Как найти гипотенузу все способы

После изучения темы про прямоугольные треугольники ученики часто выбрасывают из головы всю информацию о них. В том числе и то, как найти гипотенузу, не говоря уже о том, что это такое.

как найти гипотенузу

И напрасно. Потому что в дальнейшем диагональ прямоугольника оказывается этой самой гипотенузой, и ее нужно найти. Или диаметр окружности совпадает с самой большой стороной треугольника, один из углов которого прямой. И найти ее без этого знания невозможно.

Существует несколько вариантов того, как найти гипотенузу треугольника. Выбор метода зависит от исходного набора данных в условии задачи величин.

Способ под номером 1: даны оба катета

Это самый запоминающийся метод, потому что использует теорему Пифагора. Только иногда ученики забывают, что по этой формуле находится квадрат гипотенузы. Значит, чтобы найти саму сторону, нужно будет извлечь квадратный корень. Поэтому формула для гипотенузы, которую принято обозначать буквой «с», будет выглядеть так:

с = √ (а2 + в2), где буквами «а» и «в» записаны оба катета прямоугольного треугольника.

как находить гипотенузу прямоугольного треугольника

Способ под номером 2: известен катет и угол, который к нему прилежит

Для того чтобы узнать, как найти гипотенузу, потребуется вспомнить тригонометрические функции. А именно косинус. Для удобства будем считать, что даны катет «а» и прилежащий к нему угол α.

Теперь нужно вспомнить, что косинус угла прямоугольного треугольника равен отношению двух сторон. В числителе будет стоять значение катета, а в знаменателе — гипотенузы. Из этого следует, что последнюю можно будет сосчитать по формуле:

с = а / cos α.

Способ под номером 3: даны катет и угол, который лежит напротив него

Чтобы не запутаться в формулах, введем обозначение для этого угла — β, а сторону оставим прежнюю «а». В этом случае потребуется другая тригонометрическая функция – синус.

Как и в предыдущем примере, синус равен отношению катета к гипотенузе. Формула этого способа выглядит так:

с = а / sin β.

Для того чтобы не запутаться в тригонометрических функциях, можно запомнить простое мнемоническое привило: если в задаче идет речь о противолежащем угле, то нужно использовать синус, если — о прилежащем, то косинус. Следует обратить внимание на первые гласные в ключевых словах. Они образуют пары о-и или и-о.

квадрат гипотенузы

Способ под номером 4: по радиусу описанной окружности

Теперь, для того чтобы узнать, как найти гипотенузу, потребуется вспомнить свойство окружности, которая описана около прямоугольного треугольника. Оно гласит следующее. Центр окружности совпадает с серединой гипотенузы. Если сказать по-другому, то самая большая сторона прямоугольного треугольника равна диагонали окружности. То есть удвоенному радиусу. Формула для этой задачи будет выглядеть так:

с = 2 * r, где буквой r обозначен известный радиус.

Это все возможные способы того, как находить гипотенузу прямоугольного треугольника. Пользоваться в каждой конкретной задаче нужно тем методом, который больше подходит по набору данных.

Пример задачи №1

Условие: в прямоугольном треугольнике проведены медианы к обоим катетам. Длина той, которая проведена к большей стороне, равна √52. Другая медиана имеет длину √73. Требуется вычислить гипотенузу.

Решение.

Так как в треугольнике проведены медианы, то они делят катеты на два равных отрезка. Для удобства рассуждений и поиска того, как найти гипотенузу, нужно ввести несколько обозначений. Пусть обе половинки большего катета будут обозначены буквой «х», а другого — «у».

Теперь нужно рассмотреть два прямоугольных треугольника, гипотенузами у которых являются известные медианы. Для них нужно дважды записать формулу теоремы Пифагора:

(2у)2 + х2 = (√52)2

и

(у)2 + (2х)2 = (√73)2.

Эти два уравнения образуют систему с двумя неизвестными. Решив их, легко можно будет найти катеты исходного треугольника и по ним его гипотенузу.

Сначала нужно все возвести во вторую степень. Получается:

2 + х2 = 52

и

у2 + 4х2 = 73.

Из второго уравнения видно, что у2 = 73 – 4х2. Это выражение нужно подставить в первое и вычислить «х»:

4(73 – 4х2) + х2 = 52.

После преобразования:

292 – 16 х2 + х2 = 52 или 15х2 = 240.

Из последнего выражения х = √16 = 4.

Теперь можно вычислить «у»:

у2 = 73 – 4(4)2 = 73 – 64 = 9.

у = 3.

По данным условия получается, что катеты исходного треугольника равны 6 и 8. Значит, можно воспользоваться формулой из первого способа и найти гипотенузу:

√(62 + 82) = √(36 + 64) = √100 = 10.

Ответ: гипотенуза равна 10.

как найти гипотенузу треугольника

Пример задачи №2

Условие: вычислить диагональ, проведенную в прямоугольнике с меньшей стороной, равной 41. Если известно, что она делит угол на такие, которые соотносятся как 2 к 1.

Решение.

В этой задаче диагональ прямоугольника является наибольшей стороной в треугольнике с углом 90º. Поэтому все сводится к тому, как найти гипотенузу.

В задаче идет речь об углах. Это значит, что нужно будет пользоваться одной из формул, в которых присутствуют тригонометрические функции. А сначала требуется определить величину одного из острых углов.

Пусть меньший из углов, о которых идет речь в условии, будет обозначен α. Тогда прямой угол, который делится диагональю, будет равен 3α. Математическая запись этого выглядит так:

90º = 3 α.

Из этого уравнения просто определить α. Он будет равен 30º. Причем он будет лежать напротив меньшей стороны прямоугольника. Поэтому потребуется формула, описанная в способе №3.

Гипотенуза равна отношению катета к синусу противолежащего угла, то есть:

41 / sin 30º = 41 / (0,5) = 82.

