Законы сложения сил в механике
При воздействии на одно тело нескольких сил одновременно тело начинает двигаться с ускорением, являющимся векторной суммой ускорений, которые бы возникли под воздействием каждой силы по отдельности. К действующим на тело силам, приложенным к одной точке, применяется правило сложения векторов.
Векторная сумма всех сил, одновременно воздействующих на тело, это сила равнодействующая, которая определяется по правилу векторного сложения сил:
R → = F 1 → + F 2 → + F 3 → + . . . + F n → = ∑ i = 1 n F i → .
Равнодействующая сила действует на тело также, как и сумма всех действующих на него сил.
Правило параллелограмма и правило многоугольника
Для сложения 2 -х сил используют правило параллелограмма (рисунок 1 ).
Рисунок 1 . Сложение 2 -х сил по правилу параллелограмма
Выведем формулу модуля равнодействующей силы с помощью теоремы косинусов:
R → = F 1 → 2 + F 2 → 2 + 2 F 1 → 2 F 2 → 2 cos α
При необходимости сложения более 2 -х сил используют правило многоугольника: от конца
1 -й силы необходимо провести вектор, равный и параллельный 2 -й силе; от конца 2 -й силы необходимо провести вектор, равный и параллельный 3 -й силе и т.д.
Рисунок 2 . Сложение сил правилом многоугольника
Конечный вектор, проведенный от точки приложения сил в конец последней силы, по величине и направлению равняется равнодействующей силе. Рисунок 2 наглядно иллюстрирует пример нахождения равнодействующей сил из 4 -х сил: F 1 → , F 2 → , F 3 → , F 4 → . Причем суммируемые векторы совсем необязательно должны быть в одной плоскости.
Результат действия силы на материальную точку будет зависеть только от ее модуля и направления. У твердого тела есть определенные размеры. Потому силы с одинаковыми модулями и направлениями вызывают разные движения твердого тела в зависимости от точки приложения.
Линией действия силы называют прямую, проходящую через вектор силы.
Рисунок 3 . Сложение сил, приложенных к различным точкам тела
Если силы приложены к различным точкам тела и действуют не параллельно по отношению друг к другу, тогда равнодействующая приложена к точке пересечения линий действия сил (рисунок 3 ). Точка будет находиться в равновесии, если векторная сумма всех сил, действующих на нее, равняется 0 : ∑ i = 1 n F i → = 0 → . В данном случае равняется 0 и сумма проекций данных сил на любую координатную ось.
Разложение вектора силы по направлениям
Разложение сил на две составляющие – это замена одной силы 2 -мя, приложенными в той же точке и производящими на тело такое же действие, как и эта одна сила. Разложение сил осуществляется, как и сложение, правилом параллелограмма.
Задача разложения одной силы (модуль и направление которой заданы) на 2 , приложенные в одной точке и действующие под углом друг к другу, имеет однозначное решение в следующих случаях, когда известны:
- направления 2 -х составляющих сил;
- модуль и направление одной из составляющих сил;
- модули 2 -х составляющих сил.
Пример 1
Необходимо разложить силу F на 2 составляющие, находящиеся в одной плоскости с F и направленные вдоль прямых a и b (рисунок 4 ). Тогда достаточно от конца вектора F провести 2 прямые, параллельные прямым a и b . Отрезок F A и отрезок F B изображают искомые силы.
Рисунок 4 . Разложение вектора силы по направлениям
Второй вариант данной задачи – найти одну из проекций вектора силы по заданным векторам силы и 2 -й проекции (рисунок 5 а ).
Рисунок 5 . Нахождение проекции вектора силы по заданным векторам
Во втором варианте задачи необходимо построить параллелограмм по диагонали и одной из сторон, как в планиметрии. На рисунке 5 б изображен такой параллелограмм и обозначена искомая составляющая F 2 → силы F → .
Итак, 2 -й способ решения: прибавим к силе силу, равную – F 1 → (рисунок 5 в ). В итоге получаем искомую силу F → .
Три силы F 1 → = 1 Н ; F 2 → = 2 Н ; F 3 → = 3 Н приложены к одной точке, находятся в одной плоскости (рисунок 6 а ) и составляют углы с горизонталью α = 0 ° ; β = 60 ° ; γ = 30 ° соответственно. Необходимо найти равнодействующую силу.
Решение
Рисунок 6 . Нахождение равнодействующей силы по заданным векторам
Нарисуем взаимно перпендикулярные оси О Х и O Y таким образом, чтобы ось О Х совпадала с горизонталью, вдоль которой направлена сила F 1 → . Сделаем проекцию данных сил на координатные оси (рисунок 6 б ). Проекции F 2 y и F 2 x отрицательны. Сумма проекций сил на координатную ось О Х равняется проекции на данную ось равнодействующей: F 1 + F 2 cos β – F 3 cos γ = F x = 4 – 3 3 2 ≈ – 0 , 6 Н .
Точно также для проекций на ось O Y : – F 2 sin β + F 3 sin γ = F y = 3 – 2 3 2 ≈ – 0 , 2 Н .
Модуль равнодействующей определим с помощью теоремы Пифагора:
F = F x 2 + F y 2 = 0 , 36 + 0 , 04 ≈ 0 , 64 Н .
Направление равнодействующей найдем при помощи угла между равнодействующей и осью (рисунок 6 в ):
t g φ = F y F x = 3 – 2 3 4 – 3 3 ≈ 0 , 4 .
Сила F = 1 к Н приложена в точке В кронштейна и направлена вертикально вниз (рисунок 7 а ). Необходимо найти составляющие данной силы по направлениям стержней кронштейна. Все необходимые данные отображены на рисунке.
Решение
Рисунок 7 . Нахождение составляющих силы F по направлениям стержней кронштейна
Дано:
F = 1 к Н = 1000 Н
Пускай стержни прикручены к стене в точках А и С . На рисунке 7 б изображено разложение силы F → на составляющие вдоль направлений А В и В С . Отсюда понятно, что
F 1 → = F t g β ≈ 577 Н ;
F 2 → = F cos β ≈ 1155 Н .
Ответ: F 1 → = 557 Н ; F 2 → = 1155 Н .
Техническая механика. Шпаргалка
Настоящее издание поможет систематизировать полученные ранее знания, а также подготовиться к экзамену или зачету и успешно их сдать.
Оглавление
- 1. Аксиомы и понятие силы статики
- 2. Связи и реакции связей
- 3. Определение равнодействующей геометрическим способом
- 4. Определение равнодействующей аналитическим способом
- 5. Пара сил. Момент силы
Приведённый ознакомительный фрагмент книги Техническая механика. Шпаргалка предоставлен нашим книжным партнёром — компанией ЛитРес.
3. Определение равнодействующей геометрическим способом
Система сил, линии действия которых пересекаются в одной точке, называется сходящейся.
Необходимо определить равнодействующую системы сходящихся сил (F1; F2; F3;…; Fn), где n — число сил, входящих в систему.
В соответствии со следствиями из аксиом статики, все силы системы можно переместить вдоль линии действия, и все силы окажутся приложенными к одной точке.
Используя свойство векторной суммы сил, можно получить равнодействующую любой сходящейся системы сил, складывая последовательно силы, входящие в систему. Образуется многоугольник сил.
