить положение точки также можно, отложив перпендикуляр от базовой линии, для чего потребуется растянуть египетский треугольник, либо использовать способы угловых засечек с помощью лазерного угломера.
Нивелирование сопровождает весь процесс строительства от подземной части здания до кровли. Если в строительной бригаде нет геодезиста, при разбивочных работах на участке устанавливают 2–3 постоянные вехи — столбы, забитые таким образом, чтобы на них не влияли сезонные колебания грунта и погодные факторы. Нулевая точка, определённая по проекту, отмечается на вехах при начальном нивелировании, затем производится контроль гидростатическим уровнем. Периодически метки на столбах нужно сверять между собой.
Геодезическое сопровождение используется при многих строительных операциях:
- Для выравнивания дна траншей и котлованов вбивают колья, на которых отмечают требуемый уровень подсыпки или съёма грунта.
- Установка опалубки в общей горизонтальной плоскости производится по верхней кромке, на которую установлена нивелирная рейка или мишень лазерного осепостроителя.
- При установке арматуры геодезическими методами определяют толщину верхнего защитного слоя.
- Нивелированием легко оценить горизонтальность кладки.
- При сооружении каркасных конструкций опорные вехи помогают с высокой точностью выдержать геометрию.
- Наличие разметочных и нивелирных вешек позволяет выстроить остекление в едином горизонтальном уровне и по фронту.
- Съёмка нивелиром помогает соосно расположить элементы стропильной системы и каркас навесного фасада.
Методы геодезии очень разнообразны. Застройщику, который всерьёз задумывается над самостоятельным проведением геодезических исследований, будет очень полезно изучить Учебник Е. Клюшина для ВУЗов «Инженерная геодезия», где в доступной форме изложена основная методология, даны рекомендации по ведению журнала и составлению чертежей. опубликовано econet.ru
Подписывайтесь на наш канал Яндекс Дзен!
Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта здесь.
P.S. И помните, всего лишь изменяя свое потребление – мы вместе изменяем мир! © econet
Понравилась статья? Напишите свое мнение в комментариях.