Ответ: гипотенуза равна 82.


Загрузить PDF


Загрузить PDF

Все прямоугольные треугольники имеют один прямой угол (90 градусов), а противоположная ему сторона называется гипотенузой.[1]
Гипотенуза — самая длинная сторона треугольника, и найти ее можно различными способами. В этой статье мы расскажем вам, как найти гипотенузу по теореме Пифагора (когда известны длины двух других сторон треугольника), по теореме синусов (когда известны длина катета и угол) и в некоторых частных случаях (часто такие задания встречаются на контрольных и тестах).

  1. Изображение с названием Find the Length of the Hypotenuse Step 1

    1

    Теорема Пифагора связывает все стороны прямоугольного треугольника.[2]
    Согласно данной теореме, в любом прямоугольном треугольнике с катетами «а» и «b» и гипотенузой «с»: a2 + b2 = c2.[3]

  2. Изображение с названием Find the Length of the Hypotenuse Step 2

    2

    Убедитесь, что данный вам треугольник является прямоугольным, так как теорема Пифагора применима только к прямоугольным треугольникам. В прямоугольных треугольниках один из трех углов всегда равен 90 градусам.

    • Прямой угол в прямоугольном треугольнике обозначается значком в виде квадрата.
  3. Изображение с названием Find the Length of the Hypotenuse Step 3

    3

    Обозначьте стороны треугольника. Катеты обозначьте как «а» и «b» (катеты — стороны, пересекающиеся под прямым углом), а гипотенузу — как «с» (гипотенуза — самая большая сторона прямоугольного треугольника, лежащая напротив прямого угла). Затем подставьте данные вам значения в формулу.

    • Например, катеты треугольника равны 3 и 4. В этом случае а = 3, b = 4, а формула выглядит так: 32 + 42 = c2.
  4. Изображение с названием Find the Length of the Hypotenuse Step 4

    4

    Возведите в квадрат значения катетов («a» и «b»). Для этого просто умножьте число само на себя:

    • Если a = 3, то a2 = 3 x 3 = 9. Если b = 4, то b2 = 4 x 4 = 16.
    • Подставьте эти значения в формулу: 9 + 16 = с2.
  5. Изображение с названием Find the Length of the Hypotenuse Step 5

    5

    Сложите найденные квадраты катетов (a2 и b2), чтобы вычислить квадрат значения гипотенузы (с2).

    • В нашем примере 9 + 16 = 25, поэтому с2 = 25.
  6. Изображение с названием Find the Length of the Hypotenuse Step 6

    6

    Найдите квадратный корень с2. Используйте калькулятор, чтобы извлечь квадратный корень из найденного значения. Так вы вычислите гипотенузу треугольника.

    • В нашем примере с2 = 25. Квадратный корень из 25 равен 5 (так как 5 х 5 = 25, поэтому √25 = 5). Это означает, что гипотенуза с = 5.

    Реклама

  1. Изображение с названием Find the Length of the Hypotenuse Step 7

    1

    Определение пифагоровой тройки. Пифагорова тройка — это три числа (длины трех сторон), которые удовлетворяют теореме Пифагора. Очень часто треугольники с такими сторонами приводятся в учебниках и на тестах. Если вы запомните первые несколько пифагоровых троек, вы сэкономите много времени на тестах или экзаменах, потому что сможете вычислить гипотенузу, просто взглянув на длины катетов.[4]

    • Первая пифагорова тройка: 3-4-5 (32 + 42 = 52, 9 + 16 = 25). Если дан треугольник с катетами 3 и 4, то вы можете с уверенностью заявить, что гипотенуза равна 5 (без необходимости делать какие-либо расчеты).
    • Пифагоровы тройки работают даже в том случае, когда числа умножены или разделены на один коэффициент. Например, если катеты равны 6 и 8, гипотенуза равна 10 (62 + 82 = 102, 36 + 64 = 100). То же самое верно для 9-12-15 и даже для 1,5-2-2,5.
    • Вторая пифагорова тройка: 5-12-13 (52 + 122 = 132, 25 + 144 = 169). Также к этой тройке относятся, например, числа 10-24-26 и 2,5-6-6,5.
  2. Изображение с названием Find the Length of the Hypotenuse Step 8

    2

    Равнобедренный прямоугольный треугольник. Это такой треугольник, углы которого равны 45,45 и 90 градусам. Соотношение между сторонами этого треугольника равно 1:1:√2. Это означает, что гипотенуза в таком треугольнике равна произведению катета и квадратного корня из 2.

    • Чтобы вычислить гипотенузу такого треугольника, просто умножьте длину любого катета на √2.[5]
    • Это соотношение особенно удобно, когда в задачах вместо числовых значений даются переменные.
  3. Изображение с названием Find the Length of the Hypotenuse Step 9

    3

    Половина равностороннего прямоугольного треугольника. Это такой треугольник, углы которого равны 30,60 и 90 градусам. Соотношение между сторонами этого треугольника равно 1:√3:2 или х:х√3:2х. Чтобы найти гипотенузу в таком треугольнике выполните одно из следующих действий:[6]

    • Если вам дан короткий катет (противолежащий углу в 30 градусов), просто умножьте длину этого катета на 2, чтобы найти длину гипотенузы. Например, если короткий катет равен 4, то гипотенуза равна 8.
    • Если вам дан длинный катет (противолежащий углу в 60 градусов), просто умножьте длину этого катета на 2/√3, чтобы найти длину гипотенузы. Например, если короткий катет равен 4, то гипотенуза равна 4,62.