При графическом способе определения равнодействующей векторы сил можно вычерчивать в любом порядке, результат (величина и направление равнодействующей) при этом не изменится.
Вектор равнодействующей направлен навстречу векторам сил-слагаемых. Такой способ получения равнодействующей называется геометрическим.
Многоугольник сил строится в следующем порядке.
1. Вычертить векторы сил заданной системы в некотором масштабе один за другим так, чтобы конец предыдущего вектора совпал с началом последующего.
2. Вектор равнодействующей замыкает полученную ломаную линию; он соединяет начало первого вектора с концом последнего и направлен ему навстречу.
3. При изменении порядка вычерчивания векторов в многоугольнике меняется вид фигуры. На результат порядок вычерчивания не влияет.
Условие равновесия плоской системы сходящихся сил. При равновесии системы сил равнодействующая должна быть равна нулю, следовательно, при геометрическом построении конец последнего вектора должен совпасть с началом первого.
Если плоская система сходящихся сил находится в равновесии, многоугольник сил этой системы должен быть замкнут.
Если в системе три силы, образуется треугольник сил.
Геометрическим способом пользуются, если в системе три силы. При решении задач на равновесие тело считается абсолютно твердым (отвердевшим).
Задачи решаются в следующем порядке.
1. Определить возможное направление реакций связей.
2. Вычертить многоугольник сил системы, начиная с известных сил, в некотором масштабе. (Многоугольник должен быть замкнут, все векторы-слагаемые направлены в одну сторону по обходу контура).
3. Измерить полученные векторы сил и определить их величину, учитывая выбранный масштаб.
4. Для уточнения определить величины векторов (сторон многоугольника) с помощью геометрических зависимостей.
Формула равнодействующей всех сил
Первый закон Ньютона говорит нам о том, что в инерциальных системах отсчета тела могут изменять скорость только, если на них оказывают воздействие другие тела. При помощи силы ($overline$) выражают взаимное действие тел друг на друга. Сила способна изменить величину и направление скорости тела. $overline$ – это векторная величина, то есть она обладает модулем (величиной) и направлением.
Определение и формула равнодействующей всех сил
В классической динамике основным законом, с помощью которого находят направление и модуль равнодействующей силы является второй закон Ньютона:
На тело могут действовать не одна, а некоторая совокупность сил. Суммарное действие этих сил характеризуют, используя понятие равнодействующей силы. Пусть на тело оказывают действие в один и тот же момент времени несколько сил. Ускорение тела при этом равно сумме векторов ускорений, которые возникли бы при наличии каждой силы отдельно. Силы, которые оказывают действие на тело, следует суммировать в соответствии с правилом сложения векторов. Равнодействующей силой ($overline$) называют векторную сумму всех сил, которые оказывают действие на тело в рассматриваемый момент времени:
Формула (2) – это формула равнодействующей всех сил, приложенных к телу. Равнодействующая сила является искусственной величиной, которую вводят для удобства проведения вычислений. Равнодействующая сила направлена как вектор ускорения тела.
Основной закон динамики поступательного движения при наличии нескольких сил
Если на тело действуют несколько сил, тогда второй закон Ньютона записывают как:
$overline=0$, если силы, приложенные к телу, взаимно компенсируют друг друга. Тогда в инерциальной системе отсчета скорость движения тела постоянна.
При изображении сил, действующих на тело, на рисунке, в случае равноускоренного движения, равнодействующую силу, изображают длиннее, чем сумму сил, которые противоположно ей направлены. Если тело перемещается с постоянной скоростью или покоится, длины векторов сил (равнодействующей и сумме остальных сил), одинаковы и направлены они в противоположные стороны.
Когда находят равнодействующую сил, на рисунке изображают все учитываемые в задаче силы. Суммируют эти силы в соответствии с правилами сложения векторов.
Примеры задач на равнодействующую сил
Задание. На материальную точку действуют две силы, направленные под углом $alpha =60<>^circ $ друг к другу. Чему равна равнодействующая этих сил, если $F_1=20 $Н; $F_2=10 $Н?
Решение. Сделаем рисунок.
Силы на рис. 1 складываем по правилу параллелограмма. Длину равнодействующей силы $overline$ можно найти, используя теорему косинусов:
Вычислим модуль равнодействующей силы:
[F=sqrt<<20>^2+<10>^2+2cdot 20cdot 10<cos (60<>^circ ) >>approx 26,5 left(Нright).]
Ответ. $F=26,5$ Н
Задание. На материальную точку действуют силы (рис.2). Какова равнодействующая этих сил?
Решение. Равнодействующая сил, приложенных к точке (рис.2) равна:
Найдем равнодействующую сил $<overline>_1$ и $<overline>_2$. Эти силы направлены вдоль одной прямой, но в противоположные стороны, следовательно:
Так как $F_1>F_2$, то сила $<overline>_<12>$ направлена в туже сторону, что и сила $<overline>_1$.
Найдем равнодействующую сил $<overline>_3$ и $<overline>_4$. Данные силы направлены вдоль одной вертикальной прямой (рис.1), значит:
Направление силы $<overline>_<34>$ совпадает с направлением вектора $<overline>_3$, так как $<overline>_3><overline>_4$.
Равнодействующую, которая действует на материальную точку, найдем как:
Силы $<overline>_<12>$ и $<overline>_<34>$ взаимно перпендикулярны. Найдем длину вектора $overline$ по теореме Пифагора:
[spoiler title=”источники:”]
http://kartaslov.ru/%D0%BA%D0%BD%D0%B8%D0%B3%D0%B8/%D0%90%D1%83%D1%80%D0%B8%D0%BA%D0%B0_%D0%9B%D1%83%D0%BA%D0%BE%D0%B2%D0%BA%D0%B8%D0%BD%D0%B0_%D0%A2%D0%B5%D1%85%D0%BD%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0_%D0%A8%D0%BF%D0%B0%D1%80%D0%B3%D0%B0%D0%BB%D0%BA%D0%B0/3
http://www.webmath.ru/poleznoe/fizika/fizika_139_formula_ravnodejstvujushhej_vseh_sil.php
[/spoiler]
Содержание:
- Система сходящихся сил
- Равнодействующая системы сходящихся сил
- Разложение силы по заданным направлениям
- Разложение силы по двум заданным направлениям
- Разложение силы по трем заданным направлениям
- Проекция силы на ось и плоскость
- Аналитический способ определения равнодействующей
- Условия и уравнения равновесия системы сходящихся сил
- Геометрическое условие равновесия
- Аналитические условия равновесия. Уравнения равновесия
- Методика решения задач на равновесие
- Примеры решения задач на равновесие под действием системы сходящихся сил
- Система сходящихся сил и решение задач
- Условия равновесия системы совпадающих сил
- Геометрический метод решения задач
- Аналитический метод решения задач
- Проекция силы на ось и на плоскость
- Аналитические условия равновесия системы совпадающих сил
- Образец выполнения и решения задач на темы С2
- Система сходящихся сил на плоскости
- Геометрическое условие равновесия системы сходящихся сил
- Геометрический метод решения задач
- Аналитические условия равновесия системы сходящихся сил
- Примеры решения задач на тему: Система сходящихся сил
Система сходящихся сил – это такая система сил, действующих на абсолютно твёрдое тело, в которой линии действия всех сил пересекаются в одной точке. Такая система сил является на плоскости статически определимой, если число неизвестных сил в ней не больше двух.
На странице -> решение задач по теоретической механике собраны решения задач и заданий с решёнными примерами по всем темам теоретической механики.
Система сходящихся сил
Определение:
Система сил, линии действия которых пересекаются в одной точке, называется системой сходящихся сил. Системы сходящихся сил могут быть плоскими и пространственными.
Нехай на тверде тіло діє система збіжних сил , лінії дії яких перетинаються в точці О (рис. 2.1, а).
Используя теорему 1.1, § 1.3, перенесем силы вдоль линий их действия в точку В и получим эквивалентную систему сил, приложенных к твердому телу в одной точке (рис. 2.1, б), которую еще называют пучком.
Равнодействующая системы сходящихся сил
Силы, приложенные в одной точке твердого тела, можно добавлять, используя аксиому о параллелограмм сил. Пусть к телу в точке О приложена система n сходящихся сил (рис. 2.2, а).
Найдем равнодействующую сил и (рис. 2.2, а):
(индекс в обозначении равнодействующей соответствует количеству положительных сил).
К равнодействующей добавим силу . Получим
Составим равнодействующую с последней силой и получим равнодействующую n сил. Итак, есть система сходящихся сил эквивалентна одной силе – равнодействующей, которая равна векторной сумме этих сил и приложена в точке пересечения линий их действия
Как видно из рис. 2.2, б, построение параллелограммов сил эквивалентна построении векторного многоугольника сил. Для системы сил, изображенной на рис. 2.2, б, векторный многоугольник сил построим следующим образом: к концу вектора присоединим вектор, геометрически ровный , а с его конца отложим вектор и так далее. Вектор, проведенный из точки приложения первой силы до конца вектора , является равнодействующей силой . Полученный таким образом многоугольник называется силовым или многоугольником сил.
Замыкающая сторона силового многоугольника, которая направлена против его обхода, определяет равнодействующую как по величине, так и по направлению (Рис. 2.2, б). Определение равнодействующей системы сходящихся сил по правилу параллелограмма или силового многоугольника называется геометрическим способом определения равнодействующей.
В случае плоской системы сходящихся сил силовой многоугольник используется для графического определения равнодействующей. Изображая силы в определенном масштабе, величину равнодействующей силы определим непосредственным измерением ее на чертеже. Геометрический способ определения равнодействующей используется в графостатици.
Разложение силы по заданным направлениям
Разложить данную силу на несколько составляющих – значит найти такую систему нескольких сил, для которых данная сила равнодействующей. Эта задача является
неопределенной и имеет однозначное решение лишь при задании дополнительных условий. Такими дополнительными условиями могут, например, быть: 1) задания двух направлений, вдоль которых должны действовать составляющие силы; 2) задания
модулей обеих составляющих сил; 3) задания модуля одной составляющей силы и
направление второй. Рассмотрим два частных случая.
Разложение силы по двум заданным направлениям
Задача сводится к построению такого параллелограмма, у которого сила, которая разлагается, является диагональю, а стороны параллельны заданным направлениям. Например, на рис. 2.3, а, показано, что сила розкладаеься по направлениям АВ и AD на силы и – составляющие силы (сила и прямые АВ и АD лежат в одной плоскости).
Разложение силы по трем заданным направлениям
Если заданные направления АВ, АС и АD не лежащих в одной плоскости, то задача является определенной и сводится к построению такого параллелепипеда, в которого диагональ является заданной силой , а ребра параллельны заданным направлениям и определяют составляющие (рис. 2.3, б).
Проекция силы на ось и плоскость
Аналитический способ решения задач статики основывается на понятии о проекции силы на ось. Проекция силы на ось является алгебраическая величина, равная произведению модуля силы на косинус угла между положительным направлением оси и силой (Рис. 2.4)
Отметим, что:
Проекцией силы на плоскость Oxy называется вектор, который
соединяет проекции начала и конца вектора на эту плоскость (рис. 2.5).
В отличие от проекции силы на ось, проекция силы на плоскость является векторной величиной. Она характеризуется не только своим модулем, но и направлением в плоскости Oxу. Модуль проекции силы на плоскость
где θ – угол между направлением силы и плоскостью. В некоторых случаях для определения проекции силы на ось выгоднее найти сначала ее проекцию на плоскость,
в которой эта ось лежит, а потом найденную проекцию на плоскость спроектировать на эту ось.
Например, в случае, изображенном на рис. 2.5, таким способом найдем, что:
При решении многих задач механики удобно задавать силу через ее проекции на оси прямоугольной декартовой системы координат (рис. 2.6):
где , – проекции силы на соответствующие оси координат; – единичные орты осей По известным проекциями силы на оси координат можно определить модуль силы и углы, которые она образует с координатными осями, по формулам:
Аналитический способ определения равнодействующей
Кроме геометрического существует еще и аналитический способ определения равнодействующей системы сходящихся сил. Если равенство (2.1) спроектируем на оси
декартовой системы координат (рис. 2.2, а), то получим:
где – проекции равнодействующей на оси координат; , – проекции силы на оси координат.
Итак, проекция равнодействующей системы сходящихся сил на эту ось равна алгебраической сумме проекций составляющих сил на эту же ось.
Поскольку формулы (2.7) определяют проекции равнодействующей на три взаимно перпендикулярные оси, то модуль и направление равнодействующей вычисляются по формулам:
Условия и уравнения равновесия системы сходящихся сил
По определению уравновешенной системы сил имеем
а для системы сходящихся сил (см. § 2.2) получили
Сравнивая эквивалентности (а) и (б), получим векторное условие равновесия: для равновесия системы сходящихся сил необходимо и достаточно, чтобы ее равнодействующая была равна нулю:
Векторное равенство (2.9) является необходимым и достаточным условием равновесия
системы сходящихся сил. Условия, которым при этом должны удовлетворять самые силы, можно выразить в геометрической или аналитической форме.
Геометрическое условие равновесия
Как известно, равнодействующая – это замыкающая сторона силового многоугольника (рис. 2.2, б). Условие (2.9) будет выполняться только тогда, когда конец последней силы совместится с началом первой силы при построении силового многоугольника, то есть когда силовой многоугольник будет замкнутым. Необходимым и достаточным условием равновесия системы сходящихся сил есть замкнутость ее силового многоугольника (рис. 2.2, в).
Аналитические условия равновесия. Уравнения равновесия
Аналитические условия равновесия системы сходящихся сил вытекают из условия (2.9), согласно которой модуль равнодействующей равна нулю. Используя формулу (2.8), получаем или, согласно с (2.7),
Это означает, что для равновесия системы сходящихся сил необходимо и достаточно, чтобы алгебраические суммы проекций всех сил на три взаимно перпендикулярные
оси равны нулю.
Равенства (2.10) называются аналитическими условиями равновесия системы сходящихся сил.
Для случая плоской системы сходящихся сил будем иметь:
Итак, задачи на равновесие системы сходящихся сил можно решать двумя способами – геометрически и аналитически. Первый способ удобен для плоской системы сходящихся сил.
Аналитические условия равновесия (2.10) или (2.11), расписаны для конкретной задачи, в которые входят неизвестные параметры, реакции связей, активные силы, расстояния, углы и т.д., называются уравнениями равновесия.