    Реклама

  1. Изображение с названием Find the Length of the Hypotenuse Step 10

    1

    Поймите, что означает «синус». Синус, косинус и тангенс угла — это основные тригонометрические функции, связывающие углы и стороны в прямоугольном треугольнике. Синус угла равен отношению противолежащей стороны к гипотенузе. Обозначается синус как sin.[7]

  2. Изображение с названием Find the Length of the Hypotenuse Step 11

    2

    Научитесь вычислять синус. Чтобы вычислить синус, на калькуляторе найдите клавишу sin, нажмите ее, а затем введите значение угла. В некоторых калькуляторах сначала нужно нажать клавишу перехода к работе с функциями, а затем нажать клавишу sin. Поэтому поэкспериментируйте с калькулятором или проверьте его документацию.

    • Чтобы найти синус угла в 80 градусов, нажмите «sin», «8», «0», «=» или нажмите «8», «0», «sin», «=» (ответ: -0,9939).
    • Вы также можете найти онлайн-калькулятор, введя в поисковой системе «вычисление синуса» (без кавычек).[8]
  3. Изображение с названием Find the Length of the Hypotenuse Step 12

    3

    Запомните теорему синусов. Теорема синусов является полезным инструментом для вычисления углов и сторон любого треугольника. В частности, она поможет вам найти гипотенузу прямоугольного треугольника, если вам дан катет и угол, отличный от прямого. Согласно теореме синусов, в любом треугольнике со сторонами a, b, c и углами A, B, C верно равенство a / sin A = b / sin B = c / sin С.[9]

    • Теорема синусов применяется к любым треугольникам, а не только к прямоугольным (но только в прямоугольном треугольнике есть гипотенуза).
  4. Изображение с названием Find the Length of the Hypotenuse Step 13

    4

    Обозначьте стороны треугольника через «а» (известный катет), «b» (неизвестный катет), «с» (гипотенуза). Затем обозначьте углы треугольника через «А» (напротив катета «а»), «В» (напротив катета «b»), «С» (напротив гипотенузы).

  5. Изображение с названием Find the Length of the Hypotenuse Step 14

    5

    Найдите третий угол. Если вам дан один из острых углов прямоугольного треугольника (А или В), а второй угол всегда равен 90 градусам (С = 90), то третий угол вычисляется по формуле 180 – (90 + А) = B (помните, что сумма углов в любом треугольнике равна 180 градусам). При необходимости уравнение можно изменить и так: 180 – (90 + B) = A.

    • Например, если угол A = 40 градусам, то B = 180 – (90 + 40) = 180 – 130 = 50 градусов.
  6. Изображение с названием Find the Length of the Hypotenuse Step 15

    6

    На данном этапе вам известны значения всех трех углов и длина катета «а». Теперь вы можете подставить эти значения в формулу теоремы синусов, чтобы найти две другие стороны.

    • В нашем примере допустим, что катет а = 10, а углы равны C = 90˚, A = 40˚, В = 50˚.
  7. Изображение с названием Find the Length of the Hypotenuse Step 16

    7

    Подставьте данные и найденные значения в теорему синусов, чтобы найти гипотенузу: катет «а»/синус угла «A» = гипотенуза «с»/синус угла «С». При этом sin 90˚ = 1. Таким образом, уравнение упрощается до: а/sinA = с/1 или с = а/sinA.

  8. Изображение с названием Find the Length of the Hypotenuse Step 17

    8

    Разделите длину катета «а» на синус угла «А», чтобы найти длину гипотенузы. Для этого сначала найдите синус угла, а затем выполните деление. Или вы можете воспользоваться калькулятором, введя 10/(sin40) или 10/(40sin) (не забудьте про скобки).

    • В нашем примере sin 40 = 0,64278761, а с = 10/0,64278761 = 15,6.

    Реклама

Об этой статье

Эту страницу просматривали 311 399 раз.

Была ли эта статья полезной?


Download Article


Download Article

All right triangles have one right (90-degree) angle, and the hypotenuse is the side that is opposite or the right angle, or the longest side of the right triangle.[1]
The hypotenuse is the longest side of the triangle, and it’s also very easy to find using a couple of different methods. This article will teach you how to find the length of the hypotenuse using the Pythagorean theorem when you know the length of the other two sides of the triangle. It will then teach you to recognize the hypotenuse of some special right triangles that often appear on tests. It will finally teach you to find the length of the hypotenuse using the Law of Sines when you only know the length of one side and the measure of one additional angle.

  1. Image titled Find the Length of the Hypotenuse Step 1

    1

    Learn the Pythagorean Theorem. The Pythagorean Theorem describes the relationship between the sides of a right triangle.[2]
    It states that for any right triangle with sides of length a and b, and hypotenuse of length c, a2 + b2 = c2.[3]

  2. Image titled Find the Length of the Hypotenuse Step 2

    2

    Make sure that your triangle is a right triangle. The Pythagorean Theorem only works on right triangles, and by definition only right triangles can have a hypotenuse. If your triangle contains one angle that is exactly 90 degrees, it is a right triangle and you can proceed.

    • Right angles are often notated in textbooks and on tests with a small square in the corner of the angle. This special mark means “90 degrees.”

    Advertisement

  3. Image titled Find the Length of the Hypotenuse Step 3

    3

    Assign variables a, b, and c to the sides of your triangle. The variable “c” will always be assigned to the hypotenuse, or longest side. Choose one of the other sides to be a, and call the other side b (it doesn’t matter which is which; the math will turn out the same). Then copy the lengths of a and b into the formula, according to the following example:

    • If your triangle has sides of 3 and 4, and you have assigned letters to those sides such that a = 3 and b = 4, then you should write your equation out as: 32 + 42 = c2.
  4. Image titled Find the Length of the Hypotenuse Step 4

    4

    Find the squares of a and b. To find the square of a number, you simply multiply the number by itself, so a2 = a x a. Find the squares of both a and b, and write them into your formula.[4]

    • If a = 3, a2 = 3 x 3, or 9. If b = 4, then b2 = 4 x 4, or 16.
    • When you plug those values into your equation, it should now look like this: 9 + 16 = c2.
  5. Image titled Find the Length of the Hypotenuse Step 5

    5

    Add together the values of a2 and b2. Enter this into your equation, and this will give you the value for c2. There is only one step left to go, and you will have that hypotenuse solved!