При решении задач статики реакции связей всегда есть неизвестными величинами. Для их определения используют условия равновесия той или другой системы сил.
Задачи, в которых число неизвестных величин равно числу уравнений равновесия, в которые они входят, называются статически определенными. Системы, для которых это имеет место, называются статически определенными.
Задачи, в которых число неизвестных величин больше, чем число уравнений равновесия, в которые входят эти величины, называются статически неопределенными. Системы, для которых это имеет место, называются статически неопределенными.
Методика решения задач на равновесие
Все задачи на равновесие желательно решать по такой методике.
1. Следуя масштаба, сделать четкий схематический рисунок к задачи.
2. Выбрать объект равновесия. Последним может быть точка, тело или
система тел, к которым приложено заданные и неизвестные силы. Если заданы
силы действуют на одно тело, а неизвестные – на второе, то необходимо рассматривать
равновесие системы тел в целом или последовательно равновесие каждого тела.
3. Изобразить на рисунке все заданные силы, приложенные к объекту равновесия.
4. Условно освободить объект равновесия от наложенных связей, а их действие заменить реакциями связей. Изобразить на рисунке реакции связей.
5. Выяснить, какая система сил действует на объект равновесия и условия равновесия рационально использовать.
6. В соответствии с условиями равновесия составить уравнение равновесия или выполнить соответствующие графические построения.
7. Решить уравнение равновесия, найти неизвестные величины и проанализировать полученные результаты.
Все расчеты в процессе решения задачи рекомендуется выполнять в общем виде, а числовые значения подставлять только в конечные алгебраические выражения.
Примеры решения задач на равновесие под действием системы сходящихся сил
Задача 2.1. Однородная горизонтальная балка, вес которой, содержится в равновесии шарнирно-неподвижной опорой А и шарнирнорухомою опорой В (рис. 2.7). Определить реакции опор.
Решение. Объектом равновесия выберем балку АВ, на которую действует одна заданная сила приложенная посередине длины балки (рис. 2.7, б).
Мысленно освободимся от связей. Линия действия реакции перпендикулярна к плоскости, на которую опирается шарнирно-подвижная опора В. Известная точка приложения реакции (точка А). Очевидно, что балка находится в равновесии под действием трех непараллельных сил, которые лежат в одной плоскости. Найдем точку пересечения линий их действия. Для этого продолжим линии действия сил и до пересечения в точке О. Согласно теореме о трех непараллельных силах, линия действия реакции должна пройти через точку В (по линии АО) (Рис. 2.7, б).
Балка находится в равновесии под действием трех сходящихся сил . Используем геометрическое условие равновесия и построим замкнутый треугольник сил (рис. 2.7, в). Для этого в выбранном масштабе отложим вектор силы с начала которого проведем прямую, параллельную линии АО, а с конца – прямую, параллельную линии ВО. Точка пересечения этих прямых определит конец вектора и начало вектора . С треугольника сил определим величины неизвестных реакций и .
Поскольку в , а линия действия силы является медианой и высотой основы АВ, поэтому также . Перенесем найдены углы на силовой треугольник. Решив его, получим
Задача 2.2. Вертикальный стояк подъемного крана опирается на подпятник A и подшипник В (рис. 2.8, а). В точке С действует вертикальная нагрузка Р = 20 кН. Высота стояка АВ равна 2 м, вылет стрелы крана – 4 м. Найти опорные реакции при условии, что кран находится в
равновесии.
Решение. Рассмотрим равновесие крана. На него действует заданная сила приложена в точке С. Применим принцип освобождения от связей и найдем направление реакций связей. Линия действия реакции в подшипнике – горизонтальная; линия действия реакции подпятника – неизвестно. поскольку три силы , взаимно уравновешенные (кран находится в равновесии), лежат в одной плоскости и непараллельные, то они должны пересекаться в одной точке согласно теореме о трех силы. Найдем точку пересечения D линий действия сил и и соединим с ней точку А (рис. 2.8, б). прямая AD будет линией действия реакции . Данную задачу также решим, используя геометрическую условие равновесия сходящейся системы сил. построим
замкнутый силовой треугольник (рис. 2.8, в). Видим, что треугольник сил подобен треугольника АВD (рис. 2.8, б). С подобия треугольников записываем отношение соответствующих сторон:
откуда определяем величины реакции связей и
Задачи 2.1, 2.2 могут быть решены аналитическим способом, с использованием условий равновесия произвольной плоской системы сил (см. раздел 6).
Задача 2.3. Груз Р весом 2 кН содержится в равновесии лебедкой D с помощью каната, перекинутого через блок B (рис 2.9, а). пренебрегая трением на блоке, определить усилия в стержнях AB и CВ, считая, что крепления в точках A, B и С – шарнирные. Углы показано на рис. 2.9, а. Размерами блока и весом стержней пренебречь.
Решение. Объект равновесия выбираем блок B, который рассматриваем как точку. К нему приложена заданная сила тяжести груза . Мысленно освободимся от связей и заменим действие их на блок В реакциями связей. Поскольку стержни АВ и ВС погружены в точке В, а их соединения – шарнирные, то они могут быть только или растянутыми или сжатыми,
то есть реакции стержней будут направлены вдоль их осей.
Стержень АВ является растянутый, поэтому его реакция будет направлена от точки В к
точки А, стрижень ВС – сжат, и его реакция направлена от точки С к точке В. Натяжение каната ВD будет направлен по линии каната, и, поскольку трением между блоком и канатом
пренебрегаем, то.
На блок В действует система сходящихся сил, расположенных в плоскости рисунка. Для решения задачи используем аналитические условия равновесия. Для этого выберем систему координат с началом в точке В (рис. 2.9, б) и запишем два уравнения равновесия (2.11):
Решим эти уравнения и определим неизвестные величины:
Анализируя полученные результаты, мы видим, что усилия и полученные со знаком «+». Это означает, что действительно стержень AB работает на растяжение, а стержень ВС – на сжатие.
Задача 2.4. Найти усилия, возникающие в стержнях АВ, АС и AD (рис. 2.10) под действием
силы и силы тяжести груза подвешенного в точке А. Плоскость прямоугольника АВОС – горизонтальная, крепления стержней в точках A, B, C, D – шарнирные, сила и груз Р находятся в вертикальной плоскости OAD. углы показаны на рисунке.
Решение. Объект равновесия выберем узел А. На него действуют заданные силы и Мысленно освободим узел А от связей. Реакции идеальных жестких стержней и направлены по осям стержней.
На узел А действует пространственная система сходящихся сил. Выберем систему координат с началом в точке О и запишем уравнение равновесия (2.10):
Решим полученную систему уравнений и определим неизвестные величины усилий в стержнях:
Полученные результаты свидетельствуют о том, что стержни АВ и АС работают на растяжение, а стержень АD – на сжатие.
Система сходящихся сил и решение задач
Система сходящихся сил – это такая система сил, действующих на абсолютно твёрдое тело, в которой линии действия всех сил пересекаются в одной точке. Такая система сил является на плоскости статически определимой, если число неизвестных сил в ней не больше двух.
Условия равновесия системы совпадающих сил
Совпадающими называются силы, линии действия которых
пересекаются в одной точке.