    • In our example, 9 + 16 = 25, so you should write down 25 = c2.
  6. Image titled Find the Length of the Hypotenuse Step 6

    6

    Find the square root of c2. Use the square root function on your calculator (or your memory of the multiplication table) to find the square root of c2. The answer is the length of your hypotenuse![5]

    • In our example, c2 = 25. The square root of 25 is 5 (5 x 5 = 25, so Sqrt(25) = 5). That means c = 5, the length of our hypotenuse!
  7. Advertisement

  1. Image titled Find the Length of the Hypotenuse Step 7

    1

    Learn to recognize Pythagorean Triple Triangles. The side lengths of a Pythagorean triple are integers that fit the Pythagorean Theorem. These special triangles appear frequently in geometry text books and on standardized tests like the SAT and the GRE. If you memorize the first 2 Pythagorean triples, in particular, you can save yourself a lot of time on these tests because you can immediately know the hypotenuse of one of these triangles just by looking at the side lengths![6]

    • The first Pythagorean triple is 3-4-5 (32 + 42 = 52, 9 + 16 = 25). When you see a right triangle with legs of length 3 and 4, you can instantly be certain that the hypotenuse will be 5 without having to do any calculations.
    • The ratio of a Pythagorean triple holds true even when the sides are multiplied by another number. For example a right triangle with legs of length 6 and 8 will have a hypotenuse of 10 (62 + 82 = 102, 36 + 64 = 100). The same holds true for 9-12-15, and even 1.5-2-2.5. Try the math and see for yourself!
    • The second Pythagorean triple that commonly appears on tests is 5-12-13 (52 + 122 = 132, 25 + 144 = 169). Also be on the lookout for multiples like 10-24-26 and 2.5-6-6.5.
  2. Image titled Find the Length of the Hypotenuse Step 8

    2

    Memorize the side ratios of a 45-45-90 right triangle. A 45-45-90 right triangle has angles of 45, 45, and 90 degrees, and is also called an Isosceles Right Triangle. It occurs frequently on standardized tests, and is a very easy triangle to solve. The ratio between the sides of this triangle is 1:1:Sqrt(2), which means that the length of the legs are equal, and the length of the hypotenuse is simply the leg length multiplied by the square root of two.[7]

    • To calculate the hypotenuse of this triangle based on the length of one of the legs, simply multiply the leg length by Sqrt(2).
    • Knowing this ratio comes in especially handy when your test or homework question gives you the side lengths in terms of variables instead of integers.
  3. Image titled Find the Length of the Hypotenuse Step 9

    3

    Learn the side ratios of a 30-60-90 right triangle. This triangle has angle measurements of 30, 60, and 90 degrees, and occurs when you cut an equilateral triangle in half. The sides of the 30-60-90 right triangle always maintain the ratio 1:Sqrt(3):2, or x:Sqrt(3)x:2x. If you are given the length of one leg of 30-60-90 right triangle and are asked to find the hypotenuse, it is very easy to do:[8]

    • If you are given the length of the shortest leg (opposite the 30-degree angle,) simply multiply the leg length by 2 to find the length of the hypotenuse. For instance, if the length of the shortest leg is 4, you know that the hypotenuse length must be 8.
    • If you are given the length of the longer leg (opposite the 60-degree angle,) multiply that length by 2/Sqrt(3) to find the length of the hypotenuse. For instance, if the length of the longer leg is 4, you know that the hypotenuse length must be 4.62.
  4. Advertisement

  1. Image titled Find the Length of the Hypotenuse Step 10

    1

    Understand what “Sine” means. The terms “sine,” “cosine,” and “tangent” all refer to various ratios between the angles and/or sides of a right triangle. In a right triangle, the sine of an angle is defined as the length of the side opposite the angle divided by the hypotenuse of the triangle. The abbreviation for sine found in equations and on calculators is sin.[9]

  2. Image titled Find the Length of the Hypotenuse Step 11

    2

    Learn to calculate sine. Even a basic scientific calculator will have a sine function. Look for a key marked sin. To find the sine of angle, you will usually press the sin key and then enter the angle measurement in degrees. On some calculators, however, you must enter the degree measurement first and then the sin key. You will have to experiment with your calculator or check the manual to find out which it is.

    • To find the sine of an 80 degree angle, you will either need to key in sin 80 followed by the equal sign or enter key, or 80 sin. (The answer is -0.9939.)
    • You can also type in “sine calculator” into a web search, and find a number of easy-to-use calculators that will remove any guesswork.[10]
  3. Image titled Find the Length of the Hypotenuse Step 12

    3

    Learn the Law of Sines. The Law of Sines is a useful tool for solving triangles. In particular, it can help you find the hypotenuse of a right triangle if you know the length of one side, and the measure of one other angle in addition to the right angle. For any triangle with sides a, b, and c, and angles A, B, and C, the Law of Sines states that a / sin A = b / sin B = c / sin C.[11]

    • The Law of Sines can actually be used to solve any triangle, but only a right triangle will have a hypotenuse.
  4. Image titled Find the Length of the Hypotenuse Step 13

    4

    Assign the variables a, b, and c to the sides of your triangle. The hypotenuse (longest side) must be “c”. For the sake of simplicity, label the side with the known length as “a,” and the other “b”. Then assign variables A, B, and C to the angles of the triangle. The right angle opposite the hypotenuse will be “C”. The angle opposite side “a” is angle “A,” and the angle opposite side “b” is “B”.

  5. Image titled Find the Length of the Hypotenuse Step 14

    5

    Calculate the measurement of the third angle. Because it is a right angle, you already know that C = 90 degrees, and you also know the measure of A or B. Since the internal degree measurement of a triangle must always equal 180 degrees, you can easily calculate the measurement of the third angle using the following formula: 180 – (90 + A) = B. You can also reverse the equation such that 180 – (90 + B) = A.