Если все силы по линиям их действия перенести в эту точку, то получим эквивалентную систему сил, которая приложена к одной точке. Равнодействующая системы прилагаемых к одной точки сил, приложенная к той же точке и изображается замыкающим вектором силового многоугольника, который построен на прибавляемых силах. Равнодействующая равняется векторной сумме прибавляемых сил:
Поскольку система смежных сил может быть заменена одной силой (равнодействующей), то необходимым и достаточным условием равновесия тела под действием системы совпадающих сил является равенство нуля этого равнодействующего:
Геометрически это уравнение означает, что в построенном многоугольнике конец последнего вектора совпадает с началом первого, то есть многоугольник представляет
собой замкнутую фигуру.
В случае, когда на тело действуют три уравновешенные совпадающие силы, силовой (векторный) многоугольник сводится к силовому треугольнику. Решение задачи на равновесие в этом случае сводится к нахождению сторон треугольника с помощью тригонометрических формул.
Теорема о трех непараллельных силах. Если тело находится в равновесии под действием трех непараллельных сил, то линии действия этих сил обязательно пересекаются в одной точке и лежат в одной плоскости, то есть силы образуют плоскую систему совпадающих сил.
Теорема о трех силах облегчает решение задачи на равновесие твердого тела в том случае, когда направление одной из сил неизвестно. Найдя точку пересечения линий действий двух сил, направления которых известны, можно определить направление линии действия третьей силы, поскольку она должна проходить через точку приложения этой силы и точку пересечения линий действий первых двух сил.
Геометрический метод решения задач
Непосредственное использование сил многоугольника для решение задач статики сводится к геометрическому построению в масштабе векторного многоугольника с
дальнейшим определением неизвестных элементов с помощью тригонометрических формул. При решении задач на равновесие твердого тела геометрическим методом рекомендуется соблюдать следующий порядок:
1. Выделить объект равновесия;
2. Показать на чертежах точки примера и направления активных сил, действующих на объект равновесия;
3. Выяснить характер связей и возможные направления их реакций;
4. Построить замкнутый силовой многоугольник (построение надо начинать с силы, которая известна как по модулю, так и по направлению);
5. Из силового многоугольника найти неизвестные величины.
Аналитический метод решения задач
Аналитический метод решения задачи рекомендуется использовать в тех случаях, когда требуется определить скорости точек для большого числа положений плоской фигуры.
Проекция силы на ось и на плоскость
Общим способом определения модуля и направления равнодействующей является аналитический, который тоже следует из условия (C2.1) и базируется на аналитическом методе обозначения силы.
Аналитический метод обозначения силы заключается в том, что, выбрав некоторую прямоугольную систему координат (рис.C2.1), силу раскладывают по правилу параллелепипеда на три составляющие,
Алгебраические значения длин направленных отрезков и называются
проекциями силы на оси и и обозначаются и
Если и – единичные векторы, которые направленны по осями и соответственно, а и – проекции силы на эти оси, то
Модуль и направление силы по известным проекциям на
три взаимно перпендикулярные оси и можно получить из формул:
При определении проекции силы на ось возможны 4 случаи (рис.C2.2).
1. Вектор силы образует острый угол с положительным направлением координатной оси (черта С2.2, а). В этом случае проекция силы на ось положительная и по модулю равна:
2. Вектор силы образует с положительным направлением оси тупой угол (рис.С2.2, б). В этом случае проекция силы на ось отрицательная и по модулю равна:
3. Вектор силы образует прямой угол с осью (рис.С2.2, в.). В этом случае проекция силы на ось равняется нулю:
4. Сила параллельна к координатной оси. В этом случая сила проецируется на ось в натуральную величину со знаком плюс, когда ее направление совпадает с положительным направлением оси (рис.С2.2, г), и со знаком минус в противоположном случае (рис.С2.2, д):
В некоторых случаях для нахождения проекции силы на ось удобнее сначала найти ее проекцию на плоскость, в которой лежит эта ось, а уже затем спроектировать найденную проекцию на нужную ось.
Например, в случае, что изображен на рис. 2.3, сначала лучше спроектировать
силу на плоскость и получить проекцию а уже затем найти проекции силы на оси и и Тогда:
Аналитические условия равновесия системы совпадающих сил
Пусть силы образуют систему совпадающих сил, тогда равнодействующая равна их геометрической сумме и тогда по теореме о проекции равнодействующей на оси системы координат:
Если тело под действием заданной системы сил находится в равновесии, то итак или с учетом (С2.7) получаем следующие условия равновесия тела под действием системы совпадающих сил:
Таким образом, для равновесия пространственной системы совпадающих сил необходимо и достаточно, чтобы сумма проекций этих сил на каждую из трех
координатных осей равнялась нулю.
При решении задачи аналитическим способом до трех первых пунктов, приведенных в разделе С2.2, надо добавить следующие:
4. Выбрать декартовую систему координат
5. Составить уравнение равновесия твердого тела в проекциях на оси координат;
6. Решить полученную систему уравнений равновесия и найти неизвестные величины.
Образец выполнения и решения задач на темы С2
Задача 1
Задано:
Определить: натяжение нити ВС; реакцию стержня АВ.
Решение.
Центр шарнира точка В находится в равновесии под действием сил натяжения нитей
, и реакции невесомого стержня Причем по модулю равняется
(п. С1.4, задача 1).
Таким образом, точка В находится в равновесии под действием трех сил, лежащих в одной плоскости и линии действия которых пересекаются в одной точке.
Величину и направление реакции и величину натяжения нити определим геометрически, воспользовавшись условием равновесия системы смежных сил в векторной форме:
Для решения уравнения (1) построим силовой (векторный) треугольник (рис.2).
Для этого из произвольной точки Р (полюса) отложим вектор величина которого
нам известна. Поскольку векторный треугольник должен быть замкнутым, то с начала этого вектора проведем направление а с конца – направление до взаимного пересечения (точка С).
Векторы и направим таким образом, чтобы векторный треугольник был замкнутым.
Определив углы треугольника, можно записать теорему синусов:
Отсюда получим:
Ответ:
Задача 2
Задано:
Определить: натяжение нити и реакции и стержней AD и BD.
Решение. Шарнир D находится в равновесии под действием силы тяжести натяжения нити реакций и невесомых стержней АD и BD (п.С1.4, задача 2).
Реакции и направим вдоль стержней от D, примем, что стержни растянуты.
Все силы приложены к одной точке D и для определение неизвестных реакций можно воспользоваться аналитическими условиями равновесия системы совпадающих сил.
С точкой О свяжем пространственную систему координат, направив ось перпендикулярно плоскости АВС, а оси и расположим в этой плоскости.
Спроектировав все силы на оси выбранной системы координат, достанем:
Из уравнения (1) находим:
Выразим из уравнения (2) натяжение нити и подставим в уравнение (3):
Откуда:
Если при решении задачи какая-то из реакций приобретает отрицательное значение, то это означает, что направление этой реакции надо изменить на противоположное. Тогда, действительное направление реакций и невесомых стержней DA и DB противоположно изображенным на рисунке, а сами стержни будут не растянутыми, как указывалось в начале, а сжатыми.
Ответ:
Система сходящихся сил на плоскости
Система сходящихся сил на плоскости – это такая система сил, действующих на абсолютно твёрдое тело, в которой линии действия всех сил пересекаются в одной точке. Такая система сил является на плоскости статически определимой, если число неизвестных сил в ней не больше двух.
Геометрическое условие равновесия системы сходящихся сил
Сходящимися называются силы, линии действия которых пересекаются в одной точке (рис.2.1, а).
Если перенести все силы вдоль линии их действия в эту точку, получим эквивалентную систему сил, приложенных к одной точке.
Равнодействующая данной системы сил, которые проходят через точку , приложена к этой же точке и изображается замыкающей стороной силового многоугольника, который построен (рис.2.1, б)
на прилагаемых силах, то есть равнодействующая равна векторной сумме прилагаемых сил:
Поскольку система сходящихся сил может быть заменена одной силой – равнодействующей, то необходимым и достаточным условием равновесия тела под действием системы сходящих сил является равенство нулю этой равнодействующей:
Геометрически это условие состоит в том, чтобы конец последнего вектора совпадал с началом первого в векторном (силовом) многоугольнике, построенном из сил системы, то есть силы должны образовывать замкнутый многоугольник.
Если тело находится в равновесии под действием трех сходящихся сил, то силовой многоугольник сводится к силовому треугольнику. Решения же задачи о равновесии в этом случае требует нахождения неизвестных элементов треугольника с помощью тригонометрических формул или измерений.
При решении задач на равновесие тела под действием трех сил часто приходится пользоваться теоремой о трех силах:
Если тело находится в равновесии под действием трех непараллельных сил, лежащих в одной плоскости, то линии действия этих сил обязательно пересекаются в одной точке, то есть силы образуют сходящуюся систему сил.
Теорема о трех непараллельных силах облегчает решение задач на равновесие твердого тела в тех случаях, когда направление одной из трех сил неизвестное. Определив точку пересечения линий действия двух сил, направление которых известно, можно указать направление линии действия третьей силы, поскольку она должна пройти через точку приложения этой силы и точку пересечения линий действия первых двух сил.
Геометрический метод решения задач
Непосредственное использование многоугольника сил при решение задач статики приводит к геометрическим построениям с последующим определением неизвестных элементов с помощью, например, формул тригонометрии.
При решении задач на равновесие твердого тела геометрическим методом рекомендуется придерживаться следующего порядка:
- Выделить объект, который будет рассматриваться в равновесии.
- Установить и показать на схеме активные силы, действующие на тело.
- Выяснить характер связей и установить направления их реакций.
- Построить замкнутый силовой многоугольник (построение надо начинать с сил, известных по модулю и по направлению).
- Из силового многоугольника определить неизвестные силы.
Аналитические условия равновесия системы сходящихся сил
Наиболее общим способом определения модуля и направления равнодействующей является аналитический, который базируется на аналитическом определении силы.
Если выбрать некоторую прямоугольную систему координатных осей (рис.2.2.), то силу по правилу параллелограмма (в данном случае – прямоугольника) можно разложить на две составляющие и .
Алгебраические значения длин направленных отрезков и называются проекциями силы на оси и и обозначаются и .
Если и единичные векторы, что направлены по осям и , а
Модуль и направление силы по известным проекциям на взаимно перпендикулярные оси , находят из следующих формул:
При определении проекции силы на ось возможны следующие случаи (рис.2.3):
Рис. 2.3
1. Сила образует острый угол с положительным направлением оси (рис.2.3, а). В этом случае проекция силы на ось имеет положительный знак и по модулю равна
2. Сила образует с положительным направлением оси тупой угол (рис.2.3, б). В этом случае ее проекция на координатную ось имеет отрицательный знак и равна
3. Сила образует прямой угол с координатной осью (рис.2.3, в). В этом случае проекция силы на ось равна нулю:
4. Сила параллельна координатной оси (рис.2.3, г, д). В этом случае сила проецируется в натуральную величину и проекция положительна, если ее направление совпадает с положительным направлением оси (рис.2.3, г), и отрицательная, если направление силы совпадает с отрицательным направлением оси (рис.2.3, д).
Если силы представляют собой систему сходящихся сил, то равнодействующая равна их геометрической сумме, а ее проекции на оси:
Поскольку модуль равнодействующей определяется по формуле
то тело под действием системы сходящихся сил будет находиться в равновесии, когда , а это возможно, когда и . В результате получим следующие аналитические условия равновесия тела под действием системы сходящихся сил:
Таким образом, для равновесия плоской системы сходящихся сил необходимо и достаточно, чтобы суммы проекций всех этих сил на каждую из координатных осей равнялись нулю.
При решении задач аналитическим способом нужно выполнить три первых пункта, указанные в параграфе 2.2, а затем следующие:
4. Выбрать декартову систему координат .
5. Составить уравнения равновесия твердого тела в проекциях на эти оси координат.
6. Решить систему составленных уравнений и определить неизвестные величины.
Примеры решения задач на тему: Система сходящихся сил
Задача № 1
Идеальный стержень удерживается в равновесии нерастяжимой нитью . К шарниру стержня на нити подвешено тело весом (рис.2.4).
Определить натяжение нити и реакцию стержня , если
Решение. Рассмотрим равновесие узла (рис.2.4). К узлу приложена сила , которая перенесена вдоль линии действия от центра масс тела к точке , натяжение нити и реакция стержня . Таким образом, узел находится в равновесии под действием трех сил , и , которые лежат в одной плоскости и имеют одну и ту же точку пересечения.
Величину и направление усилия и величину натяжения нити определим геометрическим методом, воспользовавшись геометрическим условием равновесия плоской системы сходящихся сил. Запишем геометрическое условие равновесия системы действующих сил на точку :
Согласно записанному векторному уравнению построим силовой треугольник.
Для этого с произвольной точки (рис. 2.5) отложим в некотором масштабе вектор . С точки начала вектора проведем прямую, параллельную линии действия реакции , а с точки конца вектора – прямую, параллельную линии действия реакции . Проведенные прямые пересекутся в точке , образовав треугольник . Укажем направление сил, руководствуясь тем, что при добавлении векторов начало каждого следующего вектора должно исходить из конца предыдущего.
Найти неизвестные величины можно или померив соответствующие стороны силового треугольника, или, по известным углам треугольника из теоремы синусов:
Откуда:
Ответ:
Задача № 2
Нить с двумя телами на концах и перекинута через блоки и (рис.2.6). В точке к нити, находящейся между блоками, прикрепил груз При равновесии системы нить образовала с горизонталью угол , а нить .
Определить вес тел и . Силами трения в блоках пренебречь.
Решение. Сначала выясним, равновесие какого объекта надо рассмотреть при решении задачи. По условию задачи нужно определить вес тела и вес тела , которые приложены к центрам масс тел и направлены вертикально вниз. Каждое тело натягивает нить с силой, равной его весу. Блок меняет направление нити, а соответственно, и направление силы натяжения нити. Силы и по модулю, равны и , но направлены вдоль и .
Поскольку прямые и пересекаются в точке , к которой можно приложить и заданную силу , то при решении задачи надо рассматривать равновесие точки .
Таким образом, на объект равновесия, точку (рис.2.6), действуют силы натяжения ветки нити ; натяжения ветки нити ; весы тела . (Вес тел и учитывать не надо, поскольку они приложены не к объекту равновесия точки ).
Составим уравнение равновесия. Для этого, выберем систему координат с началом в точке , спроецируем силы на оси и составим уравнение равновесия.