    • For example, if you know that A = 40 degrees, then B = 180 – (90 + 40). Simplify this to B = 180 – 130, and you can quickly determine that B = 50 degrees.
  6. Image titled Find the Length of the Hypotenuse Step 15

    6

    Examine your triangle. At this point, you should know the degree measurements of all three angles, and the length of side a. It is now time to plug this information into the Law of Sines equation to determine the lengths of the other two sides.

    • To continue our example, let’s say that the length of side a = 10. Angle C = 90 degrees, angle A = 40 degrees, and angle B = 50 degrees.
  7. Image titled Find the Length of the Hypotenuse Step 16

    7

    Apply the Law of Sines to your triangle. We just need to plug our numbers in and solve the following equation to determine the length of hypotenuse c: length of side a / sin A = length of side c / sin C. This might still look a bit intimidating, but the sine of 90 degrees is a constant, and always equals 1! Our equation can thus be simplified to: a / sin A = c / 1, or just a / sin A = c.[12]

  8. Image titled Find the Length of the Hypotenuse Step 17

    8

    Divide the length of side a by the sine of angle A to find the length of the hypotenuse! You can do this in two separate steps, by first calculating sin A and writing it down, and then dividing by a. Or you can key it all into the calculator at the same time. If you do, remember to include parentheses after the division sign.[13]
    For example, key in either 10 / (sin 40) or 10 / (40 sin), depending on your calculator.

    • Using our example, we find that sin 40 = 0.64278761. To find the value of c, we simply divide the length of a by this number, and learn that 10 / 0.64278761 = 15.6, the length of our hypotenuse!
  9. Advertisement

  1. 1

    Identify the formula to use. There are many variations of the formula for the area of a right triangle. You may already be familiar with the formula Area = 1/2 x base x height. But the known parameters determines which formulas you can work with. You can find the most commonly used formulas for calculating the area of right and non right angles with worked examples in this article[14]
    . The variation that directly relates the area to the hypotenuse is {displaystyle {text{Area}}={frac {1}{2}}times c^{2}times sin alpha times cos alpha }

    • Rearrange formula to make hypotenuse the subject. The variable “c” represents the hypotenuse.

      Image titled Formula_for_hypotenuse_with_area.png

  2. 2

    Assign the variables. alpha represents an angle on the right angle other than the 90 degree angle. So it is up to you to assign any of the other two angles as alpha . The other variable in the formula is the area, which as the name suggests refers to the area of the triangle.

  3. 3

    Apply the formula to your triangle. We just need to plug in the variables to the formula and solve the following equation to determine the length of hypotenuse c. {displaystyle {text{c}}={sqrt {frac {2times {text{Area}}}{sin alpha times cos alpha }}}}

  4. Advertisement

Practice Problems and Answers

Add New Question

  • Question

    How do you find the length of the hypotenuse in the Pythagorean Theorem?

    Grace Imson, MA

    Grace Imson, MA

    Math Instructor, City College of San Francisco

    Grace Imson is a math teacher with over 40 years of teaching experience. Grace is currently a math instructor at the City College of San Francisco and was previously in the Math Department at Saint Louis University. She has taught math at the elementary, middle, high school, and college levels. She has an MA in Education, specializing in Administration and Supervision from Saint Louis University.

    Grace Imson, MA

    Math Instructor, City College of San Francisco

    Expert Answer

    Support wikiHow by
    unlocking this expert answer.

    One common mistake is forgetting to square the terms. In the Pythagorean Theorem, all three terms are squared. Many people go too fast and forget to find the square before the sum of ‘a’ and ‘b,’ which gives them an incorrect answer.

  • Question

    Is there a calculator for finding the length of the hypotenuse?

    wikiHow Staff Editor

    This answer was written by one of our trained team of researchers who validated it for accuracy and comprehensiveness.

    wikiHow Staff Editor

    wikiHow Staff Editor

    Staff Answer

    Support wikiHow by
    unlocking this staff-researched answer.

    Google provides a right angle triangle calculator that allows you to solve for the hypotenuse. Simply search for “hypotenuse calculator” and plug your numbers into the calculator at the top of the search results. You can also use the hypotenuse calculator at Omincalculator.com.

  • Question

    How can you find the length of the hypotenuse given the length of 1 side and an angle?

    wikiHow Staff Editor

    This answer was written by one of our trained team of researchers who validated it for accuracy and comprehensiveness.

    wikiHow Staff Editor

    wikiHow Staff Editor

    Staff Answer

    Support wikiHow by
    unlocking this staff-researched answer.

    If you know you are dealing with a right triangle, then you already know that one of the angles is 90°. Since the angles must add up to 180°, you can solve for the missing angle using the formula 90 + X = 180. Once you have all 3 angles, you can use that information and the known length of 1 side to use the law of sines and find the length of the hypotenuse.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

About This Article

Article SummaryX

If you need to find the length of the hypotenuse of a right triangle, you can use the Pythagorean theorem if you know the length of the other two sides. Square the length of the 2 sides, called a and b, then add them together. Take the square root of the result to get the hypotenuse. If you want to learn how to find the hypotenuse using trigonometric functions, keep reading the article!

Did this summary help you?

Thanks to all authors for creating a page that has been read 1,375,273 times.

Did this article help you?

Гипотенуза — сторона в прямоугольном треугольнике, находящаяся напротив прямого угла. Две других стороны — катеты. В прямоугольном треугольнике гипотенуза всегда длиннее катетов.

Треугольник ABC: гипотенуза AC лежит напротив прямого угла β, BC и AB — катеты.

Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов (формула: c² = a² + b², где c — гипотенуза, a и b — катеты). Очень часто для вычисления гипотенузы используется именно эта теорема.