Для проекций на ось достанем:
Знак проекции – плюс, поскольку она направлена по положительному направлению оси . Знак проекции – минус, поскольку она направлена по отрицательному направлению оси . Проекция силы на ось равна нулю.
Сумма проекций всех сил на ось равна:
Проекции сил и имеют знак плюс, поскольку направлены по положительному направлению оси . Проекция силы имеет знак минус, поскольку направлена по отрицательному направлению оси.
С учетом численных значений тригонометрических функций и величины , уравнения примут вид:
Найдя из первого уравнения:
и подставив во второе, получим:
Ответ:
Задача № 3
Однородный стержень (рис.2.7), что прикреплено к вертикальной стенке с помощью шарнира , удерживается под углом к вертикали с помощью троса , который образует угол со стержнем.
Определить величину и направление реакции петли, если вес стержня
Решение. Задачу решим геометрическим и аналитическим способами, используя теорему о равновесии тела под действием 3-х сил.
Рассмотрим равновесие стержня . На стержень действует активная сила – сила тяжести и реакции связей: натяжение троса ; реакция цилиндрического шарнира .
Направление натяжения троса известное – реакция направлена вдоль троса к точке . Направление реакции шарнира предварительно указать нельзя. Для определения направления реакции воспользуемся теоремой о трех силах, так как стержень находится в равновесии под действием трех сил , и .
Найдем точку пересечения линий действия силы тяжести и натяжение троса – это точка . Согласно теореме о трех силах, линия действия реакции тоже должна пройти через эту точку.
На рис.2.7 равнобедренный (углы при вершинах и равны ). Поскольку линия действия () силы тяжести проходит через середину стержня и представляет собой среднюю линию , то точка делит сторону пополам.
Соответственно, отрезок является одновременно высотой, медианой и биссектрисой треугольника .
Таким образом
После определения направления реакции , можно переходить к вычислению величин реакций.
Запишем геометрическое условие равновесия системы сил, действующих на стержень :
Согласно записанному векторному уравнению построим замкнутый силовой треугольник (рис.2.8).
Для этого из произвольной точки в некотором масштабе проводим вектор силы тяжести . Через точку проводим прямую, параллельную линии действия реакции , а через точку конца вектора проводим прямую, параллельную линии действия натяжения .
Проведенные прямые пересекаются в точке , образовав силовой треугольник . Поскольку (рис. 2.7) и . ( рис. 2.8) подобные, то
Из силового треугольника находим:
Решим задачу аналитическим способом. Для этого выберем прямоугольную систему координат (рис.2.7) и составим уравнение равновесия в проекциях на оси:
Из первого уравнения выразим и подставим во второе уравнение:
Отсюда получим:
Ответ:
Балка (рис.2.9) закреплена шарнирно-неподвижной опорой в точке и шарнирно-подвижной в точке . К середине балки под углом приложена сила
Определить реакции опор и для двух случаев наклона подвижной опоры (рис.2.9, а и 2.9, б). Весом балки пренебречь.
Решение. Рассмотрим равновесие балки , изображенной на рис.2.9,а. На балку действует активная сила и реакции опор и (рис. 2.10). Опора шарнирно-подвижная, ее реакция направлена перпендикулярно опорной поверхности. Поскольку, в данном случае опорная поверхность параллельна оси балки, то реакция перпендикулярна . Опора шарнирно-неподвижная и направление ее реакции предварительно указать нельзя.
Для определения направления реакции (угла ) воспользуемся теоремой о трех силах. Линии действия силы и реакции пересекаются в точке . Таким образом, линия действия тоже должна пройти через точку .
С рис.2.10 видно, что – равнобедренный и прямоугольный, то есть . Откуда:
Теперь перейдем к определению величин реакций опор.
Составим уравнение равновесия сил в проекциях на оси выбранной системы координат :
С учетом числовых значений:
В результате получим:
Ответ:
Перейдем к определению реакций опор балки , что изображена на рис.2.9,б.
В этом случае, реакция составляет с осью балки угол . Линия действия реакции (рис.2.11) проходит через точку , в которой пересекаются линии действия силы и реакции .
Определим угол между реакцией и осью балки :
Составим уравнение равновесия для системы сил, действующей на балку:
С учетом числовых данных:
Добавив уравнение получим:
Подставив значение в первое уравнение, найдем :
Ответ:
Услуги по теоретической механике:
- Заказать теоретическую механику
- Помощь по теоретической механике
- Заказать контрольную работу по теоретической механике
Учебные лекции:
- Статика
- Момент силы
- Пара сил
- Произвольная система сил
- Плоская произвольная система сил
- Трение
- Расчет ферм
- Расчет усилий в стержнях фермы
- Пространственная система сил
- Произвольная пространственная система сил
- Плоская система сходящихся сил
- Пространственная система сходящихся сил
- Равновесие тела под действием пространственной системы сил
- Естественный способ задания движения точки
- Центр параллельных сил
- Параллельные силы
- Система произвольно расположенных сил
- Сосредоточенные силы и распределенные нагрузки
- Кинематика
- Кинематика твердого тела
- Движения твердого тела
- Динамика материальной точки
- Динамика механической системы
- Динамика плоского движения твердого тела
- Динамика относительного движения материальной точки
- Динамика твердого тела
- Кинематика простейших движений твердого тела
- Общее уравнение динамики
- Работа и мощность силы
- Обратная задача динамики
- Поступательное и вращательное движение твердого тела
- Плоскопараллельное (плоское) движение твёрдого тела
- Сферическое движение твёрдого тела
- Движение свободного твердого тела
- Сложное движение твердого тела
- Сложное движение точки
- Плоское движение тела
- Статика твердого тела
- Равновесие составной конструкции
- Равновесие с учетом сил трения
- Центр масс
- Колебания материальной точки
- Относительное движение материальной точки
- Статические инварианты
- Дифференциальные уравнения движения точки под действием центральной силы и их анализ
- Динамика системы материальных точек
- Общие теоремы динамики
- Теорема об изменении кинетической энергии
- Теорема о конечном перемещении плоской фигуры
- Потенциальное силовое поле
- Метод кинетостатики
- Вращения твердого тела вокруг неподвижной точки
Равнодействующая
системы сходящихся сил –
сила, оказывающая на твёрдое тело такое же механическое действие, как и данная система приложенных ктелу сил. В простейших случаях (например, для сил, приложенных в одной точке или расположенных в однойплоскости) равнодействующую можно найти, последовательно применяя закон параллелограмма сил.Равнодействующую имеет не всякая система сил, например, пара сил или две силы, не лежащие в одной
плоскости, равнодействующей не имеют.
Определение
равнодействующей системы сил аналитическим
способом
Величина
равнодействующей равна векторной
(геометрической) сумме векторов системы
сил. Определяем равнодействующую
геометрическим способом. Выберем
систему координат, определим проекции
всех заданных векторов на эти оси (рис.
3.4а). Складываем проекции всех векторов
на оси х и у (рис. 3.46).
Рис.3.4
FΣч = Flx + F2x + F3x
+ F4x; FΣн = Fly + F2y + F3y + F4y;
; .
Модуль (величину)
равнодействующей можно найти по известным
проекциям:
.
Направление вектора
равнодействующей можно определить по
величинам и знакам косинусов углов,
образуемых равнодействующей с осями
координат (рис. 3.5). Растяжение сжатие
Продольные силы и определение напряжений.