Как найти гипотенузу?

Как найти гипотенузу, зная катеты?

Если известны оба катета (две другие стороны прямоугольного треугольника), можно применить Теорему Пифагора.

Теорема Пифагора — в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Формула: c² = a² + b² (при c — гипотенуза, a и b — катеты).

Например:

Треугольник ABC: гипотенуза AC лежит напротив прямого угла β, катеты BC = 3cm и AB = 4cm

Один катет равен 3 см, другой — 4 см. Таким образом, а = 3, b = 4, подставляем в формулу:

c² = 3² + 4² <=> c² = 9 + 16 <=> c² = 25 <=> c = √25 <=> c = 5.

Ответ: длина гипотенузы 5 см (или x = 5).

Как найти катет в прямоугольном треугольнике

По той же формуле можно найти и длину одного неизвестного катета, нужно только немного её изменить:

Начальная формула: c² = a² + b² (при c — гипотенуза, a и b — катеты), и найти катет можно по этой:

a = c² - b² либо b = c² - a²
(c — гипотенуза, a и b — катеты)

Например: Один катет равен 3 см, а гипотенуза — 5 см. Нужно узнать длину второго катета.

Применяем формулу b = √c² — a² ⇔

b = √5² — 3² ⇔ b = √25 — 9 ⇔ b = √16 ⇔ b = 4.

Как найти гипотенузу, зная катет и угол?

Если есть противолежащий катет — теорема синусов

Если в условии задачи дан угол и противолежащий катет, то ищем гипотенузу по Теореме синусов: стороны треугольника пропорциональны синусам противолежащих углов.

Примечание: гипотенуза есть только в прямоугольном треугольнике, однако теорему синусов можно применять к любым треугольникам (не только к прямоугольным).

Формула:

формула теоремы синусов a/sinα = b/sinβ = c/sinγ

Треугольник ABC

Например:

Треугольник ABC, 𝐴𝐶 = √2 и ∠β = 45º, ∠𝐴 прямой

Известна одна сторона треугольника 𝐴𝐶 = √2 и ∠β = 45º.

∠α = 90º (т.к. мы ищем гипотенузу, то второй угол в треугольнике прямой, значит имеет 90º).

Так как во всех треугольниках сумма всех углов равна 180º, то можем узнать оставшийся ∠c.

Значит: ∠c = 180º — (90º + 45º) = 45º.

Подставляем в формулу (a/sinα = b/sinβ = c/sinγ) известные:

BC/sin90º = AC/sin45º = AB/sin45º

В таблице вы найдёте значения для синуса:

sin 45º √2/2
sin 60º √3/2
sin 90º 1

В условии задачи нам дано: 𝐴𝐶 = √2, значит:

BC/sin90º = √2/sin45º = AB/sin45º

Подставляем значения синуса из таблицы:

BC/1 = √2/(√2/2) = AB/(√2/2) (забудем на время про катет AB) ⇔

BC = √2/(√2/2) ⇔ BC = 2 (гипотенуза равна 2)

Если хотите вычислить катет, уже зная другой катет и гипотенузу:

AB/(√2/2) = 2 ⇔ AB = √2

Ответ: гипотенуза BC равна 2 см, а катет AB √2 см.

Если есть прилежащий катет — по косинусу

Если в условии задачи дан угол и прилежащий катет, то ищем гипотенузу по косинусу (в прямоугольном треугольнике, косинус острого угла (cos) — это отношение прилежащего катета (b) к гипотенузе(c), таким образом cos a = b/c, из этого получается c = b / cos α).

Т.е. гипотенуза (c) = прилежащий катет (b) / косинус угла или c = b / cos α.

Например:

Треугольник ABC, AB = 1 и ∠β = 45º, ∠𝐴 прямой

Известна одна сторона треугольника AB = 1 и ∠β = 45º. Нужно вычислить гипотенузу (BC).

Помним, что гипотенуза (c) = прилежащий катет (b) / косинус угла или c = b / cos α. Т.е.: BC = AB / cosβ ⇔ BC = 1/ cos 45º.

Смотрим в таблице, чему равен cos 45º.

BC = 1/ (√2/2) = √2

Ответ: гипотенуза BC равна √2 см.

Как найти гипотенузу равнобедренного треугольника

В равнобедренном треугольнике есть гипотенуза только в том случае, если он одновременно и прямоугольный, т.к. гипотенуза есть только в прямоугольных треугольниках (и его основание будет гипотенузой).

Чтобы найти такую гипотенузу, нужно любой из двух одинаковых катетов возвести в квадрат, умножить на 2 и посчитать квадратный корень: b = √2a² (где b — гипотенуза, а — катет). Это следствие из теоремы Пифагора.

Например:

Равнобедренный треугольник: два катета равны, между ними прямой угол, гипотенуза одновременно основание

Катет равнобедренного треугольника равен 7см. Нужно найти гипотенузу.

Формула b = √2a². Подставляем:

b = √2*7² = √2*49 ≈ √98 ≈ 9.899

Если забудете эту формулу, можно использовать уже знакомую формулу Пифагора для гипотенузы (c² = a² + b²):

c² = a² + b²

c² = 7² + 7²

c² = 49 + 49

c² = 98

c = √98

c ≈ 9.899

Ответ: гипотенуза равна 9.899.

Узнайте больше про Теорему Пифагора, Теорему косинусов, а также, что такое Тангенс и Аксиома.

Как найти гипотенузу: 4 способа поиска ответа

После изучения темы про прямоугольные треугольники ученики часто выбрасывают из головы всю информацию о них. В том числе и то, как найти гипотенузу, не говоря уже о том, что это такое.

И напрасно. Потому что в дальнейшем диагональ прямоугольника оказывается этой самой гипотенузой, и ее нужно найти. Или диаметр окружности совпадает с самой большой стороной треугольника, один из углов которого прямой. И найти ее без этого знания невозможно.

Существует несколько вариантов того, как найти гипотенузу треугольника. Выбор метода зависит от исходного набора данных в условии задачи величин.

Способ под номером 1: даны оба катета

Это самый запоминающийся метод, потому что использует теорему Пифагора. Только иногда ученики забывают, что по этой формуле находится квадрат гипотенузы. Значит, чтобы найти саму сторону, нужно будет извлечь квадратный корень. Поэтому формула для гипотенузы, которую принято обозначать буквой «с», будет выглядеть так:

с = √ (а 2 + в 2 ), где буквами «а» и «в» записаны оба катета прямоугольного треугольника.

Способ под номером 2: известен катет и угол, который к нему прилежит

Для того чтобы узнать, как найти гипотенузу, потребуется вспомнить тригонометрические функции. А именно косинус. Для удобства будем считать, что даны катет «а» и прилежащий к нему угол α.

Теперь нужно вспомнить, что косинус угла прямоугольного треугольника равен отношению двух сторон. В числителе будет стоять значение катета, а в знаменателе — гипотенузы. Из этого следует, что последнюю можно будет сосчитать по формуле:

с = а / cos α.

Способ под номером 3: даны катет и угол, который лежит напротив него

Чтобы не запутаться в формулах, введем обозначение для этого угла — β, а сторону оставим прежнюю «а». В этом случае потребуется другая тригонометрическая функция – синус.

Как и в предыдущем примере, синус равен отношению катета к гипотенузе. Формула этого способа выглядит так:

с = а / sin β.

Для того чтобы не запутаться в тригонометрических функциях, можно запомнить простое мнемоническое привило: если в задаче идет речь о противолежащем угле, то нужно использовать синус, если — о прилежащем, то косинус. Следует обратить внимание на первые гласные в ключевых словах. Они образуют пары о-и или и-о.

Способ под номером 4: по радиусу описанной окружности

Теперь, для того чтобы узнать, как найти гипотенузу, потребуется вспомнить свойство окружности, которая описана около прямоугольного треугольника. Оно гласит следующее. Центр окружности совпадает с серединой гипотенузы. Если сказать по-другому, то самая большая сторона прямоугольного треугольника равна диагонали окружности. То есть удвоенному радиусу. Формула для этой задачи будет выглядеть так:

с = 2 * r, где буквой r обозначен известный радиус.

Это все возможные способы того, как находить гипотенузу прямоугольного треугольника. Пользоваться в каждой конкретной задаче нужно тем методом, который больше подходит по набору данных.

Пример задачи №1

Условие: в прямоугольном треугольнике проведены медианы к обоим катетам. Длина той, которая проведена к большей стороне, равна √52. Другая медиана имеет длину √73. Требуется вычислить гипотенузу.

Так как в треугольнике проведены медианы, то они делят катеты на два равных отрезка. Для удобства рассуждений и поиска того, как найти гипотенузу, нужно ввести несколько обозначений. Пусть обе половинки большего катета будут обозначены буквой «х», а другого — «у».

Теперь нужно рассмотреть два прямоугольных треугольника, гипотенузами у которых являются известные медианы. Для них нужно дважды записать формулу теоремы Пифагора:

(2у) 2 + х 2 = (√52) 2

(у) 2 + (2х) 2 = (√73) 2 .

Эти два уравнения образуют систему с двумя неизвестными. Решив их, легко можно будет найти катеты исходного треугольника и по ним его гипотенузу.

Сначала нужно все возвести во вторую степень. Получается:

Из второго уравнения видно, что у 2 = 73 – 4х 2 . Это выражение нужно подставить в первое и вычислить «х»:

4(73 – 4х 2 ) + х 2 = 52.

292 – 16 х 2 + х 2 = 52 или 15х 2 = 240.

Из последнего выражения х = √16 = 4.

Теперь можно вычислить «у»:

у 2 = 73 – 4(4) 2 = 73 – 64 = 9.

По данным условия получается, что катеты исходного треугольника равны 6 и 8. Значит, можно воспользоваться формулой из первого способа и найти гипотенузу:

√(6 2 + 8 2 ) = √(36 + 64) = √100 = 10.

Ответ: гипотенуза равна 10.

Пример задачи №2

Условие: вычислить диагональ, проведенную в прямоугольнике с меньшей стороной, равной 41. Если известно, что она делит угол на такие, которые соотносятся как 2 к 1.

В этой задаче диагональ прямоугольника является наибольшей стороной в треугольнике с углом 90º. Поэтому все сводится к тому, как найти гипотенузу.

В задаче идет речь об углах. Это значит, что нужно будет пользоваться одной из формул, в которых присутствуют тригонометрические функции. А сначала требуется определить величину одного из острых углов.

Пусть меньший из углов, о которых идет речь в условии, будет обозначен α. Тогда прямой угол, который делится диагональю, будет равен 3α. Математическая запись этого выглядит так:

Из этого уравнения просто определить α. Он будет равен 30º. Причем он будет лежать напротив меньшей стороны прямоугольника. Поэтому потребуется формула, описанная в способе №3.

Гипотенуза равна отношению катета к синусу противолежащего угла, то есть:

Гипотенуза – формула, правила и примеры вычислений

Слово «гипотенуза» со школьных времен у многих вызывает негативные ассоциации. Добавим загадочного и непонятного. Происходит от греческого «ὑποτείνουσα».

А ведь означает всего-навсего «вытянутый». И речь идет о простейшей форме треугольника – прямоугольной (рис. 1).

Гипотенузой называют сторону напротив прямого угла. Самую протяженную. В данном случае – с. Остальные составляющие – катеты.

Простыми фигурами интересовались древние строители Вавилона и Египта. А особенно – землемеры. Еще бы: ведь основа любой цивилизации – распределение угодий и налоги.