-
;
Рис.3.5
Условия равновесия
плоской системы сходящихся сил в
аналитической форме. Исходя из того,
что равнодействующая равна нулю, получим:
FΣ = 0.
Условия равновесия
в аналитической форме можно сформулировать
следующим образом:
Плоская
система сходящихся сил находится в
равновесии, если алгебраическая
сумма проекций всех сил системы на любую
ось равна нулю. Система уравнений
равновесия плоской сходящейся системы
сил:.
7. Условие равновесия системы сходящихся сил в аналитической и геометрической формах
Равновесие
системы сходящихся сил.
Из законов механики
следует, что твердое тело, на которое
действуют взаимно уравновешенные
внешние силы, может не только находиться
в покое, но и совершать движение, которое
мы назовем движением «по инерции».
Таким движением будет, например,
поступательное равномерное и прямолинейное
движение тела.
Отсюда получаем
два важных вывода:
1) Условиям равновесия
статики удовлетворяют силы, действующие
как на покоящееся тело, так и на тело,
движущееся «по инерции».
2) Уравновешенность
сил, приложенных к свободному твердому
телу, является необходимым, но не
достаточным условием равновесия (покоя)
самого тела; в покое тело будет при этом
находиться лишь в том случае, если оно
было в покое и до момента приложения к
нему уравновешенных сил.
Для равновесия
приложенной к твердому телу системы
сходящихся сил необходимо и достаточно,
чтобы равнодействующая этих сил была
равна нулю. Условия, которым при этом
должны удовлетворять сами силы, можно
выразить в геометрической или
аналитической форме.
1. Геометрическое
условие равновесия. Так
как равнодействующая сходящихся
сил определяется как замыкающая сторона
силового многоугольника, построенного
из этих сил, то может
обратиться в нуль тогда и только тогда,
когда конец последней силы в многоугольнике
совпадает с началом первой, т.
е. когда многоугольник замкнется.
Следовательно,
для равновесия системы, сходящихся сил
необходимо и достаточно, чтобы силовой
многоугольник, построенный из этих
сил, был замкнут.
2. Аналитические
условия равновесия. Аналитически
равнодействующая системы сходящихся
сил определяется формулой
.
Так
как под корнем стоит сумма положительных
слагаемых, то R обратится
в нуль только тогда, когда одновременно ,
т. е. когда действующие на тело силы
будут удовлетворять равенствам:
Равенства
выражают условия
равновесия в аналитической форме: для
равновесия пространственной системы
сходящихся сил необходимо и достаточно,
чтобы суммы проекций этих сил на каждую
из трех координатных осей были равны
нулю.
Если все действующие
на тело сходящиеся силы лежат в одной
плоскости, то они образуют плоскую
систему сходящихся сил. В случае плоской
системы сходящихся сил получим, очевидно,
только два условия равновесия
Равенства выражают
также необходимые условия (или уравнения)
равновесия свободного твердого тела,
находящегося под действием сходящихся
сил.
Теорема
о трех силах. Уравновешенная
плоская система трех непараллельных
сил является сходящейся.
Условие
«плоская» в формулировке теоремы не
является необходимым можно
убедиться, что любая уравновешенная
система трех сил всегда будет плоской.
Это следует из условий равновесия
произвольной пространственной системы
сил, которые будут рассмотрены далее.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Как найти геометрически равнодействующую трех сил?
На этой странице сайта, в категории Физика размещен ответ на вопрос
Как найти геометрически равнодействующую трех сил?. По уровню сложности вопрос рассчитан на учащихся
10 – 11 классов. Чтобы получить дополнительную информацию по
интересующей теме, воспользуйтесь автоматическим поиском в этой же категории,
чтобы ознакомиться с ответами на похожие вопросы. В верхней части страницы
расположена кнопка, с помощью которой можно сформулировать новый вопрос,
который наиболее полно отвечает критериям поиска. Удобный интерфейс
позволяет обсудить интересующую тему с посетителями в комментариях.
В данной статье рассказано о том, как найти модуль равнодействующей сил, действующих на тело. Репетитор по математике и физике объяснит вам, как найти суммарный вектор равнодействующей сил по правилу параллелограмма, треугольника и многоугольника. Материал разобран на примере решения задачи из ЕГЭ по физике.
Как найти модуль равнодействующей силы
Сила, которая оказывает на материальную точку такое же действие, как и несколько других сил, называется равнодействующей этих сил. Для нахождения вектора равнодействующей силы необходимо геометрически (векторно) сложить все силы, которые действуют на материальную точку.
Напомним, что сложить векторы геометрически можно с помощью одного из трех правил: правила параллелограмма, правила треугольника или правила многоугольника. Разберём каждое из этих правил в отдельности.
1. Правило параллелограмма. На рисунке по правилу параллелограмма складываются векторы и . Суммарный вектор есть вектор :
Если векторы и не отложены от одной точки, нужно заменить один из векторов равным и отложить его от начала второго вектора, после чего воспользоваться правилом параллелограмма. Например, на рисунке вектор заменен на равный ему вектор , и :
2. Правило треугольника. На рисунке по правилу треугольника складываются векторы и . В сумме получается вектор :
Если вектор отложен не от конца вектора , нужно заменить его равным и отложенным от конца вектора , после чего воспользоваться правилом треугольника. Например, на рисунке вектор заменен равным ему вектором , и :
3. Правило многоугольника. Для того, чтобы сложить несколько векторов по правилу параллелограмма, необходимо от произвольной точки отложить вектор, равный первому складываемому вектору, от его конца отложить вектор, равный второму складываемому вектору, и так далее. Суммарным будет вектор, проведенный из точки в конец последнего отложенного вектора. На рисунке :
Задача на нахождение модуля равнодействующей силы
Разберем задачу на нахождение равнодействующей сил на конкретном примере из демонстрационного варианта ЕГЭ по физике 2016 года.
Для нахождения вектора равнодействующей сил найдём геометрическую (векторную) сумму всех изображенных сил, используя правило многоугольника. Упрощенно говоря (не вполне корректно с математической точки зрения), каждый последующий вектор нужно отложить от конца предыдущего. Тогда суммарный вектор будет исходить из точки, из который отложен первоначальный вектор, и приходить в точку, где заканчивается последний вектор:
Требуется найти модуль равнодействующей сил, то есть длину получившегося вектора. Для этого рассмотрим вспомогательный прямоугольный треугольник :
Требуется найти гипотенузу этого треугольника. «По клеточкам» находим длину катетов: Н, Н. Тогда по теореме Пифагора для этого треугольника получаем: Н. То есть искомый модуль равнодействующей сил равен Н.
Итак, сегодня мы разобрали, как находить модуль равнодействующей силы. Задачи на нахождение модуля равнодействующей силы встречаются в вариантах ЕГЭ по физике. Для решения этих задач необходимо знать определение равнодействующей сил, а также уметь складывать векторы по правилу параллелограмма, треугольника или многоугольника. Стоит немного потренироваться, и вы научитесь решать эти задачи легко и быстро. Удачи вам в подготовке к ЕГЭ по физике!
Репетитор по физике на Юго-Западной
Сергей Валерьевич
подготовка к ЕГЭ по физике с репетиторомрешение заданий ЕГЭ по физикерешение задач по физикесправочник по физикетеория ЕГЭ по физике