Считается, что теоретическая база была доказательно предложена Пифагором в V-м веке до н. э. Хотя, скорее всего, это было сделано ранее.

Теорема Пифагора

Сумма квадратов катетов составляет квадрат гипотенузы:

Верно и обратное утверждение. Треугольник, удовлетворяющий приведенному равенству – прямоугольный.

Формула верна только в Евклидовой геометрии, где параллельные прямые не пересекаются.

Утверждение приведено в современной интерпретации. В оригинале выглядит несколько по-другому: площадь квадрата, построенного на гипотенузе, идентична сумме площадей квадратов, построенных на катетах (рис. 2).

Существует масса способов доказательства. В том числе весьма сложных. А попадаются удивительно изящные, как например, на рисунке 3:

В тригонометрии

Построим на плоскости прямоугольную систему координат с единичной (с радиусом, равным 1) окружностью с центром в точке (0; 0). B – пересечение угла α и кривой (рис. 4).

На оси абсцисс X отмечается cos α; на оси ординат Y – sin α.

В получившемся прямоугольном треугольнике отрезок 0B является гипотенузой. Учитывая доказанную теорему, выводим основное равенство математической дисциплины:

sin 2 α + cos 2 α = 1

Гипотенуза прямоугольного треугольника

Связана со сторонами следующими соотношениями (см. рис. 1):

a – противолежащий α катет;

Величины sin α и cos α меньше либо равны 1, что очевидно из рис. 4. Но в треугольнике не может быть два прямых угла. Как не может быть нулевого.

Это означает, что гипотенуза – всегда наибольшая сторона треугольника, т. е.

Гипотенуза равнобедренного треугольника

В такой фигуре катеты равны и являются сторонами прямого угла (рис. 5). Расчет гипотенузы c производится по формуле теоремы Пифагора.

Нетрудно заметить, что углы α = 45°. Поскольку сумма всех равна 180°.

Пример решения задачи

Дан прямоугольный треугольник ABC (рис. 1). Рассчитайте длину AB, если b = 20 см, а β = 70°.

AC является катетом, противолежащим углу β. Значит нахождение гипотенузы сводится к отношениям:

Ответ: АВ = 21,3 см.

В интернете есть онлайн калькуляторы для оперативного расчета величины. Но целесообразно ими пользоваться разве что при значительном объеме вычислений. Ведь формулы довольно просты.

Связанные с упомянутыми фигурами задачи распространены в реальной жизни. Приведенные уравнения призваны помочь в решении.

Гипотенуза — формула, правила и примеры вычислений

Слово «гипотенуза» со школьных времен у многих вызывает негативные ассоциации. Добавим загадочного и непонятного. Происходит от греческого «ὑποτείνουσα».

А ведь означает всего-навсего «вытянутый». И речь идет о простейшей форме треугольника – прямоугольной (рис. 1).

Гипотенузой называют сторону напротив прямого угла. Самую протяженную. В данном случае – с. Остальные составляющие – катеты.

Простыми фигурами интересовались древние строители Вавилона и Египта. А особенно – землемеры. Еще бы: ведь основа любой цивилизации – распределение угодий и налоги.

Считается, что теоретическая база была доказательно предложена Пифагором в V-м веке до н. э. Хотя, скорее всего, это было сделано ранее.

Теорема Пифагора

Сумма квадратов катетов составляет квадрат гипотенузы:

Верно и обратное утверждение. Треугольник, удовлетворяющий приведенному равенству – прямоугольный.

Формула верна только в Евклидовой геометрии, где параллельные прямые не пересекаются.

Утверждение приведено в современной интерпретации. В оригинале выглядит несколько по-другому: площадь квадрата, построенного на гипотенузе, идентична сумме площадей квадратов, построенных на катетах (рис. 2).

Существует масса способов доказательства. В том числе весьма сложных. А попадаются удивительно изящные, как например, на рисунке 3:

В тригонометрии

Построим на плоскости прямоугольную систему координат с единичной (с радиусом, равным 1) окружностью с центром в точке (0; 0). B – пересечение угла α и кривой (рис. 4).

На оси абсцисс X отмечается cos α; на оси ординат Y – sin α.

В получившемся прямоугольном треугольнике отрезок 0B является гипотенузой. Учитывая доказанную теорему, выводим основное равенство математической дисциплины:

sin 2 α + cos 2 α = 1

Гипотенуза прямоугольного треугольника

Связана со сторонами следующими соотношениями (см. рис. 1):

a – противолежащий α катет;

Величины sin α и cos α меньше либо равны 1, что очевидно из рис. 4. Но в треугольнике не может быть два прямых угла. Как не может быть нулевого.

Это означает, что гипотенуза – всегда наибольшая сторона треугольника, т. е.

Гипотенуза равнобедренного треугольника

В такой фигуре катеты равны и являются сторонами прямого угла (рис. 5). Расчет гипотенузы c производится по формуле теоремы Пифагора.

Нетрудно заметить, что углы α = 45°. Поскольку сумма всех равна 180°.

Пример решения задачи

Дан прямоугольный треугольник ABC (рис. 1). Рассчитайте длину AB, если b = 20 см, а β = 70°.

AC является катетом, противолежащим углу β. Значит нахождение гипотенузы сводится к отношениям:

Ответ: АВ = 21,3 см.

В интернете есть онлайн калькуляторы для оперативного расчета величины. Но целесообразно ими пользоваться разве что при значительном объеме вычислений. Ведь формулы довольно просты.

Связанные с упомянутыми фигурами задачи распространены в реальной жизни. Приведенные уравнения призваны помочь в решении.

[spoiler title=”источники:”]

http://nauka.club/matematika/geometriya/gipotenuza.html

http://sprint-olympic.ru/uroki/geometrija/85470-gipotenyza-formyla-pravila-i-primery-vychislenii.html

[/spoiler]

Добавить комментарий